Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Синхронные двигатели

Синхронные двигатели

5. СИНХРОННЫЕ ДВИГАТЕЛИ

5.1. Энергетическая и векторная диаграммы

синхронного двигателя

При создании тормозного механического момента М2 на валу синхронная машина, включенная в сеть, переходит в двигательный режим (см. параграф 6.2). За счет потребления активной мощности в машине образуется вращающий электромагнитный момент М и двигатель сохраняет постоянную частоту вращения ротора n. Активная составляющая тока якоря Ia, угол нагрузки θ и момент М меняют знак по сравнению с генератoрным режимом.

Преобразование энергии в двигателе можно иллюстрировать энергетической диаграммой (рис. 5.1).

Потребляемая из сети активная электрическая мощность

, (5.1)

где m – число фаз; U и I – фазные напряжение и ток якоря; cosφ – коэффициент мощности.

Часть этой мощности рf расходуется на возбуждение машины статическими системами возбуждения, а также рассеивается в виде электрических потерь рЭ в обмотке якоря и магнитных потерь рМ в магнитопроводе якоря.

Электромагнитная мощность

(5.2)

передается через зазор вращающимся магнитным полем на ротор в виде полной механической мощности РМЕХ = Р. Часть этой мощности компенсирует механические рМЕХ и добавочные рД потери мощности.

Полезная механическая мощность на валу двигателя

. (5.3)

или подставляя выражение (5.2) электромагнитной мощности в формулу (5.3), получим

, (5.4)

где Σр = рf + рЭ + рМ + рМЕХ + рд — полные потери мощности в машине, причина возникновения и место локализации отдельных видов потерь объясняется в пункте 3.6.6.

При бесщеточном или прямом электромашинном возбуждении потери на возбуждение рf показывают в правой части. энергетической диаграммы на стороне полезной механической мощности Р2

Диаграммы напряжений и МДС двигателя можно чертить по уравнениям (3.30)–(3.36), (3.40)–(3.50), соответствующим генераторному режиму. Угол φ между векторами напряжения машины U и тока якоря İ превышает p/2 (рис. 5.4, в), коэффициент мощности сosφ отрицателен, что не всегда удобно. Поэтому коэффициент мощности в двигательном режиме характеризуют углом φ между векторами напряжения сети UC и тока якоря İ.

Уравнения напряжения синхронных двигателей получают, заменив в уравнениях напряжения генератора вектор напряжения машины U равным и противоположно направленным вектором напряжения сети UC = – U. Выполнив такую замену, получим уравнения напряжения ненасыщенных неявнополюсного:

, (5.5)

(5.6)

и явнополюсного двигателей:

. (5.7)

Как и для генератора, уравнение (5.7) можно представить в виде:

, (5.8)

. (5.9)

Уравнения МДС справедливы и для двигателя.

Диаграмма перевозбужденного явнополюсного двигателя без учета насыщения магнитной цепи изображена на рис. 5.2.

Ток якоря İ опережает напряжения сети UС, поэтому говорят, что перевозбужденный двигатель работает с опережающим сosφ. При этом двигатель по отношению к сети подобен емкостной нагрузке и отдает реактивную мощность в сеть.

Ток якоря İ недовозбужденного двигателя отстает от напряжения сети UС и недовозбужденный двигатель работает с отстающим сosφ. Машина подобна индуктивности, включенной в сеть, и потребляет из сети реактивную мощность.

5.2. Угловые, Uобразные и рабочие характеристики

синхронных двигателей

Уравнения угловых характеристик активной и реактивной мощностей синхронного генератора справедливы и для двигательного режима при подстановке отрицательного угла нагрузки θ.

Электромагнитные мощность Р и момент М изменяют свой знак, так как в реальной машине изменяется направление активной мощности при переходе из генераторного режима в двигательный.

Зависимости Р, М = f (θ) явнополюснго двигателя при постоянных токе возбуждения I f, напряжении UC и частоте fC сети изображены на рис. 5.3. Значения номинального θН и максимального θm углов нагрузки двигателей такие же, как у генераторов. Двигатель статически устойчив при углах нагрузки θm 0 (рис. 5.9, а). Вследствие этого вместо электромагнитных сил FЭМ притяжения намагниченных областей статора и ротора при недовозбуждении (рис. 5.9, а) возникают силы отталкивания (рис. 5.9, б).

Силы отталкивания FЭМ уравновешены по окружности машины и не создают вращающего момента только при совпадении продольной оси d с осью результирующего потока Фr, то есть при угле θ = 0 (рис. 5.9, б). Малейшее отклонение оси полюсов d от оси потока Фr приводит к изменению направления сил отталкивания (рис. 5.9, в)

Тангенциальная составляющая этих сил при θ ≠ 0 не уравновешена по окружности машины и образует электромагнитный момент, который вызывает дальнейшее изменение угла нагрузки на 180°. Машина возвращается в режим недовозбуждения (рис. 5.9, а) и потребляемая реактивная мощность снижается.

Как и при отсутствии возбуждения (I f = 0) синхронный режим может быть обеспечен только мощностью и моментом явнополюсности. При отрицательном возбуждении (I f

Что показывает угловая характеристика синхронного двигателя

Название работы: Механические характеристики электродвигателей

Предметная область: Физика

Описание: Скорость почти всех электродвигателей является убывающей функцией момента двигателя, то есть с увеличением момента скорость уменьшается [чил 33]. Но степень изменения скорости у разных электродвигателей различна и характерезуется параметром жесткость механические характеристик.

Дата добавления: 2014-03-28

Размер файла: 86.95 KB

Работу скачали: 90 чел.

Механические характеристики электродвигателей

1. Естественные и искусственные механические характеристики электродвигателей

  1. Жесткость механических характеристик
  2. Естественная механическая характеристика двигателя постоянного тока параллельного возбуждения
  3. Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения
  4. Естественная механическая характеристика асинхронного двигателя
  5. Механическая характеристика синхронного двигателя. Область применения синхронных двигателей на судах

Механической характеристикой двигателя, независимо от рода тока, называют зависимость угловой скорости вала электродвигателя ω (далее – двигателя) от электромагнитного момента двигателя , т.е зависимость ω ().

Здесь следует сделать важное замечание: в соответствии с уравнением моментов, в установившемся режиме = , электромагнитный момент двигателя уравновешивается статическ им момент ом ( момент ом сопротивления) механизма. Это означает, что величина электромагнитного момента двигателя полностью зависит от момента механизма – чем больше тормозной момент механизма, тем больше вращающий момент двигателя, и наоборот.

То есть, для любого двигателя входной величиной является момент механизма, а выходной – его скорость .

Скорость почти всех электродвигателей является убывающей функцей момента двигателя, то есть с увеличением момента скорость уменьшается [чил 33]. Но степень изменения скорости у разных электродвигателей различна и характерезуется параметром жесткость механические характеристик.

Жёсткость механические характеристик электропривода β – это отношение разности электромагнитных моментов двигателя при разных скоростях к соответствующуй разности угловых скоростей электропривода .

β = ( М 2 – М 1 ) /( ω 2 – ω 1 ) = Δ / Δω

Обычно на рабочих участках механические характеристики электродвигателей имеют отрицательную жёсткость β 2 1 ,

М 1 М 2 ) при большей скорости электромагнитный момент меньше.

Различают естественные и искусственные механические характеристик и электродвигателей .

Естественная механическая характеристика – это зависимость ω(), снятая при нормальных условиях работы двигателя, т.е. при номинальных параметрах питающей сети и отсутствии добавочных резисторов в цепях обмоток двигателей.

К параметрам питающей сети относятся: при постоянном токе – напряжение, при переменном токе – напряжение и частота тока.

Характеристики, снятые при условиях, отличных от нормальных , называют искусственными .

Искусственные характеристики можно получить путем изменения параметров двигателя, например, путем введения резисторов в цепь обмотки якоря двигателя постоянного тока или в цепь обмотки ротора асинхронного двигателя, либо изменением параметров питающей сети, т.е. напряжения и частоты переменного тока.

Каждый электродвигатель имеет одну естественную и множество искусственных характеристик. Число искусственных характеристик зависит от числа ступеней регулирующего элемента, например, числа ступеней регулировочного реостата в цепи обмотки якоря двигателя постоянного тока. Если у двигателя таких ступеней – пять, то такой двигатель имеет шесть характеристик – пять искусственных и одну естественную.

Читать еще:  Чтото стучит в двигателе когда холодный

Искусственные механические характеристики применяются для получения таких режимов работы двигателя, как регулирование скорости, реверс, электрическое торможение, и др.

Рассмотрим естественн ые механические характеристики двигателей разных типов .

Рис. 10.1 Естественная механическая (а) и угловая (б) характеристики синхронного двигателя; θ – угол отставания оси ротора от оси магнитного поля обмотки статора

Естественная механическая характеристика синхронного двигателя

Естественная механическая характеристика синхронного двигателя (рис. 10.1а ) – абсолютно жесткая – это характеристика при которой скорость с изменением момента не изменяется , ее жесткость (β = ∞)

C табильность скорости ротора синхронного двигателя объясняется угловой характеристики синхронного двигателя θ() следующим образом ( рис. 10.1 б ), если механическая нагрузка к ротору не приложена, то оси ротора и вращающегося магнитного поля обмотки статора совпадают, т.е. θ = 0° (точка 0 на рис. 10.1 б). Если электромагнитный момент двигателя М = 0, двигатель работает в режиме холостого хода.

Если приложить к валу двигателя механическую нагрузку и увеличивать ее, то ротор под действием механической нагрузки станет отставать от магнитного поля обмотки статора на все больший угол θ.

Чем больше механическая нагрузка на валу, тем больше этот угол и тем больше вращающий электромагнитный момент двигателя.

Такое одновременное увеличение вращающего момента двигателя, вызываемое увеличением тормозного момента механизма как раз и обеспечивает стабильность скорости двигателя ( на рис. 10.1 а участок характеристики от = 0 до = ).

Однако постоянство скорости двигателя сохраняется до тех пор, пока угол θ≤90°. При θ = 90° двигатель развивает критический (максимальный) момент (точка А на рис. 10.1 а).

Если при θ = 90° вновь увеличить механическую нагрузку (θ > 90°), электромагнитный момент двигателя станет уменьшаться (отрезок АВ угловой характеристики), т.е. этот момент окажется меньше тормозного момента механизма. В результате скорость ротора двигателя станет уменьшаться, и в конце концов ротор остановится.

Поскольку при этом скорость ротора меньше скорости вращающегося магнитного поля обмотки статора, говорят, что двигатель выпал из синхронизма.

Как следует из угловой характеристики двигателя, условие выпадения двигателя из синхронизма такое: θ≤90°.

На практике номинальный угол θ= 20…40°.

Область применения синхронных двигателей: на судах – в качестве гребных электродвигателей, вращающих винты; на берегу – для привода мощных механизмов, например, компрессоров на газоперекачивающих станциях.

Естественная механическая характеристика двигателя постоянного тока

Естественная механическая характеристика двигателя постоянного тока паралельного возбуждения ( рис. 8.5 ) – ж ё сткая , потому что ее жёсткость

Рис. 10.2 Естественная механическая характеристика двигателя постоянного тока параллельного возбуждения

Это означает, что при изменении электромагнитного момента двигателя в широких пределах его скорость достаточно стабильна (т.е. изменяется незначительно).

Такие двигатели применяются там, где при изменении нагрузки механизма в широких пределах скорость двигателя не должна изменяться резко – в электроприводах насосов, вентиляторов и т.п.

Рис. 10.3 Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения

Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения (рис. 10.3 ) – мягкая , потому что ее жёсткость

Это означает, что при изменении электромагнитного момента двигателя даже в небольших пределах его скорость изменяется значительно.

Напомним две характерные особенности этого двигателя двигателя постоянного тока последовательного возбуждения :

  1. П ри уменьшении механической нагрузки на валу или ее отсутствии ( = )

скорость двигателя резко увеличивается, двигатель «идет вразнос». Поэтому этот двигатель нельзя оставлять без нагрузки на валу;

  1. При пуске двигатель развивает пусковые моменты больше, чем у двигателей других типов.

Эти двигатели не применяются на судах, но применяются на берегу, например, в электротранспорте, в частности, в троллейбусах, где они не остаются без нагрузки на валу и где нужны большие пусковые моменты (при трогании троллейбуса с места).

Рис. 10.4 Естественные механические характеристики двигателей постоянного тока смешанного возбуждения: 1 с – параллельно-последовательным возбуждением;

2 — с последовательно – параллельным возбуждением

Естественная механическая характеристика двигателя постоянного тока смешанного возбуждения промежуточная между характеристиками двигателей паралельного и последовательного возбуждения, т.к. магнитный поток возбуждения создается совместным действием обеих обмоток – параллельной и последовательной.

Различают два вида двигателей смешанного возбуждения:

  1. с паралельно – последовательным возбуждением, у которых основную часть результирующего магнитного потока создает параллельная обмотка (до 70%, остальные 30% – последовательная);

2. с последовательно – параллельным возбуждением, у которых основную часть результирующего магнитного потока создает последовательная обмотка (до 70%, остальные 30% – параллельная).

Поэтому график механической характеристики двигателя первого вида более жесткий, чем у двигателя второго вида.

Обе механические характеристики – мягкие , потому что их жесткость

На судах двигатели смешанного возбуждения применяются в регулируемых электроприводах – лебедках, кранах, брашпилях и шпилях.

Естественная механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя имеет два участка – нерабочий (разгонный) АВ и рабочий ВС D (рис. 8.8).

Рис. 10.5 Естественная механическая характеристика асинхронного двигателя

При пуске двигатель развивает пусковой момент (отрезок ОА), после чего разгоняется по траектории АВС до точки С. При этом на участке АВ одновременно увеличиваются как скорость, так и момент, в точке В двигатель развивает максимальный момент . На участке ВС скорость продолжает увеличиваться, а момент уменьшается, до номинального (точка С). На участке BC двигатель перегружен , т.к. в любой точке этого участка электромагнитный момент двигателя больше номинального ( > > ).

В нормальних условиях двигатель работает на участке С D , жесткость которого

Это означает, что при изменении момента в широких пределах скорость двигателя изменяется незначительно.

Асинхронные двигатели нашли самое широкое применение на судах с электростанцией на переменном токе.

Промышленность выпускает специально для судов асинхронные двигатели разных серий, например, 4А…ОМ2 (четвертая серия асинхронных двигателей), МАП (морской асинхронный полюсопереключаемый), МТ F ( c фазным ротором) и др.

При этом двигатели серии 4А – односкоростные, серии МАП – двух- и трехскоростные, серии МТ F – число скоростей определяется схемой управления ( до 5 скоростей ).

Методы пуска синхронных двигателей

Пуск синхронных двигателей связан с некоторыми трудностями. Угловая характеристика двигателя показывает то, что он может отдавать механическую энергию только в том случае, когда частота вращения ротора совпадает с частотой вращения магнитного поля машины. При неподвижном роторе результирующий механический момент на валу синхронного двигателя будет равен нулю. Для введения ротора двигателя в синхронизм используют различные методы.

Пуск двигателя с помощью дополнительно двигателя

Синхронный двигатель может быть подключен к сети с помощью установки синхронизации таким же методом, как и синхронный генератор. Для этого машина должна иметь на своей оси специальный пусковой двигатель, который может обеспечивать вращение синхронного двигателя с синхронной частотой, т. е. ввести машину в синхронизм с сетью. Обычно в качестве ускоряющих или вспомогательных двигателей используют асинхронные двигатели относительно малой мощности, имеющие такое же число полюсов, что и синхронный двигатель. Дополнительный двигатель заставляет вращаться синхронную машину со скоростью, почти равной синхронной, и затем машина включается параллельно сети по методу автосинхронизации.

Для разгона может использоваться асинхронный двигатель, число пар полюсов которого меньше на одну пару числа пар полюсов синхронной машины. Такой двигатель заставит вращаться синхронную машину с частотой несколько высшей частоты синхронизма. Если отключить пусковой двигатель от сети, вся группа, замедляя частоту, медленно проходит синхронную частоту, что позволяет включить машину синхронно с сетью.

Читать еще:  Что это за двигатель змз 523

Пуск синхронного двигателя изменением частоты

Синхронный двигатель может быть запущен с помощью изменения частоты приложенного напряжения, когда частота питающего напряжения изменяется от нуля до минимальной величины. Двигатель в этом случае работает в режиме синхронизации в течение всего времени запуска. Двигатель должен получать питание от синхронного генератора, частота вращения которого должна изменяться от нуля до номинального значения. В этом случае возбуждение генератора и двигателя не может быть реализовано с помощью собственного возбудителя, смонтированного на оси двигателя, так как при малой частоте практически отсутствует напряжение на его зажимах. На начальном периоде пуска генератор должен быть возбужден как можно большим током, а ток возбуждения двигателя должен быть таким, что для частоты синхронизма ЭДС должна быть в два раза меньше, чем ЭДС генератора. С увеличением частоты вращения ток возбуждения двигателя должен быть увеличен. Этот способ запуска синхронных двигателей используется в некоторых специальных установках.

Пуск в режиме асинхронного двигателя

Синхронные двигатели могут иметь специальную пусковую обмотку. В этом случае он может быть запущен как обычный асинхронный двигатель с короткозамкнутым ротором. Такой способ пуска является сейчас основным.

Обмотка возбуждения синхронного двигателя в процессе пуска должна быть короткозамкнутой или нагружена сопротивлением, величина которого должна быть примерно в десять раз больше, чем сопротивление обмотки возбуждения. Если в процессе пуска оставить обмотку возбуждения, которая имеет большое количество витков, разомкнутой, в ней будет наводиться достаточно большое напряжение, которое может привести к пробою изоляции. При пуске синхронного двигателя в асинхронном режиме статорная обмотка включена в сеть, и двигатель создает вращающий момент. Ротор двигателя будет вращаться с частотой, близкой к синхронной частоте с небольшим запаздыванием относительно вращающегося магнитного поля. Если теперь обмотку возбуждения включить в сеть постоянного напряжения, двигатель войдет в синхронизм после возможного колебательного процесса установления ротора.

Такой способ пуска обычно используется для двигателей с неявно выраженными полюсами. Двигатели с явно выраженными полюсами, работающие в режиме холостого хода или при малой нагрузке, запускаются также при закороченной обмотке возбуждения.

шпоры эл маш. 8. Трансформатор

Рассмотрим характеристику холостого хода синхронного генератора . Она представляет зависимость индуктированной в статоре э. д. с. Е0 от тока возбуждения Iв при разомкнутой внешней цепи машины. Генератор приводится во вращение с синхронной скоростью, соответствующей номинальной частоте генератора . Увеличивают при помощи реостата ток возбуждения, отмечая показания амперметра в цепи возбуждения По показаниям вольтметра, включенного на зажимы обмотки статора, определяют величину индуктированной э. д. с. Е0. Характеристика холостого хода синхронного генератора показана на рис. 279. Прямолинейная часть характеристики указывает на пропорциональность между индуктированной э. д. с. и током возбуждения. В дальнейшем магнитная система генератора насыщается, кривая изгибается, т. е. при значительном увеличении тока возбуждения индуктированная э. д. с. растет очень медленно. Обычно нормальная работа машины имеет место за изгибом характеристики холостого хода .

Зависимость напряжения на зажимах генератора U от тока нагрузки I при постоянных (пост) значениях тока возбуждения Iв, коэффициента мощности cos φ и скорости вращения n дается внешней характеристикой :

при Iв = пост, cos φ = пост, n = nн = пост.

Представляет собой зависимость тока возбуждения генератора Iв от тока нагрузки I при U= Uн=const, n=nн=const, cosφ = const.

Эта характеристика показывает, как выбирать ток возбуждения, при котором напряжение на зажимах генератора оставалось бы постоянным при изменении нагрузки.

Для получения регулировочной характеристики нужно сначала включить генератор и сообщить его ротору номинальную скорость вращения при холостом ходе, а потом путём изменения тока возбуждения добиться получения номинального напряжения Uн. Далее постепенно увеличивают ток нагрузки и снимают характеристику, добиваясь в каждой точке напряжения на зажимах U = Uн = const, регулируя ток возбуждения. Мы видим регулировочные характеристики при различных cosφ.

Кривая 2 – активно-индуктивная нагрузка (ток Iв нужно уменьшить).

Кривая 3 – активно-ёмкостная нагрузка (ток Iв нужно увеличить).

Кривая 1 – оптимальный режим.

Внешняя характеристика синхронного генератора характеризует его электрические свойства и представляет собой зависимость напряжения на зажимах генератора U от его тока нагрузки I при постоянных значениях коэффициента мощности cosφ, скорости вращения ротора n и тока возбуждения Iв.

Чтобы экспериментально получить внешнюю характеристику, нужно сначала нагрузить генератор до номинального тока Iн при номинальном напряжении Uн на зажимах генератора, которое устанавливается путём регулировки тока возбуждения. Затем, поддерживая ток возбуждения и частоту вращения постоянными, постепенно уменьшают ток нагрузки до нуля. Внешние характеристики могут иметь спад (кривая 2) или подъём (кривая 3) в зависимости от характеристики нагрузки и действия реакции якоря.

Величину Рс будем называть удельной синхронизирующей мощностью . Называют ее также коэффициентом синхронизирующей мощности Можно допустить, что величина Pс = остается постоянной в пределах небольших изменений угла θ (на Δθ и ), с которыми обычно приходится иметь дело. Тогда получим:

Вхождение машины в синхронизм зависит от мощности ΔPэм, замедляющей вращение ротора при θ + Δθ, или мощности Рэм , ускоряющей его вращение при θ — Δθ. Она, очевидно, равна, если пренебречь потерями, разности мощностей, отдаваемой в сеть и на валу машины.

Величину ΔРэм (или ) будем называть синхронизирующей мощностью . Возникновение синхронизирующей мощности при отклонении ротора от синхронного хода обусловливает как бы упругую, эластичную связь машины с сетью.

Зависимость Рс от угла θ представлена пунктирной кривой на рис. 4-64. Она показывает, что при θ > 90° машина не может держаться в синхронизме. Обычно машина работает далеко от предела устойчивости. Угол θн при номинальной мощности редко превышает 20 30°.

Согласно (4-71) Рэм.м зависит от U и Е0. Следовательно, при уменьшении напряжения или возбуждения максимальная, мощность также уменьшается и машина будет работать ближе к пределу статической устойчивости.

57. Методы пуска синхронных двигателей.

Асинхронный пуск синхронного электродвигателя Асинхронный пуск синхронного двигателя производится присоединением статора к сети. Двигатель разгоняется как асинхронный до скорости вращения, близкой к синхронной.

В процессе асинхронного пуска обмотка возбуждения замыкается на разрядное сопротивление, чтобы избежать пробоя обмотки возбуждения при пуске, так как при малой скорости ротора в ней могут возникнуть значительные перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Пуск заканчивается.

Использование тиристорных возбудителей для пуска синхронных электродвигателей

Слабым местом большинства электроприводов с синхронными двигателям, значительно усложняющим эксплуатацию и повышающим затраты, многие годы являлся электромашинный возбудитель. В настоящее время широкое распространение для возбуждения синхронных двигателей находят тиристорные возбудители. Они поставляются в комплектном виде.

Тиристорные возбудители синхронных электродвигателей более надежны и имеют более высокий к.п.д. по сравнению с электромашинными возбудителями. С их помощью легко решаются вопросы оптимального регулирования тока возбуждения для поддержания постоянства cos фи, напряжения на шинах, от которых питается синхронный двигатель, а также ограничение токов ротора и статора синхронного двигателя в аварийных режимах.

Одним из главных недостатков синхронных двигателей является сложность их пуска в ход. Пуск синхронных двигателей может быть осуществлен при помощи вспомогательного пускового двигателя или путем асинхронного пуска. Пуск синхронного двигателя при помощи вспомогательного двигателя. Если ротор синхронного двигателя с возбужденными полюсами развернуть другим, вспомогательным двигателем до скорости вращения поля статора, то магнитные полюсы статора, взаимодействуя с полюсами ротора, заставят ротор вращаться далее самостоятельно без посторонней помощи, в такт с полем статора, т. е. синхронно (откуда эти двигатели и получили свое название).

Читать еще:  Gdi двигатель на холодную не заводится

Для осуществления пуска необходимо, чтобы число пар полюсов асинхронного двигателя было меньше числа пар полюсов синхронного двигателя, ибо при этих условиях вспомогательный асинхронный двигатель может развернуть ротор синхронного двигателя до синхронной скорости.

Порядок пуска синхронного двигателя следующий. Включая рубильник, пускают вспомогательный асинхронный двигатель, который разворачивает ротор синхронного двигателя до скорости, соответствующей скорости поля статора. Скорость вращения вспомогательного двигателя определяется по тахометру. Затем, включая рубильник постоянного тока, возбуждают полюсы ротора. Чтобы включить синхронный двигатель в сеть трехфазного тока, его нужно синхронизировать так же, как и при включении синхронного генератора на параллельную работу. Для этого реостатом устанавливают такое возбуждение, чтобы напряжение обмотки статора по вольтметру V было равно напряжению сети, указываемому вольтметром V1.

Сложность пуска и необходимость вспомогательного двигателя являются существенными недостатками этого способа пуска синхронных двигателей . Поэтому в настоящее время он применяется редко.

Асинхронный пуск синхронного двигателя . Для осуществления этого способа пуска в полюсных наконечниках полюсов ротора укладывается дополнительная короткозамкнутая обмотка.

Пуск синхронного двигателя при помощи постороннего двигателя , называемого разгонным или пусковым, обладает рядом крупных недостатков, которые и препятствовали широкому распространению синхронных двигателей .

При помощи разгонного двигателя , мощность которого обычно составляла 5—15% от номинальной мощности синхронного двигателя , последний можно было пускать только при малой нагрузке на валу. Установка к тому же получалась громоздкой и неэкономичней.

В качестве разгонного двигателя обычно использовался асинхронный двигатель с числом полюсов на два меньшим, чем число полюсов синхронного двигателя .

В настоящее время пуск в ход при помощи разгонного двигателя на практике почти не применяется; он иногда находит себе применение главным образом для мощных синхронных компенсаторов.

a) Прямой пуск СД. На обмотку статора СД подается полное напряжение сети , а цепь обмотки ротора подключается наглухо к якорю электромашинного возбудителя G (см. рис. 5.7, а) либо через разрядное сопротивление R1 (рис. 5.7, б). Реализация наиболее простого и дешевого прямого пуска с наглухо подключенным возбудителем возможна при соблюдении 3-х условий: — если сеть, питающая статор, имеет достаточно большую мощность и нет необходимости снижения напряжения для уменьшения пускового тока СД;

— если время разгона СД до подсинхронной скорости ωПС меньше времени самовозбуждения возбудителя (в этом случае подача тока возбуждения в ротор СД происходит после достижения скорости);

б) Легкий пуск СД. На обмотку статора подается пониженное напряжение для ограничения пускового тока. Возбуждение в ротор СД подается еще при пониженном напряжении на статоре.

Легкий пуск применяют при малых статических нагрузках и малых моментах инерции электропривода. При легком пуске обеспечиваются малые броски тока и момента при синхронизации (вхождении в синхронизм) СД.

Ротор вращается в двух шарикоподшипниках закрытого типа. Смазка закладывается в подшипники при их изготовлении и пополнения при эксплуатации не требует. Внутренняя обойма переднего подшипника свободно посажена на вал ротора и вместе с дистанционным кольцом зажата гайкой крепления шкива между ступицей шкива и буртиком вала. Наружная обойма этого подшипника запрессована в крышку и закреплена между двумя шайбами, стянутыми четырьмя винтами. После затяжки гаек концы винтов раскернивают, чтобы исключить самоотвинчивание гаек. Внутренняя обойма заднего подшипника напрессована на вал ротора, наружная обойма поджата резиновым кольцом.

На валу ротора с помощью сегментной шпонки и гайки закреплен шкив с вентилятором, служащим для охлаждения выпрямителя и внутренних частей генератора. Воздух входит в окна крышки, проходит между статором и ротором и через окна крышки крыльчаткой вентилятора выбрасывается наружу. Между ступицей шкива и гайкой установлена пружинная коническая шайба, обращенная выпуклой стороной к гайке. Шкив и вентилятор изготовлены из листовой стали и соединены электросваркой.

Индукторные машины – такие машины в которых и обмотка якоря и обмотка возбуждения неподвижны, а ротор представляет собой цилиндр с равномерно распределенными по его поверхности выступами – зубцами.

Принцип действия основан на изменении индуктивности и взаимной индуктивности обмоток якоря и возбуждения при перемещении зубцов ротора относительно зубцов статора. Такая машина при работе в двигательном режиме называется редукторным двигателем. По характеристикам такой двигатель не отличается от обычных синхронных машин уступая им по масса – габаритным показателям и используется в тех случаях, когда нельзя получить требуемую частоту вращения обычным способом.

Выполняются серийно преобразователи частоты серии ВПЧ мощностью от 12 до 100 кВт с выходной частотой 2400 и 10000 Гц. Серии ВГО на мощность 500 кВт с частотой 1000, 2500, 8000 Гц, мощностью 1500 кВт с частотами 500, 1000, 2500 Гц.

Применяются: сварка, электроплавка.

В индукторных синхронных двигателях частота вращения зависит от числа зубцов ротора и определяется:

Индукторные двигатели выполняются как трехфазными, так и однофазными. У них выполняют пусковую обмотку. Но при этом должно выполняться условие:

Для того чтобы параллельно работающие синхронные генераторы отдавали в сеть токи одинаковой частоты, они должны вращаться синхронно . При этом их частоты вращения должны быть обратно пропорциональны числам пар полюсов.

Идеальные условия для включения генераторов на параллельную работу , позволяющие избежать аварийных толчков тока и моментов ( точная синхронизация ), достигается при соблюдении следующих требований:

1 напряжение включаемого генератора UГ должно быть равно напряжению сети Uс или же работающего генератора;

2 частота тока генератора fГ должна равняться частоте тока сети fс;

3 чередование фаз генератора и сети должно быть одинковым;

4 напряжения UГ и Uс должны быть в фазе.
Включение на параллельную работу без точного соблюдения перечисленных условий (грубая синхронзация) сопровождается сильными толчками момента и бросками тока. Они могут быть уменьшены, например, включением реакторов.

В ряде случаев применяется способ самосинхронизации, который ускоряет процесс включения, но сопровождается появлением переходных токов, в несколько раз превышающих номинальный ток генератора .

Механическая и угловая характеристики синхронных электродвигателей. Синхронные двигатели начинают широко внедрять в строительное производство, применяя их для привода машин средней и большой мощности, не требующих регулирования частоты вращения компрессоров, насосов, камнедробилок, экскаваторов.

Синхронный двигатель имеет неизменную частоту вращения, поэтому его механическая характеристика представляет прямую линию, параллельную оси абсцисс. В квадранте I координатной системы она характеризует двигательный, а в квадранте II—генераторный режим (рис. 17, а).

Синхронный двигатель обладает абсолютно жесткой механической характеристикой . Однако его момент не может иметь беспредельно большого значения. При некотором предельном или максимальном значении нагрузочного момента синхронный двигатель выходит из устойчивой синхронной работы и останавливается.

Для определения предельного значения момента нагрузки, при которой еще возможна устойчивая работа синхронного двигателя , пользуются не механической характеристикой n—f(M), а так называемой угловой характеристикой , представляющей собой зависимость вращающего момента Мдв от угла сдвига фаз между напряжением питающей сети и э. д. с. двигателя 9 (рис. 17,6),


—Лмакс

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector