В чем различие масел с обозначениями 5w30, 5w40, 5w50, и что означает 0 у масла 0w30
В чем различие масел с обозначениями 5w30, 5w40, 5w50, и что означает 0 у масла 0w30?
В чем различие масел с обозначениями 5w30, 5w40, 5w50, и что означает 0 у масла 0w30?
Вязкость — важнейшее свойство масла. Ее изменение в зависимости от температуры определяет границы температурного диапазона применения масла. При низких температурах масло не должно иметь большую вязкость, чтобы обеспечить холодный пуск двигателя (проворачивание стартером) и прокачивание насосом по системе смазки. При высоких температурах масло не должно иметь очень малую вязкость, чтобы поддерживать необходимое давление в системе и надежно создавать смазывающую пленку между трущимися деталями.
По величине вязкости и ее изменению в зависимости от температуры масла разделяют на:
— зимние — благодаря небольшой вязкости обеспечивают холодный пуск при низких, но не обеспечивают надежного смазывания двигателя при высоких температурах;
— летние — не обеспечивают холодный пуск при температуре окружающего воздуха ниже 0°С, но благодаря большой вязкости надежно смазывают двигатель при высоких температурах;
— всесезонные — при низких температурах обладают вязкостью зимних, а при высоких — летних масел. Всесезонные масла вытесняют летние и зимние по двум причинам: нет необходимости заменять их при смене сезона и они более эффективны как нергосберегающие.
Кроме вязкости эксплуатационные характеристики масла определяются противоизносными моющими, антиокислительными и антикоррозионными свойствами.
Вязкостные характеристики, таким образом, являются первыми и самыми важными элементами классификации моторных масел. Любые добавки, в том числе и модификаторы, повышают его цену, поэтому всегда необходимо выбирать правильное отношение свойств масла и условий его эксплуатации.
Основой для подбора конкретной марки являются требования производителя Вашего автомобиля к применяемым маслам и жидкостям, приведенные в инструкции по эксплуатации. Обычно, помимо формальных требований (спецификаций) на используемые продукты, там также в качестве примера приводятся конкретные марки масел или ссылки на фирмы-производители смазочных материалов. Если же автомобиль уже далеко не новый и сведений, приведенных в инструкции по эксплуатации недостаточно (или они просто устарели), то Вы должны самостоятельно выбрать марку масла для двигателя или трансмиссии.
Что такое «SAE»?
Спецификация SAE (SAE – Society of Automobile Engineers) – Общество Автомобильных Инженеров) является международным стандартом, регламентирующем вязкость масел.
ЭТО НИ В КОЕМ СЛУЧАЕ НЕ МАРКА ПРОИЗВОДИТЕЛЯ МАСЕЛ.
Надо помнить, что ни о качественных характеристиках масел, ни их применении для конкретных марок автомобилей и типов двигателей спецификация SAE не говорит.
Прочтите, какие требования предъявляет спецификация SAE к моторным маслам:
Последняя редакция SAE J300 опубликована в декабре 1999 года. Требования этого стандарта :
Кинематическая вязкость . Характеризует принадлежность сезонных масел к тому или иному классу вязкости. Определяется при 100оС и невысоких скоростях сдвига (от 20 до 100 с-1).
Пусковые свойства . Характеризуют сопротивление при пуске холодного двигателя и возможность достижения пусковых оборотов. Определяются при отрицательных температурах от -10 до -35оС в зависимости от класса вязкости и высоких, порядка 105с-1, скоростях сдвига. Иными словами — в условиях, характерных для работы в подшипниках коленчатого вала при холодном пуске.
Прокачиваемость . Характеризует скорость поступления масла к парам трения при холодном пуске и вероятность выхода двигателя из строя из-за проворота вкладышей при холодном пуске. Определяется при отрицательных, от -15 до -40оС, температурах в зависимости от класса вязкости и низких, около 10 с-1, скоростях сдвига. Таким образом, при оценке этой характеристики реализуются условия течения масла в поддоне к маслоприемнику и в маслоприемнике насоса при пуске холодного двигателя.
Вязкость при высокой температуре . Отражает эффективную, реальную вязкость масла при летней эксплуатации современных высоконагруженных двигателей. Характеризует противоизносные свойства масел, потери на трение и влияние на экономичность двигателя. Определяется при 150оС и высоких, порядка 106 с-1, скоростях сдвига. Тем самым имитируются условия нагружения подшипников коленчатого вала при работе с высокими нагрузками и температурами.
Как видите, спецификация SAE – это характеристики масел по классам вязкости. На сегодняшний день она содержит 6 зимних классов и 5 летних классов масел. В обозначении зимних классов присутствует буква » W » от слова » Winter «, что означает » Зима «. Чем больше вязкость масла по этой спецификации, тем выше число, входящее в обозначение класса.
К зимним классам вязкости относятся: SAE 0W , 5W , 10W , 15W , 20W , 25W ;
К летним классам вязкости относятся: SAE 20 , 30 , 40 , 50 , 60 .
Для примера разберем, о чем говорит, например, обозначение SAE 10W-40 для моторных масел. Обозначение класса вязкости » 10W » дает нам информацию о зимнем применении данного масла. Иными словами, от правильного выбора этого параметра завистит насколько легко, а самое главное без негативных последствий, Вы сможете запустить двигатель на морозе.
Класс вязкости » 40 » в нашем примере является так называемым » летним » классом и говорит о том, насколько масло способно сохранять работоспособность в высокотемпературных зонах двигателя.
Присутствие же в обозначении сразу двух классов (как в нашем примере — SAE 10W-40) говорит о всезезонности данного масла.
Как выбрать класс вязкости по SAE?
При выборе класса вязкости моторного масла необходимо следовать инструкциям завода-изготовителя Вашего автомобиля. Если же она отсутствует или не содержит подобных рекомендаций (например, если автомобиль далеко не новый и рекомендации в инструкции или уже устарели или просто отсутствуют), вы должны помнить, что:
а) При выборе так называемого » зимнего » класса вязкости необходимо руководствоваться значениями средних зимних температур в регионе, где эксплуатируется Ваш автомобиль.
Следуя этим рекомендациям Вы и Ваш автомобиль будете застрахованы от проблем с запуском в зимнее время и от негативных последствий для двигателя (таких как повышенный износ и «заклинивание» во время и сразу после запуска, когда двигатель работает в режиме масляного «голодания»), которые возникают обычно при применении масел несоответствущего класса вязкости. Необходимо помнить, что при каждом запуске двигателя (не обязательно на сильном морозе, а даже при плюсовых температурах) требуется некоторое время для того, что бы масляный насос прокачал масло по системе смазки и оно поступило ко всем трущимся частям. В это время двигатель как раз и будет работать в режиме так называемого масляного «голодания», о котором мы уже упоминали выше. Понятно, что при этом резко возрастает трение и износ. Таким образом, чем более масло способно сохранять текучесть при низких температурах, тем быстрее оно будет прокачано по системе смазки и обеспечит защиту двигателя. Лучшими в этом отношении являются моторные масла класса » 0W » .
в) Что касается выбора так называемого » летнего » класса, то следует отметить, что большинство европейских производителей автомобилей рекомендуют использование масел класса » 40 » по SAE. Это связано с высокой тепловой напряженностью современных двигателей внутреннего сгорания и наличием высоких температур, удельных давлений и скоростей сдвига в различных зонах двигателя (поршневые кольца, распределительный вал, подшипники коленчатого вала и т.д.). В этих жестких условиях масло должно сохранять вязкость, достаточную для образования масляной пленки и охлаждения пар трения. Это задача становится особенно актуальной для предотвращения повышенного износа, задиров и «заклинивания» в жару или во время длительного нахождения в «пробке» (в условиях отсутствия обдува и охлаждения двигателя потоками встречного воздуха и, как следствие, перегрева масла в картере двигателя), а также в случае перегрева двигателя из-за возможных неисправностей в системе охлаждения.
Для всесезонных масел, обладающих свойствами как зимних, так летних сортов масла, спецификация SAE предусматривает двойное обозначение, например, 10W-40, где зимние вяскостно-температурные свойства отражены в левой части обозначения, а летние – в правой.
Вязкостно-температурные свойства — одна из важнейших характеристик моторного масла. От этих свойств зависит диапазон температуры окружающей среды, в котором данное масло обеспечивает пуск двигателя без предварительного подогрева, беспрепятственное прокачивание масла насосом по смазочной системе, надежное смазывание и охлаждение деталей двигателя при наибольших допустимых нагрузках и температуре окружающей среды. Даже в умеренных климатических условиях диапазон изменения температуры масла от холодного пуска зимой до максимального прогрева в подшипниках коленчатого вала или в зоне поршневых колец составляет до 180—190 °С. Вязкость минеральных масел в интервале температур от -30 до +150 °С изменяется в тысячи раз. Летние масла, имеющие достаточную вязкость при высокой температуре, обеспечивают пуск двигателя при температуре окружающей среды около 0 °С. Зимние масла, обеспечивающие хо¬лодный пуск при отрицательных температурах, имеют недостаточную вязкость при высокой температуре. Таким образом, сезонные масла независимо от их наработки (пробега автомобиля) необходимо менять дважды в год. Это усложняет и удорожает эксплуатацию двигателей. Проблема решена созданием всесезонных масел, загущенные полимерными присадками (полиметакрилаты, сополимеры олефинов, полиизобутилены, гидрированные сополимеры стирола с диенами и др.).
Вязкостно-температурные свойства загущенных масел таковы, что при отрицательных температурах они подобны зимним, а в области высоких температур — летним (рис. 2.3).
Рис. 2.3. Вязкостно-температурные характеристики на примере летнего (7 — SAE 40), зимнего (2 — SAE 10W) и
всесезонного (3 — SAE 10W-40) масел :
4 — максимальная вязкость при холодном пуске;
5 — минимальная необходимая высокотемпературная вязкость
Вязкостные присадки относительно мало повышают вязкость базового масла при низкой температуре, но значительно увеличивают ее при высокой температуpe, что обусловлено увеличением объема макрополимерных молекул с повышением температуры и рядом иных эффектов.
В отличие от сезонных, загущенные всесезонные масла изменя-ют вязкость под влиянием не только температуры, но и скорости сдвига, причем это изменение временное. С уменьшением скорости относительного перемещения смазываемых деталей вязкость возрастет, а с увеличением снижается. Этот эффект больше проявляется при низкой температуре, но сохраняется и при высокой, что имеет два позитивных последствия: снижение вязкости в начале проворачивания холодного двигателя стартером облегчает пуск, а небольшое снижение вязкости масла в зазорах между поверхностями трения деталей прогретого двигателя уменьшает потери энергии на трение и дает экономию топлива.
Характеристиками вязкостно-температурных свойств служат кинематическая вязкость, определяемая в капиллярных вискозиметрах, и динамическая вязкость, измеряемая при различных градиентах скорости сдвига в ротационных вискозиметрах, а также индекс вязкости — безразмерный показатель пологости вязкостно-температурной зависимости (см. рис. 2.3), рассчитываемый по
значениям кинематической вязкости масла, измеренной при 40 и 100 «С (ГОСТ 25371—82). В нормативной документации на зимние масла иногда нормируют кинематическую вязкость при низких температурах. Индекс вязкости минеральных масел без вязкостных присадок составляет 85-100. Он зависит от углеводородного состава и глубины очистки масляных фракций. Углубление очистки повышло индекс вязкости, но снижает выход рафинада.
Синтетические базовые компоненты имеют индекс вязкости 120-150, что дает возможность получать на их основе всесезонные масла с очень широким температурным диапазоном работоспособности.
К низкотемпературным характеристикам масел относят температуру застывания, при которой масло не течет под действия силы тяжести, т.е. теряет текучесть. Она должна быть на 5-7 °С ниже той температуры, при которой масло должно обеспечивать прокачиваемость. В большинстве случаев застывание моторных масел обусловлено образованием в объеме охлаждаемого масла кристаллов парафинов. Требуемая нормативной документацией температура застывания достигается депарафинизацией базовых компонентов и/или введением в состав моторного масла депрессорных присадок (полиметакрилаты, алкилнафталины и др.).
143981, Россия, Московская область, г. Балашиха, мкр. Кучино, ул. Речная владение 2
Полезные материалы, которые интересно и нужно знать
Двигатели Lifan: расшифровка наименований
Обозначения символов в названии двигателей «Лифан»
Сердцем техники, в том числе садовой, является, конечно, двигатель; он — самый важный элемент в конструкции любых бензиновых (дизельных) ‘мотопомощников’ и фермера, и дачника. Двигатели, а в данном случае речь идет только про Lifan, подходят к самой разной садовой технике, например, мотоблокам и мотокультиваторам, мотопомпам и бензогенераторам, и т.д. Но как разобраться в маркировке моторов? Что обозначают эти, порой непонятные, буквы и цифры в наименованиях двигателей Lifan?
Маркировка и обозначения двигателей Lifan
Если Вы задумались о приобретении нового двигателя, то, вероятно, уже знаете, что конкретно Вам нужно. Если информации недостаточно и/или решение купить двигатель «Лифан» принято совсем недавно, то, мы надеемся, что эти краткие справочные сведения будут полезны.
За наименованием бренда следует серия двигателя, которая обозначается цифрами иногда с буквами, по которым можно определить мощность мотора:
1. Бензиновые двигатели:
— 152 — 2,5 л.с.;
— 160 — 4 л.с.;
— 168 — 5,5 л.с.*;
— 168-2 — 6,5 л.с.*;
— 170 — 7 л.с.;
— 173 — 8 л.с.;
— 177 — 9 л.с.;
— 182 — 11 л.с.;
— 188 — 13 л.с.;
— 190 — 15 л.с.;
— 192 — 17 л.с.;
— 2V78F-2 — 24 л.с. двухцилиндровый;
— 1Р60 — 4 л.с. вертикальный вал;
— 1Р64 — 5 л.с. вертикальный вал;
— 1Р70 — 6 л.с. вертикальный вал.
*Двигатели серии 168 имеют маркировку 168F и 168F-2 - это двигатели, соответственно, 5,5 и 6,5 л.с. Цифра 2 обозначает версию двигателя т.к. оба этих двигателя имеют одинаковый диаметр поршня, но разную величину хода поршня.
2. Дизельные двигатели:
— C178 — 6 л.с.;
— C186 — 10 л.с.;
— C188 — 13 л.с..
За номером серии в наименовании идут латинские буквы, их значения следующие:
- F — традиционное обозначение двигателя.
Пример: Lifan 190 F — это мотор 190 серии в стандартной комплектации с обычным ручным запуском; - D — обозначение электрического стартера.
Пример: Lifan 190 FD — двигатель 190 серии с ручным и электрическим стартером; - R — обозначение понижающего цепного редуктора с центробежным сцеплением.
Пример: Lifan 190; - F-R — мотор 190 серии с ручным запуском, цепным редуктором и центробежным сцеплением.
Отсутствие символа D указывает на ручной запуск;
Lifan 190 FD-R — электрический запуск, цепной понижающий редуктор и центробежное сцепление; - L — на двигателе расположен шестеренчатый редуктор.
Пример: Lifan 190 F-L — это мотор 190 серии с установленным шестеренчатым редуктором, понижающим стандартные обороты вдвое; - S — модель предназначена для использования при пониженных температурах;
- H — на двигателе установлен цепной редуктор;
Пример: Lifan 168 FH — это мотор 168 серии с установленным цепным редуктором, понижающим стандартные обороты вдвое; - V — двигатель с вертикальным расположением коленчатого вала.
Пример: 1P 54FV — 1P 54 — серия двигателя, F — стандартный ручной запуск, V — вертикальный вал; - C — двигатель, работающий на дизельном топливе;
- B — с 2012 года двигатели Lifan выпускаются в исполнении B (изменен дизайн: бензобака, корпуса воздухофильтра, глушителя, крышки бензобака, ручки стартера, пускового переключателя).
Ниже для справки приведены краткие технические характеристики некоторых двигателей «Лифан»:
Работа тактов двигателя
Чтобы обеспечить равномерную нагрузку на коленчатый вал, каждый поршень имеет определенный момент движения. Такая последовательность обозначается как порядок работы цилиндров двигателя. На разных вариантах силовых агрегатов установлен свой порядок, который зависит от того сколько цилиндров и их тактичности.
Для обеспечения наилучшей производительности гильзы с последовательной работой расположены на расстоянии друг от друга. Количество цилиндров в ДВС влияет ни их расположение.
Тактичность
Передвижение поршня внутри цилиндров двигателя называется рабочим циклом. Цикл состоит из фаз газораспределения, которыми можно определить момент открытия и закрытия клапанов. В четырехтактном транспорте полный цикл проходит после поворота коленчатого вала на 720 градусов, двухтактного — за 360.
Чтобы обеспечить валу постоянное усилие во время рабочего хода в цилиндрах двигателя, колена агрегата расположены под определенным углом относительно друг друга. На величину угла влияет количество цилиндров, типа установки и расположение цилиндров.
Как определить порядок работы цилиндров ДВС в зависимости от тактов.
Тактичность двигателя
Работа цилиндров двигателя заключается в следующих этапах:
- Впуск — поршень передвигается в нижнюю мертвую точку, при этом через впускной клапан происходит заполнение камеры сгорания топливовоздушной смесью. Выпускной клапан закрыт.
- Сжатие — оба клапана закрыты, поршень передвигается в верхнюю мертвую точку, сжимая топливный состав. От сжатия температура в камере значительно возрастает, также увеличивается давление в цилиндре двигателя. Важный параметр, влияющий на экономичность машины — это степень сжатия. Показатель означает соотношение полного наполнения гильз и объем камеры горения. Для автомобилей с большим октановым числом требуется заливать высокооктановое топливо.
- Рабочий ход — клапана в закрытом положении, происходит воспламенение смеси от свечи. Под действием давление в цилиндре автомотора при сгорании топлива поршень идет в низ, вращая коленвал. Для эффективной производительности необходимо чтобы горючее полностью сгорела до прихода поршня в НМТ. Это обеспечивается установкой угла опережения зажигания. В современных авто регулировка осуществляется встроенным электронным блоком. Старые модели оборудованы механическим регулятором.
- Выпуск — рабочий ход заканчивается выхлопом отработанных газов из цилиндров двигателя. На этом этапе происходит важный процесс — продувка цилиндров автомотора. Продувка цилиндров двигателя обеспечивается одновременным открытием впускного и выпускного клапанов. После перехода поршня в ВМТ начинается такт впуска.
Принцип работы дизельного мотора
Рабочий цикл дизеля отличается от атмосферного по способу смесеобразования и воспламенения. Вместо готовой смеси в камеру сгорания подается воздух. За счет сжатия температура в ЦПГ дизельного двигателя увеличивается. Затем происходит подача топлива через форсунки.
Из-за высокой температуры и давление в цилиндрах дизельного агрегата дизтопливо самовоспламеняется — происходит рабочий ход. Рабочий ход заканчивается выхлопом отработанных газов.
Начало нумерация
Единого стандарта для определения нумерация цилиндров не существует. Поэтому как считаются цилиндры в двигателе нужно смотреть в технической инструкции к транспортному средству.
На нумерацию цилиндров в двигателе влияют следующие факторы:
- тип ходовой машины: с задним или передним приводом;
- расположение цилиндров в двигателе: рядное, V- образное, оппозитное;
- направление вращения коленчатого вала;
- количество цилиндров в двигателе.
Для тех, кто задумал провести обслуживание необходимо знать, как проверить цилиндры двигателя. Где первый цилиндр двигателя можно определить по нескольким факторам:
- Как считать цилиндры двигателя в зависимости от типа привода: для марок с передними ведущими колесами первый цилиндр считаться со стороны пассажирского места.
- На задне-приводных моделях порядок работы цилиндров двигателя начинается со стороны радиатора.
Сколько цилиндров в двигателе, метод установки зависит от завода изготовителя. Некоторые производители используют вариант обратной нумерации, при котором счет начинается со стороны салона. В автопроизводителей французских марок подсчет начинается от коробки передач или в зависимости от стороны крутящего момента.
Ремонт узлов автомобиля
Устройство блока цилиндров состоит из деталей, которые функционируют в агрессивных условиях, поэтому часто подвергаются поломке и износу.
Восстановление блока цилиндров двигателя состоит из таких операций:
№ работ | Выполняемые операции | Техническое оснащение. |
1 | Шлифовка поверхности упор подшипников коленчатого вала | Вертикально-фрезерный станок |
2 | Замена стертых втулок распредвала | Устройство для запрессовки |
3 | Восстановление резьбовых отверстий | Сверленое оснащение, набор сверл, лерка, плашка |
4 | Выпрессовка штифтов крепления | Специальный пресс |
5 | Расточка, ремонт крышки ЦПГ двигателя. Регулировка по плоскости, установка по отверстиям | Вертикально-фрезерный станок |
6 | Обработка корпуса под гильзы и расточка под упорные кромки | Вертикально-расточной станок |
7 | Расточка посадочных мест коренных подшипников | Горизонтально-расточной станок |
8 | Газо-термическое напыление на обработанные гнезда подшипников | Специальное технологическое оснащение |
9 | Двухконтурная расточка корпуса | Хонинговальный станок |
10 | Мойка мотора и прочистка масляных каналов | Оборудование для струйной мойки деталей. |
11 | Покраска блока | Краскопульт. Компрессор. |
Ремонтирование блока цилиндров двигателя заканчивается контрольным осмотром на проверочной плите. С помощью щупа и индикаторных приспособлений проверяется жесткость установки и соосность крепления узлов в блоке цилиндров двигателя. После восстановление корпуса цилиндров двигателя проводится испытание на герметичность.
Сборка ГБЦ
Ремонт головки блока цилиндра двигателя выполняется по таким причинам:
- обрыв ремня приводного вала;
- деформация гбц вследствие перегрева;
- длительность строк службы;
- неправильная сборка после ремонта блока цилиндров агрегата.
Дефектовка деталей головки блока цилиндров двигателя
Восстановить дефекты можно следующими действиями:
- притирание клапанов;
- шлифуется головка блока цилиндров;
- проводится замена прокладок, ремней;
- растачиваются втулки, седла клапанов.
Послеремонтный контроль
После дефектовки головка блока цилиндров проходит покраску, проверяется давление в цилиндре.
Показатель, который указывает на эффективную работоспособность деталей устройства блока цилиндров двигателя — это компрессия.
Какое давление в цилиндрах двигателя разных марках.
Марка транспортного средства | Давление в цилиндрах кг/см² |
Chevrolet Cruze 1,6-1,9 | 14-13 |
Chevrolet Lacetti 1,5-1,8 | 12-12,5 |
Kia Rio (2011-2016) | 12,5-13 |
Mazda 6 2,0-2,5 | 16-15 |
Daewoo 1,5-1,8 | 10,5-11 |
Для дизельного двигателя | |
ЯМЗ 236 | 33-38 |
Камаз | 29-35 |
ЯМЗ 238 турбированный | 33-38 |
MAN F90/2000 | 3038 |
Д 240-245 | 24-32 |
Завершающий этап, покраска
Прежде чем покрасить блок цилиндров двигателя необходимо провести подготовительные операции, которые состоят из таких пунктов:
- очистка деталей от налипшей грязи, масла, нагара;
- удаление следов коррозии (если они есть);
- шлифовка загрязненных резьбовых каналов.
Головка блока цилиндров красится отдельно, чтобы не забились воздушные и масляные каналы.
Работа цилиндров не зависит от покраски, но она важна для защиты блока от загрязнения.
Чем покрасить мотор зависит от финансовых возможностей. Интернет магазины предлагают большое разнообразие средств, которыми можно обработать поверхность деталей после ремонта блока и цилиндров двигателя.
Как нумеруются цилиндры, виды их расположения в двигателе
С момента изобретения первого ДВС перед инженерами стояла очень ответственная цель –снять максимум мощности с конкретного объема силового агрегата. Стараясь решить эту задачу, конструкторы проводили эксперименты с числом и компоновкой камер сгорания.
В разное время в серийных моделях авто использовались, как маленькие одноцилиндровые ДВС, так и огромные агрегаты с 16-ю цилиндрами. На разных моделях камеры сгорания расположены и нумеруются по-разному и начинающему автолюбителю эта информация будет очень полезна.
Как располагаются цилиндры в двигателях
Существуют разные модели двигателей – это и старинные одно- и двухцилиндровые ДВС, традиционные рядные четырех- и шестицилиндровые модели.
Более крупные агрегаты имели V-образные блоки – такие агрегаты могли иметь восемь и более камер сгорания.
Рядное расположение
При рядном расположении в блоке цилиндры располагаются в один ряд. В такой конфигурации существуют двух, трех, четырех, пяти и даже шестицилиндровые моторы.
Двух- и трехцилиндровые ДВС сейчас устанавливаются на современных авто не так часто, хотя популярность их медленно набирает обороты.
Этому способствовали умные системы приготовления топливной смеси и турбины – например, турбированная версия двухцилиндрового ДВС хетчбека Fiat 500. Трехцилиндровый рядный двигатель можно встретить на «Деу Матиз» и многих других.
Что касается рядной «четверки», то такие блоки устанавливаются в большинстве двигателей для легковых авто – объемы таких движков начинаются от 1 л., а самый объемный рядный ДВС – 2,4 л. и более.
Пятицилиндровые двигатели с рядным расположением на автомобилях, производимых серийно, стали появляться в 70-х годах. В числе первых можно выделить дизельные модели Mercedes – они устанавливались в 1974 году на модели в кузове W123.
А уже в 1976 году построили пятицилиндровый мотор от Audi. Начиная с конца 80-х годов рядная пятерка уже никого не удивляла и успешно устанавливалась на самые разные автомобили Fiat, Volvo и других автобрендов.
Рядная «шестерка», которая в 80-х и 90-х была очень популярна в Европе, нынче превратилась в вымирающий вид.
Про восьмицилиндровые модели и говорить не стоит – с такой компоновкой давно попрощались еще в 30-е годы.
Почему? С увеличением объемов блоки также увеличивались. Это создавало конструкторам и инженерам массу проблем при компоновке.
К примеру, втиснуть рядную восьмерку в переднеприводный автомобиль получилось только в двух случаях – это Austin Maxi 2200, который производился в 60-х, и Volvo S80.
В два ряда
Как сделать большой рядный ДВС короче и компактнее?
Двигатель можно “разрезать” пополам, установить две части рядом и заставить поршни вращать один коленчатый вал. Такие моторы имеют форму буквы “V».
Здесь камеры сгорания располагаются в два ряда под углом друг к другу. Такая конфигурация очень популярна у производителей и уступает только рядной «четверке».
Самые популярные модели – это те, где угол развала блока составляет 60 и 90 градусов. В такой конфигурации можно встретить шести- , восьми- , двенадцатицилиндровые моторы.
В первые такой силовой агрегат появился на Lancia Aurelia, это был 1950 год. За счет своих компактных размеров автомобиль быстро стал популярным среди автомобилистов.
Восемь камер сгорания в этой конфигурации располагаются по четыре в два ряда. Это самая компактная компоновка для крупнообъемных ДВС. Самый большой объем за всю историю автомобилестроения в такой V-компоновке составлял 13 литров. В случае с двенадцатью цилиндрами разница только в их количестве.
Со смещением
Конструкторы и инженеры искали компромиссное решение, чтобы создать мощный и в тоже время компактный силовой агрегат для легковых авто в среднем классе. Двигатель со смещением – это шестицилиндровый V-образный блок.
Цилиндры расположены друг напротив друга в шахматном порядке. Шесть цилиндров под углом в 15 градусов образуют достаточно узкий и короткий агрегат. Среди примеров можно привести VR6, которые устанавливались на «Golf» от Фольксваген.
Оппозитный тип
Как известно, на V-образном блоке угол развала двух частей составляет – 90 или 60 градусов. Если угол развала между двумя частями будет 180 градусов, то это оппозитный двигатель.
Здесь цилиндры располагаются друг напротив друга, горизонтально. Коленчатый вал в таких моделях общий, установлен в центре, а поршни двигаются от него.
Одним из первых таких конструкций стала отечественная разработка, которая использовалась при строительстве дирижабля «Россия». Кстати, несмотря на передовую конструкцию ДВС, дирижабль в небо не взлетел. Также можно вспомнить французские агрегаты от Gorbon-Brille.
А тот, кто разработал и запустил традиционный привычный каждому оппозитный мотор, это Фердинанд Порше. Первая партия автомобилей «Жук» комплектовалась именно этими ДВС в 1937 году.
Аналогичную конструкцию применили и на «Ford» А, С, F. В 1920 году баварский автомобильный концерт предложил свою конструкцию оппозитного мотора.
Моторы W
В данных силовых агрегатах соединены для ряда камер сгорания с VR-расположением. В каждом ряду цилиндры размещаются под углом 15 градусов.
Оба ряда находятся под углом в 72 градуса. В случае с восьмицилиндровым мотором, блок представляет собой два V-образных блока, которые находятся под углом в 72 градуса.
Нумерация цилиндров в разных типах ДВС
Что касается стандартов нумерации камер сгорания, то их нет. На то, как они пронумерованы в ДВС, влияют такие факторы:
- Тип привода;
- Тип ДВС, компоновка блока;
- Поперечное либо продольное расположение агрегата под капотом;
- Сторона вращения.
На стандартных переднеприводных авто с поперечно установленным двигателем нумерация начинается со стороны ГРМ. Так, возле ремня ГРМ находится первый цилиндр и дальше все остальные. Последний находится около КПП.
Примеры
В многоцилиндровых V-образных двигателях первый цилиндр расположен в ряду с водительской стороны.
В двигателях американского производства камеры сгорания и их нумерация может отличаться и не поддаваться логике.
Так, для рядных четверок и шестерок первым может быть цилиндр около радиатора, в то время, как на всех прочих моделях нумерация начинается в сторону салона. Если нумерация обратная, то первым считается цилиндр ближайший к салону.
Французы очень оригинальны и применяют два способа нумерации камер сгорания ДВС.
- На рядных четверках нумерация начинается от маховика.
- Если это V-образная шестерка, тогда ближний к радиатору ряд – это первые три цилиндра, а ряд ближе к салону – последние три.
Как определить порядок работы цилиндров
Разные версии однотипных ДВС могут работать по разным схемам. К примеру, ЗМЗ-402 мотор работает следующим образом – 1-2-4-3. А вот ЗМЗ-406 имеет другой порядок – 1-3-4-2.
Шестицилиндровые моторы с рядным расположением работают по такой схеме – 1-5-3-6-2-4.
Порядок работы восьмицилиндрового двигателя будет следующим – 1-5-4-8-6-3-7-2.
Тема обширная, поэтому обязательно поделись своим опытом или мнением в комментария ниже.