Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель электромобиля – разновидности и принцип работы

Двигатель электромобиля – разновидности и принцип работы

Двигатель электромобиля – разновидности и принцип работы

Экологичные автомобили, будь-то «чистые» электромобили или плагин-гибриды объединяет наличие электродвигателя, в качестве основной движущей силы. Работа современного электрического двигателя основана на принципе электромагнитной индукции, в базе которого лежит выработка электродвижущей силы в замкнутом контуре с изменением магнитного потока. Технология не нова, однако современные достижения науки и техники позволили развить ее до невероятных высот. Немалую роль в этом сыграла и возросшая в десятки раз мощность и емкость аккумуляторных батарей, которые выполняют роль топливного бака в современных электрических и гибридных автомобилях.

Электромобиль Nissan Leaf в «разрезе»: батарея с электродвигателем

Тем не менее, нельзя со 100% уверенностью утверждать, что все электродвигатели одинаковы. Многие ошибочно считают электродвигатель довольно простой установкой, однако стоит, к примеру, учитывать тот факт, что в отличии от ДВС, у электрического двигателя практически 90% КПД выделяемой энергии идет на создание крутящего момента. Согласитесь, что подобную мощность необходимо обуздать и уметь с ней обращаться, а для этого нужно знать некоторые нюансы о работе и разновидностях электрических двигателей.

Электродвигатели – особенности эксплуатации и принцип работы

К главным особенностям электрического двигателя относится несколько важных характеристик:

  1. Крутящий момент мотора достигает своего максимума сразу при включении, таким образом, электромобили не требуют наличия характерных для ДВС стартеров и сцеплений.
  2. Работа агрегата на обширном числе оборотов, позволяет электромобилю обходиться без коробки переключения передач. Для изменения стороны вращения двигателя (включение заднего хода) достаточно поменять полярности.

Электродвигатель Nissan Leaf

Однако все понимают, что стартовать на электромобиле со всего потенциала крутящего момента, который гораздо мощнее многих автомобилей с ДВС, никто не будет. По меньшей мере, это небезопасно, и что немаловажно это влечет неэффективный расход заряда батарей. Поэтому традиционно электродвигатели должны отвечать следующим требованиям:

  • иметь безопасное и удобное для эксплуатации строение;
  • обладать гарантией длительной эксплуатации;
  • иметь компактные габариты.

Как уже упоминалось, работа современного электродвигателя основана на давно известном принципе электромагнитной индукции. Традиционно агрегат состоит из недвижимого элемента – статора, и крутящегося – ротора. Статор имеет ряд обмоток на которые поступает электрический ток, что приводит к появлению магнитного поля, при котором ротор начинает свое движение. Скоростные показатели ротора определяются частотой, с которой происходит переключение тока с одной обмотки статора на другую.

Двигатели для электромобилей – разновидности и классификация

В современных автомобилях с электрической тягой серийного производства наиболее часто используют три типа электрических двигателей.

Асинхронные двигатели. Моторы непостоянного тока, в которых скорость вращения ротора различается с потенциалом напряжения магнитного поля, созданным источником питания. Различают одно, двух и трехфазные агрегаты асинхронного типа.

Асинхронный трехфазный электродвигатель переменного тока Tesla Model S

Синхронные двигатели. Электромотор, работающий на переменном токе, с движением ротора полностью симметричным электромагнитному полю. Подобные электродвигатели используют при повышенных мощностях. Различают шаговые и вентильные синхронные электродвигатели. Для первых характерно точное расположение ротора с подачей питания на конкретную обмотку, а чтобы изменить положение ротора, напряжение между обмотками необходимо перенаправить. Для второго типа агрегатов характерно питание от полупроводниковых составляющих.

Синхронный электродвигатель с постоянным магнитом Mitsubishi i-MiEV

Двигатель-колесо. Тип электромотора сила напряжения и крутящий момент которого рассчитан на конкретное колесо. Данный тип электропривода часто используется в плагин-гибридных автомобилях в рабочем тандеме с двигателем внутреннего сгорания. Агрегат может устанавливаться непосредственно в колесо, однако современные электромобили все больше отходят от такого расположения мотора, поскольку это увеличивает удельный вес шасси и снижает управляемость. Более рационально стало использовать двигатель в качестве полноценного привода для вращения колеса.

Что касается регулировок управления электродвигателя, то за преобразование постоянного тока от аккумуляторных батарей в трехфазный переменный – отвечает инвертор.Трансмиссия – выполняющая роль сцепления и коробки передач, зачастую представлена одноступенчатым зубчатым редуктором.Остальные параметры работы электродвигателя регулируют электронная система управления, которая индивидуальна для каждой марки электрокара или гибрида.

Видео как работает электродвигатель и другие механизмы электромобиля на примере Tesla Model S

Хотелось бы подчеркнуть, что представленная классификация и система работы электродвигателей далеко не финальная. Стремительное развитие отрасли эко автомобилей только входит в начальную стадию, поэтому кардинального изменения принципа работы, мощности, строения электромоторов можно ожидать уже в ближайшее время.

Какие электродвигатели используются в гибридных и плагин-гибридных автомобилях

Гибридные автомобили имеют собственную специфику использования электромоторов. Во многом электродвигатель гибрида выполняет роль вспомогательного элемента, повышающего мощность основного двигателя внутреннего сгорания и снижающего уровень потребления топлива.

Электродвигатели используемые в гибридах можно разделить на несколько разновидностей:

  • Встроенная помощь мотору. Электродвигатель который берет на себя часть усилий по созданию крутящего момента при движении.
  • Встроенный генератор стартера. Электродвигатель, который только приводит автомобиль в движение.
  • Старт/стоп двигатель. Электродвигательная система, которая отключает основной ДВС при остановке и мгновенно запускает его при начале движения.

Кроме указанных подвидов классифицируют три типа использования электродвигателя:

  • Параллельной работы. В данном типе электродвигатель питается от батарей, а ДВС от топливного бака. Обе категории двигателей создают крутящий момент для движения автомобиля.
  • Последовательной работы. Заведенный двигатель внутреннего сгорания включает генератор, который или заводит электродвигатель или подзаряжает аккумуляторный блок.
  • Параллельно-последовательной работы. Данный тип гибридного двигателя соединяет электромотор, генератор, ДВС и колеса редуктором.

По большей части в гибридах используется принцип параллельной работы электродвигателя и ДВС. Его применяют также в подключаемых гибридах (плагин-гибридах), в которых по мере истечения заряда аккумуляторных батарей подключается ДВС малой мощности, работа которого в направлена на восполнение заряда АКБ.

Видео работы новой гибридной системы плагин-гибрида Toyota Prius

Преимущества и недостатки использования электродвигателей

Как и любой двигатель, электромотор в электромобиле имеет собственные плюсы и минусы использования. Для понимания данных особенностей электромоторов приведем таблицу:

Будущие перспективы электродвигателя в автомобилях

Говорить о перспективах, при активном использовании электродвигателей в автомобилях, уже не разумно. Сейчас можно говорить только о происходящих и грядущих улучшениях электромоторов.

Читать еще:  Шум стартера после запуска двигателя на приоре

Сам электродвигатель, это достаточно совершенное устройство, апгрейд которого происходит исключительно в зависимости от потенциала использования. Ближайшие тенденции по улучшению электродвигателя направлены в сторону уменьшения размеров и массы, с сохранением и увеличением производительности.

Гораздо больше работы проводится по улучшению источников энергии для электродвигателя, а точнее аккумуляторных батарей. Их также стараются сделать меньше и легче, увеличивая объем, отдачу энергии, но при этом снижая время на подзарядку. Работа над АКБ устанавливаемых на электромобили, сейчас наиболее приоритетная в отрасли производства электромобилей, гибридных и плагин-гибридных авто.

Асинхронные двигатели

Motovario

Асинхронные трёхфазные двигатели Motovario (Мотоварио), соответствующие международным стандартам IEC, типоразмерами от 063 до 280. Существуют в исполнениях с фланцем B5 и B14, а также на лапах B3. Могут комплектоваться тормозом постоянного или переменного тока. Диапазон мощностей от 0,09 до 90 кВт

Leroy-Somer (не поставляем)

Внимание! Не поставляем продукцию Leroy-Somer

Компания Leroy-Somer производит высокопроизводительные трехфазные асинхронные двигатели с регулируемой частотой вращения LSMV.

Общая информация

Асинхронные двигатели имеют наибольшее распространение в мировой промышленности. Абсолютно точно можно утверждать, что асинхронные двигатели сегодня занимают большую часть всех электрических машин, отвечающих за преобразование электрической энергии в механическую. Интересен факт изобретения асинхронной схемы. Оказывается, одним из «отцов-основателей» асинхронного двигателя является Никола Тесла. Именно Тесла 1 мая 1888 года получил в США патент, в котором подробно описал принципы работы асинхронного двигателя.

Купить асинхронный двигатель для промышленного назначения можно в компании Сервотехника — просто свяжитесь с нашим менеджером через раздел контакты.

Асинхронный двигатель состоит из статора и ротора. Статор и ротор не касаются друг друга. Обмотки и сердечник – это активные элементы двигателя, отвечающие за преобразование электрической энергии в энергию механическую (вращательную).

Статор представляет собой ферромагнитный сердечник в пазах которого размещена обмотка. Сердечник статора состоит из стальных листов, которые изолированы друг от друга. В пазы сердечника, который собран из этих листов, укладывается обмотка. Все обмотки состоят из нескольких других обмоток, которые соединены между собой. На эти обмотки подается напряжение, в результате чего и образуется электромагнитное поле. А создание электромагнитного поля и есть основная задача статора асинхронного двигателя.

Второй активный элемент асинхронного двигателя это ротор. Ротор расположен внутри статора. Он состоит из медных (иногда алюминиевых стержней). Эти стержни расположены параллельно оси вращения ротора и замыкаются двумя торцевыми кольцами.

Купить асинхронный двигатель

Вы можете осуществить подбор и купить асинхронные двигатели и сервоприводы, обратившись к нашим специалистам по электронной почте или позвонив по телефону, указанному в разделе контакты.

Газета ЗАО МПО «Электромонтаж»

Газета «МПО ЭЛЕКТРОМОНТАЖ» июль 2010

В номере

Новый офис

  • Новый офис на Долгопрудной

Выставки

  • Электро-2010

Новинки ассортимента

  • Светодиодные ленты
  • Лестницы без капризов
  • Кондиционеры AEG

Да будет свет

  • Испанские светильники ACB

Внимание к деталям

  • Розетки и выключатели Siemens Delta Line
  • Изолирующие и антикоррозионные ленты

Новые технологии

  • Электронные трансформаторы для ламп накаливания

Инструмент

  • Фермерский инструмент от Makita

Кабельное хозяйство

  • Втулочные наконечники из меди
  • Кабели для видеонаблюдения: паритет цены и качества

Прошлое больших открытий

  • Первые электродвигатели. Переменный ток. Уитстон и Тесла

Хобби-класс

  • Посвящения и ощущения Владимира Хорошко
Архив газеты по годам
Все статьи по рубрикам газеты

Первые электродвигатели. Переменный ток. Уитстон и Тесла

В прошлом номере мы напомнили предысторию создания электродвигателя: в 1820 г. X. Эрстед и Д. Ф. Араго обнаружили взаимодействие магнитного поля с электрическим током, в 1821 г. Ж. Б. Био и Ф. Савар установили его закономерности, в 1827 А. Ампер разработал теорию электродинамики, в 1831 г. М. Фарадей и Дж. Генри открыли явление электромагнитной индукции — вращение проводника с током вокруг магнита, или магнита вокруг проводника.

В 1833 г. У. Риччи создал прообраз электрического мотора с вращательным, а не возвратно-поступательным, как у парового, принципом. В 1834 г. Б. С. Якоби создал действующий электродвигатель и в 1837 г. испытал его в сложных условиях на Неве. В 1860 г. А. Пачинотти изобрёл двигатель с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом, удобной схемой возбуждения и коллектором почти современного типа.

Все эти агрегаты работали от постоянного тока, использование гальванических батарей делало их неэкономичными, а эффективный генератор придумали много позже.

Тем временем велись исследования переменного тока и попытки создания электромоторов с его применением.

Конструкция такого двигателя должна была быть особой — чтобы предотвратить возникновение вихревых токов, порождённых частым периодичным перемагничиванием его электромагнитов, которые разогревают его и снижают мощность.

Первой реализацией такой конструкции в 1841 году была синхронная модель Чарльза Уитстона. Она состояла из кольцеобразного многополюсного магнита, полярность которого менялась под действием переменного тока, и из звездообразного постоянного электромагнита, который вращался на валу при переключении полярности питающего его постоянного тока с помощью специального коммутатора. При включении через цепь сначала пускался постоянный ток, и мотор начинал работать как двигатель постоянного тока, а после набора скорости, соответствовавшей синхронному ходу, коммутатор уже не переменял направление в роторе, и двигатель работал как синхронный переменного тока.

Система требовала для запуска разгонный двигатель, при перегрузке синхронность хода нарушалась, магниты начинали тормозить вращение вплоть до полной остановки. Поэтому широкого распространения синхронные двигатели не получили.

В основу идеи асинхронного (он же индукционный) двигателя был положен опыт Д.-Ф. Араго (1824 г): в лёгком медном кружке, соосном вращающемуся вокруг вертикали подковообразному магниту, наводятся индукционные токи, образованное ими магнитное поле взаимодействует с магнитом, и кружок так же начинает вращаться.

В 1879 г. У. Бейли сконструировал мотор, в котором два электромагнита с четырьмя крестообразно расположенными полюсами он намагничивал, с разной полярностью, с помощью выключателя. Подвешенный над ними медный кружок вращался без подведения к нему (как ротору) тока, в отличие от двигателей постоянного тока или синхронных переменного.

Читать еще:  Датчик температуры двигателя газ 4216

Понятно, что мощность и КПД такого устройства чрезвычайно малы, а заменивший выключатель коллектор был чрезвычайно сложен.

Но до реализации идеи оставался только шаг. Он был сделан с развитием техники многофазных токов, которая, собственно, и появилась-то благодаря разработке электродвигателей переменного тока.

В 1888 г. итальянский физик Галилео Феррарис и изобретатель из Хорватии, работавший в США, Никола Тесла открыли явление вращающегося электромагнитного поля. Оно создаётся двумя или более неподвижными катушками, расположенными под углом друг к другу, в которых протекают одинаковые по величине, но сдвинутые друг относительно друга по фазе переменные токи. В результате возникает тот же эффект перемены магнитных полюсов (по кругу), которого добился в своем двигателе У. Бейли — но без всяких коммутаторов и скользящих контактов: перемагничиванием управляет сам ток.

На основе этого эффекта Н. Тесла сконструировал двухфазный асинхронный двигатель.

Чтобы получить двухфазный ток из однофазного, Н. Тесла построил генератор, который сразу давал два переменных тока с разностью фаз в четверть периода. В нём между полюсами магнита вращались две взаимно перпендикулярные катушки, и когда витки одной находились под полюсами и в них индуцировался максимальный ток, витки другой находились между полюсами и ЭДС в них была равна нулю — вот вам и сдвиг фаз на 90 . Трёхфазный ток можно получить аналогично, используя три катушки под углом 60 друг к другу.

Двигатель Тесла оказался лучше и надёжней всех существовавших. Обмотка статора была выполнена в виде катушек, насаженных на выступающие полюса, концы их выведены на кольца, расположенные на валу. Ротор — в виде барабана с двумя взаимно перпендикулярными, замкнутыми на себя катушками.

Кстати, Г. Феррарис тоже построил двухфазный двигатель с медным сплошным ротором и сосредоточенной обмоткой на статоре, мощностью в несколько ватт, КПД 50 %. Но сам считал идею неперспективной.

Между тем, уже в 1889 г. Вестингауз Электрик Компани выпустила в продажу первую партию электромоторов Тесла. Это ознаменовало начало новой эры в электротехнике.

А вскоре индукционный двигатель Теслы был значительно переработан и усовершенствован Михаилом Осиповичем Доливо Добровольским — об этом в следующем номере.

Что такое магнитный двигатель и как его сделать своими руками?

Сотни лет человечество пытается создать двигатель, который будет работать вечно. Сейчас этот вопрос, стоит особенно актуально, когда планета неминуемо движется к энергетическому кризису. Конечно, он может никогда и не наступить, но независимо от этого, люди все-таки нуждаются в том, чтобы отойти от привычных источников энергии и магнитный двигатель – отличный вариант.

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

Общее устройство и принцип работы

Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:

  • ротор с постоянным магнитом;
  • статор с электрическим магнитом;
  • двигатель.

На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.

По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.

История возникновения вечного двигателя

Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.

В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.

Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.

Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.

Читать еще:  Что такое крутящий момент асинхронного двигателя формула

Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.

Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Очередным отличным вариантом такого механизма, в котором энергия магнитов применяется в качестве бесперебойной автономной работы, является двигатель, который уже давно вышел в серию, несмотря на то, что был разработан только 30 лет назад, изобретателем из Японии Кохеи Минато.

Специалисты отмечают высокий уровень бесшумности и вместе с этим, эффективность. Как утверждает его создатель, такой самовращающийся двигатель магнитного типа как этот имеет коэффициент полезного действия, выше 300%.

Конструкция подразумевает ротор в форме колеса или диска, на котором под углом размещаются магниты. При приближении к ним статора с крупным магнитом, колесо начинает движение, которое основывается на попеременным отталкиванием/сближением полюсов. Скорость вращения будет увеличиваться по мере приближения статора к ротору.

Чтобы исключить нежелательных импульсов во время работы колеса, применяются реле стабилизаторы и уменьшают использование тока управляющего электромагнита. Есть в такой схеме и недостатки, в качестве необходимости систематического намагничивания и отсутствию информации по тяге и нагрузочным характеристикам.

Магнитный мотор Говарда Джонсона

Схема этого изобретения от Говарда Джонсона, подразумевает использование энергии, что создается благодаря потоку непарных электронов, которые имеются в магнитах, для создания цепи питания силового агрегата. Схема устройства выглядит, как совокупность большого количества магнитов, особенность расположения которых, определяется исходя из конструктивной особенности.

Магниты располагаются на отдельной пластине, с высоким уровнем магнитной проводимости. Одинаковые полюса располагаются по направлению к ротору. Благодаря этому обеспечивается попеременное отталкивание/притяжение полюсов, а при этом и смещение частей ротора и статора относительно друг друга.

Правильно подобранное расстояние между основными работающими частями, позволяет правильным образом выбирать магнитную концентрацию, благодаря чему удастся выбирать силу взаимодействия.

Генератор Перендева

Генератор Перендева представляет собой очередное удачное взаимодействие магнитных сил. Это изобретение Майка Брэди, которое он даже успел запатентовать и создать компанию «Перендев», до того, как на него открыли уголовное дело.

Статор и ротор выполнены в форме внешнего кольца и диска. Как видно из схемы, предоставленной в патенте, на них по круговой траектории располагают отдельные магниты, четко соблюдая определенный угол по отношению к центральной оси. Благодаря взаимодействию полей магнитов ротора и статора, происходит их вращение. Расчет цепи магнитов сводится к определению угла расхождения.

Синхронный двигатель на постоянных магнитах

Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.

Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.

Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector