Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генераторы на магнитах, работающие без топлива

Генераторы на магнитах, работающие без топлива

28 сентября 2018

Время на чтение:

Всё большую популярность набирают генераторы, которые способны вырабатывать электричество без использования бензина или дизельного топлива, так как они гораздо экономичнее. Также эти устройства не выделяют токсичных веществ и не загрязняют окружающий мир. Генераторы на магнитах, работающие без топлива, применяют не только в домашнем хозяйстве, но и в некоторых отраслях промышленности.

Бестопливные генераторы

Многие государства сейчас делают упор на разработку альтернативных источников энергии, а также на экономию полезных ископаемых. Достигается это благодаря использованию магнитных электрогенераторов. Принцип их работы заключается в элементарных законах физики. Наиболее успешными видами устройств считаются такие:

  1. Бестопливный генератор на магнитах Адамса. На сегодняшний день является наиболее популярным магнитным двигателем. У него довольно простая конструкция, но при этом очень высокий коэффициент полезного действия.
  2. Мотор Дудышева. В основе его работы применяется магнитный ток, который видоизменяется в электрический импульс.
  3. Соленоидальный мотор Дудышева. В его конструкцию включён магнитный ротор. Наибольшую эффективность показывает на малых мощностях.
  4. Двигатель Минато. КПД устройства составляет 100%. Это достигается благодаря использованию усилителей мощности.
  5. Мотор Джонсона. Это довольно популярный тип устройств, но в промышленности его не применяют из-за малой мощности.

Большинство видов агрегатов можно успешно применять в разных отраслях промышленности. Это позволит не только экономить на топливе, но и снизить уровень загрязнения окружающей среды.

Прибор Вега и его особенности

Бтг работают по схеме захвата свободной энергии, после чего идёт её преобразование в индукционный ток. Адамс и Бедини посвятили свою жизнь изучению этого физического явления. Приборы можно применять как автономное обеспечение электроснабжением для:

  • частных домов;
  • фермерских или же лесных угодий;
  • судоходства;
  • автомобилестроения;
  • самолётостроения и космонавтики.

Эффективность бестопливных генераторов на магнитах зачастую проявляется в местах, которые не получается обеспечить топливом, а силы природной энергии недостаточно для полного обеспечения электричеством. Следует понимать, что устройство Адамса не является вечным генератором электричества. При эксплуатации ему необходим периодический ремонт. Также агрегат требует постоянного обслуживания.

Бестопливный генератор на магнитах от производителя «Вега» имеет ряд преимуществ:

  1. Прибор можно использовать в любых погодных условиях, а также вдали от сетей электроснабжения.
  2. Топливом является кинетическая энергия.
  3. Ограничения по производству электричества отсутствуют.
  4. Полностью безопасен для организма человека и природы.
  5. Сделать бестопливный генератор можно своими руками.
  6. Агрегат очень компактный.
  7. Минимальный срок эксплуатации составляет 20 лет.

Основное преимущество заключается в том, что не нужно самостоятельно придавать движение валу. Весь процесс автоматизирован, благодаря преобразованию кинетической энергии в электрический импульс.

Принцип работы

Работа генератора заключается в гибридной в системе. Переменный ток получается после преобразования кинетической энергии. Ротор вращается благодаря силе магнитного поля, которое исходит от торцов электромагнитов. Таким образом, магнитные колебания позволяют создать электрический импульс. Самая простая конструкция содержит в себе:

  1. Генератор. Это цилиндрическая ёмкость, которая обязательно должна герметично закрываться. Внутри возникает электромагнитное поле, благодаря направленному воздействию катушек.
  2. Конвектор-преобразователь. Продуцирует электроэнергию из магнитных импульсов. На выходе получается переменный ток.
  3. Аккумуляторы. Необходимы для накапливания заряда. Благодаря им можно пользоваться электричеством в любое время.

Главным элементом в конструкции является многополюсный генератор прямого вращения. Снаружи располагаются магниты. Их количество зависит от необходимой мощности. Минимальный коэффициент полезного действия такого устройства составляет 90%. Из генераторов можно создать электрические сети, соединяя несколько устройств между собой. Это выгодно, если мощность аппарата составляет, например, 5 киловатт, а требуется мощность в 10 киловатт.

Создание аппарата своими руками

Получение электрической энергии в огромных количествах без затрат топлива — идея заманчивая и вполне выполнимая. Создание такого устройства можно рассмотреть на примере генератора Адамса. Для самостоятельной сборки понадобятся:

  1. Магниты. Чем больше магнит, тем сильнее он воздействует на индукционное поле, а также на количество вырабатываемой энергии. Для генератора небольшой мощности подойдут маленькие куски. Желательно, чтобы размеры были одинаковыми. Для нормальной работы достаточно 15 штук. Плюсовой полюс одного магнита должен устанавливаться напротив плюса другого. Если не соблюсти это условие, то индукционного поля не будет.
  2. Медные провода.
  3. Две катушки. Их можно достать из старых двигателей или же намотать проволоку самостоятельно.
  4. Листовая сталь для изготовления корпуса.
  5. Болты, шайбы, шурупы и гвозди. Они необходимы для крепежа небольших элементов.

Сначала магнит нужно закрепить на основании катушки. Сделать это можно, если высверлить в нём отверстие, а затем закрепить болтами. Провода на катушках должны быть толщиной в 1,25 мм и иметь слой изоляции. Катушки следует крепить на металлической раме так, чтобы между торцами были небольшие зазоры. Это требуется для свободного вращения основного элемента.

На этом этапе аппарат уже можно использовать. Проверить правильность сборки довольно просто: следует вручную прокрутить магниты. Если конструкция собрана правильно, то на концах обмотки возникнет напряжение.

Это наиболее примитивный генератор, работающий от магнитов. Но на основе такой схемы можно создать устройство, которое будет способно обеспечить электроэнергией весь дом. Также можно приобрести уже готовые аппараты от проверенных производителей.

Наиболее популярные модели

На текущий момент наиболее популярными генераторами являются модели от производителей «Энерджистем», «U-Polemag», «Вега», а также «Верано-Ко». Они занимают обширную часть рынка устройств.

«Вега» производит аппараты, которые работают исходя из принципа магнитной индукции. Эту идею смог воплотить знаменитый физик Адамс. Цена зачастую зависит от мощности и размеров аппарата. Минимальная стоимость составляет 45 тыс. руб. У этого производителя есть ряд преимуществ:

  1. Продукция от компании «Вега» очень экологична.
  2. Генераторы полностью бесшумны, что позволяет их устанавливать в любом месте.
  3. Аппараты сравнительно компактные.
  4. У производителя довольно много моделей, мощность которых начинается от 1,5 кВт и достигает до 10 кВт.

Минимальный эксплуатационный срок составляет 20 лет. Аккумуляторы необходимо заменять через каждые 3−4 года.

«Верано-Ко» — это украинский производитель, использующий для своей продукции только качественные комплектующие. Производит генераторы как для бытовых нужд, так и для промышленных целей. Принцип работы альтернативного источника энергии такой же, как и у других магнитных агрегатов. Самая дешёвая модель стоит 50 тыс. руб. Цены на устройства достигают 200 тыс. руб.

«U-Polemag» является китайским производителем. Представляет наибольшее разнообразие моделей генераторов. Стандартное КПД устройств составляет 93%. Максимальные потери энергии — 1%. Зачастую приобретается для бытового использования. Имеет компактные габариты, низкий уровень шума и небольшой вес. В комплектацию входят системы охлаждение. Максимальная длительность использования достигает 15 лет. Цены на модельный ряд начинаются от 30 тыс. руб. и достигают 90 тыс. руб.

«Энерджисистем» производит устройства вертикального типа. Однозначного мнения о качестве и мощности аппаратов у потребителей нет. Цены на генераторы немного завышены и начинаются от 50 тыс. руб.

Рекомендации по выбору

Любые подобные устройства (особенно магнитные генераторы) стоят довольно много. Зачастую потребители хотят купить качественную модель, но при этом потратить минимальное количество денег. В последнее время люди начали приобретать товары из Китая. Это обусловлено тем, что продукция стоит дешёво и имеет вполне терпимое качество. Генераторы или же элементы конструкции можно купить за границей, но есть определённые риски, которые следует учитывать:

  1. Приходится платить за товар до его получения.
  2. Часто случается, что продукция не соответствует описанию на сайте.
  3. Иногда посылка не доходит до адресата, а деньги при этом никто не вернёт.

Часто такая экономия оказывается ложной. Есть возможность покупки генератора напрямую от производителя. Но при таком варианте необходимо знать все тонкости конструкции аппарата, чтобы опытный продавец не смог «втюхать» генератор, не соответствующий требованиям, поэтому перед покупкой следует:

  1. Досконально изучить рынок таких устройств. Это позволит обнаружить лидеров среди производителей.
  2. Правильно рассчитать мощность. Так можно сэкономить, не переплачивая за ненужные характеристики.

Желательно убедиться, что к товару выписывается гарантийный талон. У каждой модели должен быть лист испытаний, который может подтвердить качество.

Бестопливный генератор своими руками из асинхронного двигателя

и возможный вариант обойтись без трансформатора

Читать еще:  Бмв х5 е53 как помыть двигатель

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

из описания
В целом алгоритм выглядит так :
1. Двигатель включается в однофазную сеть и запускается;
2. После разгона контролируется некое напряжение и только после этого переключается тумблером вся схема на автономную работу;
3. Вынимается вилка из розетки.

Далее были учтены еще ряд подробностей, указанных Host-ом:
а) Наличие переменного напряжения 340 вольт на каких-то выводах двигателя;
б) использование всех 6-и проводов, исходящих из электромотора;
в) возможность параллельного подключения к обмоткам двигателя еще двух ламп на 220 вольт или еще одного трехфазного асинхронного двигателя (в моей схеме их можно подключить параллельно генерирующим обмоткам (А1-А2)+(В1-В2));
г) ну и, собственно, реализовано само «ноу-хау» дяди Васи: «импульс, емкости и очень важно вовремя переключать».

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

220В/50Гц, включенными звездой при запитке от одной фазы

220В/50Гц потребляет на холостом ходу 105 ВА, сильно гудит, ток потребления нелинейный — с вытянутыми макушками синусоиды. При подключении ТРЁХ емкостей по 2мкФ (к каждой обмотке параллельно) потребление падает до 27 ВА, гудение прекращается. В таком включении двигатель запускается и работает от 60 вольт, потребляя 6 ВА (10 ВА при 100В) на холостом ходу, а на обмотках — почти равные ТРИ фазы по 220В. Резонансная частота одной обмотки с конденсатором 2мкФ — НЕ 50Гц, а 300-400Гц, вероятно зависит от количества пазов на статоре. Увеличение или уменьшение величины емкостей приводит к увеличению тока потребления и гудению. Вероятно раскручивая его внешним двигателем с переменными оборотами можно увидеть минимум потребления при определённых оборотах.
Может быть в ротоверторах обмотки запитывать и снимать надо со ВСЕХ ТРЁХ обмоток асинхронного двигателя, естественно со сдвигом по времени и фазам, а в выпрямителе при съёме использовать не простой С-фильтр, а LC-фильтры по каждой фазе и сложением на постоянном токе.

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

ertertwertwer пишет: мда. вы хоть понимаете как это работает?
а попытки словить резонанс и энергия из великого нечто это не от большого ума.

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

собрали о Кенте Рено все в ролик, за что искателям огромное спасибо
представлено два варианта мотор-генератора
в одном (начало) сплошные переделки синхронный мотор переделан в трехфазный ген и в обычный мотор вставлен ротор от генератора
по конструкции что на раме от бензогенератора там мотор постоянного тока (тот что больше) и ген с возбуждением

банально но где то так

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Изобретение относится к области электротехники и может быть использовано в приводах переменного тока. Техническим результатом является увеличение кпд. В приводном двигателе переменного тока к ротору второго двигателя подключена цепь самовозбуждения, в результате чего появляется дополнительный момент на общем валу привода. Привод состоит из первичного приводного двигателя (ПД1) приводного электрического двигателя (ПД2) с цепью самовозбуждения питания обмотки якоря; и нагрузки (Н), в качестве которой может быть механизм или генератор. Приводной двигатель с цепью самовозбуждения питания обмотки якоря состоит из следующих элементов: двигателя переменного тока (1), трансформатора (2); стабилитронов (3, 4), служащих для стабилизации напряжения на первичной обмотке трансформатора, конденсаторов (5, 6, 7), служащих для компенсации индуктивностей обмотки приводного двигателя ПД2, первичной и вторичной обмоток трансформатора.
Изобретение относится к области электротехники, а именно приводам переменного тока.
Наиболее близким аналогом предлагаемого электропривода является асинхронный двухдвигательный электропривод со сложением механических характеристик (см. «Общий курс электропривода» М.Г.Чиликин, А.С.Сандлер, Москва, Энергоиздат, 1981 г., стр.216). Указанный электропривод состоит из двух механически связанных асинхронных электродвигателей, один из которых работает в двигательном режиме, а второй — в генераторном, в режиме торможения противовключением. Механические характеристики этих машин складываются, и результирующий момент на валу всегда меньше максимального момента, развиваемого асинхронным двигателем, работающим в двигательном режиме. У данного привода низкий кпд.
Задачей изобретения является увеличение кпд двухдвигательного привода.
Это достигается подключением к ротору второго двигателя цепи самовозбуждения, в результате чего на общем валу появляется дополнительный момент, дающий увеличение результирующего момента, а следовательно, и кпд привода.

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Вращающийся (поворотный) конвертер

Поворотный конвертер — роторный преобразователь представляет собой тип электрической машины используется для преобразования одной формы электрической энергии в другую форму. Есть несколько типов: * Ротари Фаза конвертер (RPC) для преобразования однофазный источник питания для трехфазного питания. и т.д. Принципы работы

Вращающийся преобразователь можно рассматривать как мотор-генератор, где две машины используют один вращающийся якорь и наборКатушкас. Обычная практика, на самом деле, должен был иметь два коммутатора S, один на каждом конце якоря (или, для AC-до-DC машин, наборконтактные кольца и коммутатор).

Преимущество поворотного преобразователя через дискретный набор мотор-генератора является то, что поворотный конвертер позволяет избежать превращения всего потока мощности в механическую энергию, а затем обратно в электрическую энергию; некоторые из электрической энергии, а поступает непосредственно от входа к выходу, что позволяет поворотный конвертер, гораздо меньше и легче, чем набор мотор-генератора эквивалентной мощности обработки способности. Преимущества набора мотор-генератора включают полную изоляцию, гармоник, изоляцию, контроль выходного напряжения, большую волну и временная защита, и наплывов (за напряжением) защиту за счет увеличения импульса.

В этой первой иллюстрации однофазной прямого тока поворотного преобразователя, он может быть использован пять различных способов: [ Hawkins Руководство по электрическим, 2 изд. 1917, р. 1461 ] * Если катушка вращается, переменные токи могут быть взяты из коллекторных колец, и это называется
генератор. * если катушка вращается, постоянного тока могут быть взяты из коммутатора, и это называется
динамо. * Если катушка вращается, два отдельных токи могут быть получены из арматуры, одним обеспечивая постоянный ток, а другой обеспечивает переменный ток. Такая машина называется «двойной генератор тока». * Если постоянного тока подается на коммутатор, катушка начнет вращаться как коммутируемый электродвигателя и переменного тока может быть выведен из коллекторных колец. Это называется «перевернутой роторный преобразователь». * Если машина доведена до синхронной скорости с помощью внешних средств, и, если направление тока через арматуру имеет правильное отношение к катушек поля, то катушка будет продолжать вращение в sychronism с переменного тока в качестве

Синхронный двигатель. Постоянного тока могут быть взяты из коммутатора. При использовании таким образом, она называется «поворотный конвертер».

Один из способов предусматривают, что происходит в поворотной преобразователь переменного тока в постоянный ток, это представить роторный реверсивный переключатель, что в настоящее время двигается со скоростью, которая синхронно с линией электропередач. Такой переключатель может исправить кривую входного сигнала переменного тока, без магнитных компонентов вообще сохранить тех, которые ездят переключатель. Вращающийся преобразователь является несколько более сложным, чем для этого тривиального случая, поскольку она обеспечивает около-DC, а не пульсирующего постоянного тока, которые может повлечь только реверсивного переключателя, но аналогия может быть полезным в понимании того, как поворотный конвертер позволяет избежать преобразования вся энергия от электрической в механическую и обратно в электрический.

кто что про эту байду знает у меня очень сильное подозрение что КентРено использовал как ген такой конвертер

Характеристики и преимущества
Генератор с постоянным магнитом легче, чем построенные на технологии угольных щеток.
Прочная рама и колеса.
Четыре выхода для работы с четырьмя булавами.
Термозащита обмоток.
Низкое потребление энергии.
Низкая стоимость эксплуатации.
Отсутствие выхлопов

Технические характеристики
Входное напряжение (В) 440V-3-50Hz
Выходной ток (А) 65
Количество выходов 4
Входной ток (А) 9.5
Выходное напряжение (В) 42V-3-200Hz
Выходная мощность 4.7 kVA
Защищенные выходы Нет
Тепловая защита статора и генератора Да
Масса 70 kg
Индекс защиты IP55
Допуск первичного напряжения ±10%
Температура окружающей среды (°C) -10°C +40°C
Температура окружающей среды (°F) 14°F 104°F
Тип рамы Колесный
Уровень шума 85 dB(A)

Читать еще:  Вибрация двигателя на холостых оборотах дэу нексия

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Трансформатор Теслы

Трансформа́тор Те́слы, или кату́шка Те́слы (англ. Tesla coil ) — устройство, изобретённое Николой Теслой и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала» [1] .

Содержание

  • 1 Принцип действия
  • 2 Функционирование
    • 2.1 Заряд
    • 2.2 Генерация
  • 3 Модификации трансформаторов Теслы
  • 4 Использование трансформатора Теслы
  • 5 Эффекты, наблюдаемые при работе трансформатора Теслы
  • 6 Влияние на организм человека
  • 7 См. также
  • 8 Примечания
  • 9 Ссылки

Принцип действия [ править | править код ]

Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Его первичная обмотка содержит небольшое число витков и является частью искрового колебательного контура, включающего в себя также конденсатор и искровой промежуток. Вторичной обмоткой служит прямая катушка провода. При совпадении частоты колебаний колебательного контура первичной обмотки с частотой одного из собственных колебаний (стоячих волн) вторичной обмотки вследствие явления резонанса во вторичной обмотке возникнет стоячая электромагнитная волна и между концами катушки появится высокое переменное напряжение [2] .

Работу резонансного трансформатора можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных колебаний, то при тех же усилиях максимальная амплитуда вырастает многократно. Так и с трансформатором Теслы — в роли качелей выступает вторичный колебательный контур, а в роли прилагаемого усилия — генератор. Их согласованность («подталкивание» строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства).

Простейший трансформатор Теслы включает в себя входной трансформатор, катушку индуктивности, состоящую из двух обмоток — первичной и вторичной, разрядник (прерыватель, часто встречается английский вариант Spark Gap), конденсатор, тороид (используется не всегда) и терминал (на схеме показан как «выход»).

Первичная обмотка обычно содержит всего несколько витков медной трубки или провода большого диаметра, а вторичная около 1000 витков провода меньшей площади сечения. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Разрядник, в простейшем случае, обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение.

Вторичная катушка также образует колебательный контур, где роль конденсатора, главным образом, выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины.

Таким образом, трансформатор Теслы представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.

Функционирование [ править | править код ]

Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний в первичном контуре. Разрядник, включённый параллельно, замыкая источник питания (трансформатор), исключает его из контура, иначе источник питания вносит определенные потери в первичный контур и этим снижает его добротность. На практике это влияние может во много раз уменьшить длину разряда, поэтому в схеме трансформатора Теслы разрядник всегда ставится параллельно источнику питания.

Заряд [ править | править код ]

Заряд конденсатора производится внешним источником высокого напряжения на базе повышающего низкочастотного трансформатора. Ёмкость конденсатора выбирается таким образом, чтобы вместе с индуктором она составляла резонансный контур с частотой резонанса, равной высоковольтному контуру. Однако частота будет отличаться от расчетной по формуле Томсона, так как в первом контуре существуют заметные потери на «накачку» второго контура. Напряжение заряда ограничено напряжением пробоя разрядника, которое, (в случае воздушного разрядника), можно регулировать, изменяя расстояние между электродами или их форму. Обычно напряжение заряда конденсатора лежит в диапазоне 2—20 киловольт.

Генерация [ править | править код ]

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора, напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда (ионов). Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Колебания постепенно затухают, в основном, из-за потерь в разряднике и в цепи вторичной обмотки, но продолжаются до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания разряда. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Модификации трансформаторов Теслы [ править | править код ]

Во всех типах трансформаторов Теслы основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако, одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию. В аббревиатурах названий катушек Теслы, питаемых постоянным током, часто присутствуют буквы DC, например DCSGTC.

На данный момент существуют:

  • SGTC (Spark Gap Tesla Coil) — классическая катушка Теслы — генератор колебаний выполнен на искровом промежутке (разряднике). Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника. Например, RSG (от англ. Rotary Spark Gap , можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В этом случае, частоту работы промежутка целесообразно выбирать синхронно частоте подзарядки конденсатора, и схема в этом случае ближе к картинке, а не тому, как она здесь описана. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются, (или просто замыкают), к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников, их иногда помещают в жидкие или газообразные диэлектрики, например, в масло. Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.
  • VTTC (Vacuum Tube Tesla Coil) (рус. ЛКТ) — ламповая катушка Теслы. В ней в качестве генератора ВЧ колебаний используются электронные лампы. Обычно, это мощные генераторные лампы, такие как ГУ-81, однако встречаются и маломощные конструкции. Одна из особенностей — отсутствие необходимости в высоком напряжении. Для получения сравнительно небольших разрядов достаточно 300—600 В. Также VTTC практически не издает шума, появляющегося при работе катушки Теслы на искровом промежутке.
  • SSTC (Solid State Tesla Coil) — генератор выполнен на полупроводниках. Он включает в себя задающий генератор (с регулируемой частотой, формой, длительностью импульсов) и силовые ключи (мощные полевые MOSFET транзисторы). Данный вид катушек Теслы является самым интересным по нескольким причинам: изменяя тип сигнала на ключах, можно кардинально изменять внешний вид разряда. Также ВЧ сигнал генератора можно промодулировать звуковым сигналом, например музыкой — звук будет исходить из самого разряда. Впрочем, аудиомодуляция возможна (с небольшими доработками) и в VTTC. К прочим достоинствам, можно отнести низкое питающее напряжение и отсутствие шумного искрового разрядника, как в SGTC.
  • DRSSTC (Dual Resonant Solid State Tesla Coil) — за счёт двойного резонанса, разряды у такого вида катушек значительно больше чем у обычной SSTC. Для накачки первичного контура используется генератор на полупроводниковых ключах — IGBT или MOSFET транзисторах.
  • QCW DRSSTC (Quasi Continious Wave) — особый тип транзисторных катушек Теслы, характеризующийся, так называемой, плавной накачкой: постепенным и плавным, (а не резким ударным, как в обычных катушках), нарастанием ряда параметров, (а именно: напряжения первичного контура и тока первичного контура, и, возможно, напряжения вторичного контура). В классической импульсной катушке Теслы рост тока в первичной обмотке обычно происходит в течение времени, сравнимым с длительностью периода (от 2—3 до 7—10 и более периодов) резонансной частоты, то есть, за время порядка десятков — сотен микросекунд. В QCW время нарастания составляет десятки миллисекунд, то есть, больше примерно на два порядка. Простым примером около-QCW являются ламповые катушки Теслы с шифтером. Из-за 50-герцового синуса на его выходе возникает эффект полуплавной накачки, которая обеспечивает довольно внушительный прирост длины разряда относительно типичного жёсткого прерывания (по катоду, или сетке). В результате данного приёма достигается характерный вид молний в виде длинных и практически прямых, мечевидных разрядов, длина которых многократно превышает длину намотки вторичной обмотки. Дело в том, что полное напряжение на терминале QCW DRSSTC никогда не достигает пробойного для вторичной обмотки: оно всегда остаётся довольно небольшим, десятки киловольт. Возникший на небольшом напряжении стример продолжает подпитываться энергией в течение всего времени накачки, и поэтому растёт вверх, по силовым линиям поля, вместо того, чтобы пробиваться сбоку тороида на страйкринг. Именно для этого и делается плавная накачка в катушках Теслы. За счёт такого приёма достигается следующий эффект: вначале появляется небольшой разряд, который затем растёт не с высокой скоростью, пробивая плазменный канал в случайном направлении, а с низкой (так, что этот процесс развития можно даже заснять обычными видеокамерами), что обусловливает его неразветвление и огромную относительно длины вторичной обмотки длину. По сути, мы постоянно подогреваем небольшой возникший разряд, который удлиняется по мере перекачки энергии во вторичную обмотку. Но напряжение на выходе такой катушки Теслы невелико и не превышает десятков киловольт.
Читать еще:  Что такое холодный запуск двигателя самолета

В отдельную категорию также относят магниферные катушки Теслы.

Как сделать свет на мотоблоке без генератора своими руками видео

БЕЗТОПЛИВНЫЕ ГЕНЕРАТОРЫ. Как сделать своими руками (Схемы, Инструкции)

Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.

ОБЗОР ГЕНЕРАТОРОВПри использовании безтопливного генератора, двигатель внутреннего сгорания не требуется, поскольку устройство не должно преобразовывать химическую энергию топлива в механическую, для выработки электроэнергии. Данный электромагнитный прибор работает таким образом, что электричество, вырабатываемое генератором рециркулируют обратно в систему по катушке.

Электрогенераторы бывают двух типов.

Двигатель внутреннего сгорания в бестопливных генераторах заменен электромеханическим устройством, которое принимает мощность от генератора и используя такую ​​же, преобразует её в механическую энергию с эффективностью более 98%. Цикл повторяется снова и снова. Таким образом, концепция здесь заключается в том, чтобы заменить двигатель внутреннего сгорания, который зависит от топлива с электромеханическим устройством.

Механическая энергия будет использоваться для приведения в действие генератора и получения тока, создаваемого генератором для питания электромеханического прибора. Генератор без топлива, который используется для замены двигателя внутреннего сгорания, сконструирован таким образом, что использует меньше энергии на выходе мощности генератора.

Видео: самодельный бестопливный генератор

ГЕНЕРАТОР ТЕСЛАЛинейный электрогенератор Тесла является основным прототипом рабочего прибора. Патент на него был зарегистрирован еще в 19 веке. Главным достоинством прибора является то, что его можно построить даже в домашних условиях с использованием солнечной энергии. Железная или стальная пластина изолируется внешними проводниками, после чего она размещается максимально высоко в воздухе. Вторую пластину размещаем в песке, земле или прочей заземленной поверхности. Провод запускается из металлической пластины, крепление производится с конденсатором на одной стороне пластины и второй кабель идет от основания пластины к другой стороне конденсатора.

Такой самодельный бестопливный механический генератор свободной энергии электричества в теории полностью работающий, но для реального осуществление плана лучше использовать более распространенные модели, к примеру изобретателей Адамса, Соболева, Алексеенко, Громова, Дональда, Кондрашова, Мотовилова, Мельниченко и прочих. Собрать рабочий прибор можно даже при перепланировке какого-либо из перечисленных устройств, это выйдет дешевле, нежели самому все подсоединять.

Кроме энергии Солнца, можно использовать турбинные генераторы, которые работают без топлива на энергии воды. Магниты полностью покрывают вращающиеся металлические диски, также к прибору добавляется фланец и самозапитанный провод, что значительно снижает потери, благодаря этому данный теплогенератор работает более эффективно, чем солнечный . Из-за высоких асинхронных колебаний этот ватный бестопливный генератор страдает от вихревой электроэнергии, так что его нельзя использовать в автомобиле или для питания дома, т.к. на импульсе могут сгореть двигатели.

Но гидродинамический закон Фарадея также предлагает использовать простой вечный генератор. Его магнитный диск разделен на спиральные кривые, которые излучают энергию из центра к внешнему краю, уменьшая резонанс.

В данной высоковольтной электрической системе, если есть два витка рядом расположенных, электроток передвигается по проводу, ток, проходящий через петлю, будет создавать магнитное поле, которое будет излучаться против тока, проходящего через вторую петлю, создавая сопротивление.

КАК СДЕЛАТЬ ГЕНЕРАТОРСуществует два варианты выполнения работы:

ПРОДОЛЖЕНИЕ см. ЗДЕСЬ

Tags: Как сделать свет на мотоблоке без генератора своими руками видео

Как сделать свет для мотоблока или минитрактора своими руками.

Как сделать свет на мотоблоке без генератора

Как сделать свет на мотоблоке, ведь большинство моделей не оборудовано . Можно ли своими руками сделать мотоблок из заднего моста ВАЗа?

Ребята подскажите пожалуйста как сделать генератор 220в или преобразователь на 220? не могу найти то что мне нужно. | Автор топика: Тамара

Хотябы поддерживала 2 лам. Чтонибудь Конкретное дайте пожалуйста. Просто абидно иногда сидеть без света.

Нина atext» itemprop=»text»>Как вариант могу посоветовать следующее купить Виталий обычный источник бесперебойного питания для компьютера желательно помощнее например фирмы APC и лучше с функцией запуска в отсутствии 220V. Вынуть штатные батареи 12V, а свободные концы подключить медными толстыми проводами Александр к обычному кислотному автомобильному аккумуятору 85 или 100 ампер часов — все! Полночи автономного питания для пары энергосберегающих ламп, телевизора или компа точно обеспечено. Вот только еще нужно отдельное автомобильное зарядное устройство желательно автоматическое для автомобильного аккумлятора, хотя нужно пробовать эксперементально, возможно будет за пару дней заряжать и штатная автоматика UPS Алина . Я такую штуку у себя в машине одно время возил. На природе милое дело — хоть небольшую микроволновку подключай. Даже загрузили старый кассетный магнитофон «МАЯК», усилитель на 200 ватт выходной мощности и две здоровые колонки Radiotehnika-S90. В то начало 90-х еще не было мощных 12-ти вольтовых автомобильных усилителей. Так вот — как врубили на природе С. С. Сatсh. так мимо велосипедист ехал и грохнулся от удивления. Да были раньше времена, а теперь можно купить на природу и тыс. за 8-9 портативную электростанцию, но в квартире ее конечно ставить затруднительно.

Свет на мотоблоке: как установить фару . — Садовый помощник

Как сделать свет на мотоблоке без генератора и как установить фару, если она . даже целый прожектор на мотоблок своими руками – не проблема.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector