Может ли НАСА построить аналог знаменитого Сатурн-5 сейчас
Может ли НАСА построить аналог знаменитого Сатурн-5 сейчас?
В течение нескольких насыщенных лет в 1960-х и 1970-х годах мощные ракеты доставляли людей к Луне. Это были Сатурн-5 — вероятно, самые известные ракета-носители НАСА, 110-метровый профиль которых запечатлен на множестве сувениров, от настенных плакатов до наборов Lego и мобильных игр.
Однако последний запуск Saturn V был в 1975 году — с его помощью вывели на орбиту космическую станцию Skylab. Поскольку НАСА намерено вернуть астронавтов на поверхность Луны в 2024 году, может ли ведомство создать такую же ракету сейчас? Современным аналогом, разрабатываемым НАСА, является Space Launch System (Система запуска в космос, SLS) — гигантский ракета-носитель, который неоднократно подвергался критике за задержку запуска: сначала предполагалось, что он полетит в декабре 2017 года, однако теперь срок перенесен на 2020 год или позже, и это при текущей стоимости проекта уже более чем $10 млрд.
«Это слишком долго и сильно выходит за рамки бюджета; на данный момент это далеко от бурного успеха», — сказал Майк Нойфельд, старший куратор отдела космической истории Смитсоновского национального музея авиации и космонавтики, чьи исследования сосредоточены на ракетах.
Это справедливая критика: НАСА неоднократно переносило собственноручно назначенные даты запуска, а новостное интернет-агентство Ars Technica сообщает, что расширенная версия SLS находится под угрозой отмены из-за выхода за пределы бюджета — но есть и другие причины, по которым разработка SLS отстает от запланированных сроков. Ключевым моментом является то, что эта ракета-носитель будет существенно более сложной, чем любая предыдущая ракета, говорит Джон Блевинс, заместитель главного инженера проекта SLS в Космическом центре Маршалла в Алабаме.
Сатурн-5 создавался как ракета с одной целью и пунктом назначения, но SLS будет многоцелевым, что усложнило процесс проектирования. Например, материал, которым выстилают его внутренние топливные резервуары, «намного более надежен, чем должен быть» для отправки первой роботизированной миссии на Луну, сказал Блевинс, потому что НАСА в конечном итоге хочет отправить SLS в другие места.
Это та ракета, которая может доставлять астронавтов на астероиды или на Марс, в зависимости от текущих научных приоритетов. SLS может стать главной частью масштабной миссии по возврату образцов с Марса. И эта ракета-носитель может отправить роботизированный космический корабль во внешнюю часть Солнечной системы быстрее, чем когда-либо прежде, что позволит ученым избежать традиционного «окольного» пути, который требует совершать гравитационные маневры — набор скорости при пролете на определенном расстоянии от планет.
Первый испытательный полет Сатурн-5, 8 ноября 1967 года.
Использование такой ракеты означает, что даже пожилой ученый, создающий, например, инструмент для посадки на Европу, ледяную луну Юпитера, все еще будет работать, когда космический корабль приземлится и начнет заниматься научными исследованиями на поверхности. Это связано с тем, что полет на Европу с помощью SLS может занять всего пару лет, а не почти десятилетие, если использовать современные технологии и гравитационные маневры. Однако временами деньги важнее времени: так, орбитальный аппарат НАСА Europa Clipper с высокой долей вероятности будет выведен на орбиту с помощью SpaceX Falcon Heavy, стоимость запуска которого в разы меньше, чем у SLS, и позволит сэкономить на миссии не менее 700 миллионов долларов.
Нойфельд указал, что у Сатурн-5 также были задержки запуска, хотя и не такие драматичные, как у SLS. НАСА тогда запланировала первый испытательный полет на 1965 год, но он был совершен лишь в ноябре 1967 года.
Правда, тогда задержки были вызваны не только долгим созданием ракеты. «В принципе, это не имело значения, потому что сам космический корабль создавался дольше ожидаемого», — сказал Нойфельд. При создании как командного, так и лунного модулей Аполлона инженеры постоянно сталкивались с проблемами, что и вызвало в итоге перенос сроков. По словам Нойфельда, НАСА первоначально планировало высадку на Луну в 1967 году, но ряд неудач с ракетами и модулями Аполлона перенес реальную дату на июль 1969 года.
Отличия внутри
Если вы поставите рядом Сатурн-5 и SLS — что-то типа такой огромной музейной экспозиции, по словам Блевинса, он надеется увидеть в будущем — то вы не обнаружите особых различия.
Первая ступень SLS имеет такой же диаметр, что и первая ступень Сатурн-5, и включает в себя четыре двигателя RS-25. Они были разработаны для программы космических шаттлов, и первые несколько полетов SLS будет опираться на восстановленные двигатели космических челноков. По словам Блевинса, конструкция RS-25 является «самой эффективной и мощной из когда-либо созданных», превосходя кислородно-керосиновые массивные двигатели F-1 в первой ступени Saturn V.
Слева направо — Сатурн-5, SLS, Falcon Heavy, BFR и Falcon 9.
Рядом с этой основной ступенью будут использоваться твердотопливные ускорители для увеличения тяги при запуске SLS — в отличие от Сатурн-5, у которого вообще не было дополнительных ускорителей. По словам Блевинса, эти ускорители схожи с теми, которые использовались при запуске шаттлов, но в версии для SLS они будут примерно в два раза выше.
Оба ракета-носителя, SLS и Сатурн-5, используют три ступени, чтобы вывести космический корабль с экипажем в космос.
Взглянув на верхнюю часть SLS, вы увидите схожую с Аполлонами конфигурацию — капсулу, в которой будут путешествовать космонавты, и систему экстренного спасения, которая может спасти экипаж в случае чрезвычайной ситуации во время старта. «Капсула для экипажа будет больше, но при взгляде с Земли этого не скажешь», — говорит Блевинс.
Но не дайте себя одурачить — внешнее сходство этих ракет не обязательно отражает внутреннее. SLS имеет различия в своей структуре, топливе и авионике по сравнению с Сатурн-5. Большая часть изменений связаны с технологическими достижениями в области вычислительной техники и топлива с конца 1950-х годов, когда впервые появился Сатурн.
Другие изменения вытекают из постепенных эволюционных изменений в промышленной базе НАСА в течение последних 60 лет: например, компании, участвующие в постройке SLS, во многих случаях являются разными подрядчиками, которые предпочитают использовать иные компоненты ракеты, чем те, из которых собирали Сатурн-5, сказал Блевинс.
Одно из основных отличий SLS от Сатурн-5 состоит в том, что новая ракета-носитель не использует керосин. Так как новая ракета опирается на наследие программы шаттлов, а также на последующее развитие эффективности используемого топлива, то во всех ступенях — кроме ускорителей — используется комбинация жидкого водорода и жидкого кислорода.
Используемые материалы также различаются, хотя Блевинс не решается сказать, что они более продвинуты, чем в случае с Сатурн-5. Скорее, некоторые компоненты намеренно «перестроены», чтобы позволить SLS при необходимости летать не только к Луне, но и к куда более отдаленным местам в Солнечной системе.
Авионика — «мозги» ракеты — также существенно отличается от используемой в Сатурн-5, сказал Блевинс. Одним из основных отличий является то, что SLS может связываться со спутниками слежения и ретрансляции данных (TDRS), которые обеспечивают превосходное покрытие всего мира и позволяют постоянно иметь высококачественную связь с астронавтами во время всего полета. TDRS были впервые использованы в эпоху космических шаттлов в 1980-х годах, так что Сатурн-5 просто физически не мог работать с ними. Точно так же навигационная система использует наработки авиационной промышленности (в частности, Boeing 777 и 787), которые опять же стали летать позже Сатурна.
Но есть одна ключевая область, где авионика SLS совпадает с таковой у Сатурн-5: ее размеры. Несмотря на то, что современные компьютеры гораздо более компактные и мощные, чем доступные в 1960-х годах, инженеры не могут воспользоваться этой миниатюризацией.
«Мы потратили 40 лет на то, чтобы сделать электронику как можно меньше», — сказал Блевинс. «А потом мы помещаем ее в ракета-носитель и она разрушается от вибраций при старте, так что мы вынуждены делать для нее защиту». В итоге бортовой компьютер SLS, конечно, существенно быстрее, однако по размерам он схож с таковым в Сатурн-5, так как он «укутан» в специальные изоляторы, призванные снизить вибрации.
Заглядывая в будущее
По словам Блевинса, он уверен, что SLS сможет уложиться в дату запуска, назначенную на ноябрь 2020 года, если разработка будет продолжаться быстрыми темпами. Однако некоторые СМИ предполагают, что возникнуть еще большие задержки, и первый полет перенесут на 2021 год.
В течение следующих шести месяцев команда SLS доставит первую ступень ракеты в Космический центр Стеннис в Миссисипи для оценки и проведения тестов. В начале 2020 года инженеры установят ступень на испытательный стенд и запустят двигатели, чтобы проверить их работоспособность. Одним из возможных источников задержек является то, что даже для такого простого теста требуются большие краны, специальное оборудование и складские помещения, поскольку ступени SLS намного больше, чем у челноков.
К тому же, по словам Блевинса, стартовое окно будет еще уже, чем при старте шаттлов, поскольку Земля и Луна выгодно расположены только в определенные дни каждого месяца.
При этом выбор стартового окна дополнительно ограничен тем фактом, что команда SLS предпочла бы посадить космический корабль обратно на Землю при дневном свете, чтобы лучше наблюдать за развертыванием парашютов. Если первый полет SLS не получится провести в ноябре 2020 года, инженеры предпочтут отложить полет до марта, поскольку координировать дневную посадку в короткие зимние дни сложно, сказал Блевинс.
Блевинс также говорит, что команда SLS в этом году планировала ускорить график, пропустив некоторые тесты. Но НАСА — вплоть до администратора Джима Бриденстайна — предпочло более медленный и скурпулезный подход, чтобы убедиться в том, что каждый компонент системы работает как надо.
По словам Блевинса, когда SLS наконец полетит, все надежды будут на то, чтобы использовать эти ракета-носители ближайшие лет 40, поскольку НАСА планирует расширять свою деятельность по всей Солнечной системе. Будь то полет астронавтов на Марс или роботизированный корабль на астероиды, SLS станет первым этапом путешествия — до тех пор, что его мощные возможности будут оправдывать затраты на него.
F-1 (ракетный двигатель)
Ур.моря: 263 с
F-1 — американский жидкостный ракетный двигатель (ЖРД), разработанный компанией Rocketdyne. Использовался в ракете-носителе Сатурн V. Пять двигателей F-1 использовались на первой ступени Сатурна V, S-IC. На 2008 год [1] являлся самым мощным из летавших однокамерных ЖРД.
Двигатель использовал в качестве горючего керосин RP-1, в качестве окислителя — жидкий кислород.
До создания жидкостного ракетного двигателя РД-170 (тягой 740 тc) и твердотопливного бокового ускорителя «Спэйс Шаттла» ЖРД F-1 являлся самым мощным летавшим ракетным двигателем [ источник не указан 1586 дней ] . На 2018 год является наиболее мощным однокамерным жидкостным ракетным двигателем в истории из когда-либо летавших [ источник не указан 1586 дней ] (двигатель M-1 имел бо́льшую тягу, и был испытан на стенде, но никогда не использовался).
Содержание
- 1 История создания
- 2 Разработка ускорителя с двигателем F-1B
- 3 Конструкция
- 4 Подъём двигателей со дна океана
- 5 Факты
- 6 См. также
- 7 Примечания
- 8 Литература
- 9 Ссылки
История создания [ править | править код ]
Первоначально F-1 был разработан Rocketdyne в соответствии с запросом ВВС США от 1955 года о возможности создания очень большого ракетного двигателя. Конечным результатом этого запроса стали два разных двигателя — E-1 и более крупный F-1. Двигатель E-1, хоть и успешно прошёл стендовые огневые испытания, но быстро был признан технологически тупиковым вариантом, и отменён в пользу крупного, более мощного F-1. Американские ВВС впоследствии остановили дальнейшую разработку F-1 из-за отсутствия применений для такого крупного двигателя. Однако НАСА, созданное в этот период времени, оценило пользу, которую может принести двигатель такой мощности, и заключила с «Рокетдайн» договор на завершение его разработки. Испытания частей F-1 были начаты в 1957 году. Первое огневое испытание полностью собранного опытного F-1 было совершено в марте 1959 года [2] .
Семь лет разработок и испытаний двигателей F-1 выявили серьёзные проблемы с неустойчивостью горения, которые иногда приводили к катастрофическим авариям. Работы по устранению этой проблемы первоначально шли медленно, поскольку она проявлялась периодически и непредсказуемо. Время доводки двигателя заняло несколько лет, в течение которых было проведено 1332 полноразмерных испытаний камеры сгорания со 108 вариантами форсуночных головок и более 800 испытаний элементов. Общая стоимость работ превысила $4 миллиарда. Доводка проводилась по следующим направлениям: повышение акустических потерь в камере сгорания введением охлаждаемых перегородок и установки акустических поглотителей; понижение усилительных свойств зоны горения путём ухудшения качества распыливания; растягивания зоны горения по длине камеры сгорания; уменьшения расхода горючего на завесу [3] [4] .
В конечном итоге инженеры разработали технику подрыва небольших зарядов взрывчатых веществ (которые они называли «бомбами»), расположенных вне камеры сгорания, в тангенциальных патрубках во время огневых испытаний. Этот метод позволил определить отклик камеры на скачок давления. Конструкторы смогли быстро экспериментировать с различными форсуночными головками для выбора наиболее устойчивого варианта. Над этими задачами работали с 1962 по 1965 годы [5] [6] . В окончательной конструкции горение в двигателе было настолько устойчиво, что он мог самостоятельно гасить искусственно вызванную неустойчивость за десятую долю секунды.
Был предусмотрен трёхступенчатый контроль пригодности двигателей к полёту: два контрольных огневых испытаний каждого экземпляра двигателя до установки в ступень ракеты, третье огневое испытание в составе ступени. Подобная методика контроля надёжности двигателей была весьма трудоёмка и финансово высоко-затратна, но её применение окупилось безаварийной работой двигателей в течение выполнения всей Лунной программы [8] .
Разработка ускорителя с двигателем F-1B [ править | править код ]
В рамках программы «Space Launch System» NASA проводило конкурс на разработку боковых ускорителей с целью выбрать победителя к концу 2015 года. В 2012 году в Pratt & Whitney Rocketdyne предложили использовать жидкостный ускоритель с новой версией F-1. [9]
В 2013 году инженеры НАСА решили обратиться к опыту предыдущего поколения инженеров, создавших F-1. В рамках программы разработки тяжёлого носителя SLS проведены испытания газогенератора двигателя F-1. [10] Испытания произошли благодаря молодым инженерам «Космического центра Маршалла», которые разобрали двигатель под номером F-6090, планировавшийся к использованию в отмененной миссии «Аполлон-19», и провели его трехмерное сканирование. По полученным чертежам собрали новые детали для газогенератора от двигателя под номером F-6049, который и был испытан. [11] .
Pratt & Whitney, Aerojet Rocketdyne и Dynetics приняли участие в испытании, и в рамках конкурса на ускорители предложили разработку под названием Pyrios с целью замены твердотельных пятисегментных ускорителей МТКК Спейс шаттл, планировавшихся к использованию на ранних вариантах Space Launch System. Pyrios, по плану, должен быть жидкостным ускорителем с двумя двигателями F-1B, и, в случае установки на SLS Block II, ракета-носитель смогла бы доставлять 150 тонн на низкую опорную орбиту. [12] .
Почему для новых мощных американских ракет используются двигатели от советской ракеты «Энергия», а не от «Сатурна-5»?
Почему для новых мощных американских ракет используются двигатели от советской ракеты «Энергия», а не от «Сатурна-5»?
Илл.12. 1988 год. Советская ракета «Энергия» на старте
В 1988 году, почти через 20 лет после первого полёта «Сатурна-5», СССР смог создать ракету «Энергия» (илл.12) [28] примерно с той же грузоподъёмностью, которую НАСА назвала для «Сатурна-5».
Ракета «Энергия» успешно стартовала дважды, но вскоре в СССР началась перестройка, в процессе которой были резко уменьшены ассигнования на научно-технический прогресс, в том числе, и на разработку и использование космической техники. «Энергия» стала одной из многих жертв перестройки. И она, и вся связанная с ней космическая программа приказали «долго жить». Сократилось общее промышленное производство в стране и, в первую очередь, производство, связанное с применением передовых технологий. Прекратил своё существование сам СССР и то, что было по силам большой стране, стало не по силам державе средней величины.
И, всё-таки, «Энергия» не исчезла бесследно для технического прогресса. Вот что написано по этому поводу в [29]: «Технологии, разработанные для «Энергии», используются и в настоящее время. Двигатель боковых блоков «Энергии» РД-170, самый мощный, по состоянию на 2005 год двигатель в истории космонавтики, используется как РД-171 на первой ступени ракеты-носителя «Зенит» (в том числе в проекте «Морской старт»), а двигатель РД-180, спроектированный на основе РД-171, – в американской ракете «Атлас-5»» [29]. В заключительных словах последнего предложения содержится новый вопрос, касающийся необыкновенной и во многом непонятной истории «Сатурна-5»: «А почему для новых мощных американских ракет используются двигатели от советской ракеты «Энергия», а не от «Сатурна-5»?
В настоящее время американцы активно ведут работы над созданием новых мощных ракет. Было бы логичным, если бы в этих разработках НАСА использовала широко разрекламированные в своё время сверхмощные двигатели F-1 первой ступени «Сатурна-5» (илл.13а).
Вот что пишет автору о двигателе F-1 специалист – ракетчик Токарев О. П.:
«Двигатель F-1 – однокамерный, а РД-170 – четырехкамерный при близкой мощности. Чем крупнее камера сгорания, тем сложнее обеспечить устойчивое горение в ней. Хотя весовые характеристики при прочих равных условиях у однокамерных двигателей, понятно, выше. К тому же они компактнее. Советские двигателисты так и не смогли создать, даже через 20 лет после американцев, такой однокамерный двигатель как F-1. Так почему же американцы, якобы достигшие такого совершенства, покупают советские двигатели?».
а) двигатель F-1 от первой ступени ракеты «Сатурн-5». Со времени окончания полётов «Аполлонов» не использовался ни в одной из американских ракет (фрагмент илл.3)
б) РД-180 – модифицированный двигатель от ракеты «Энергия». Используется в американских ракетах «Атлас»
В США не было обстоятельств типа «перестройки», которые резко затормозили научно-технический прогресс в нашей стране и, в частности, «закрыли» ракету «Энергия». США никто не делил на части, производство там растёт, наука и техника процветают. Более того, в США сейчас работают десятки тысяч специалистов из бывшего СССР (а плохих специалистов США к себе не приглашают).
Илл.14. Старт американской ракеты «Атлас» с модифицированным российским двигателем от ракеты «Энергия» (РД-180). 2003 год.
Почему же в настоящее время именно американцы активно работают над тем, чтобы использовать советские достижения в области тяжёлого ракетостроения, а не Россия тянется за американским опытом в этой области? И не означает ли это всё, что успехи НАСА в тяжёлом ракетостроении (имеется в виду создание «Сатурна-5») были дутыми?
Подытожим те интересные факты, о которых мы узнали в этом разделе:
1. Ракета «Сатурн-5» прошла, по данным НАСА, всего два беспилотных полётных испытания, причём итоговое второе испытание (4 апреля 1968 года) было неуспешным.
2. После неудачного второго испытания других беспилотных испытаний не проводилось, и следующий полёт ракеты (декабрь 1968 года) был пилотируемым, то есть с экипажем.
3. В том же самом 1968 году НАСА решила вручить уведомления о «временном увольнении» семистам ракетчикам в г. Хантсвилле – центре разработки лунной ракеты.
4. Всего через 2 года был освобождён от занимаемой должности директор ракетно-космического Центра им. Маршалла, главный конструктор ракеты «Сатурн-5», Вернер фон Браун. Освобождение состоялось во время блистательной эпопеи полётов «Аполлонов», совершаемых именно на ракете «Сатурн-5».
5. Все 10 пилотируемых полётов ракеты «Сатурн-5» были осуществлены экипажами, составленными исключительно из граждан США. Никто из граждан других стран не работал в космосе на тех супертяжёлых объектах, которые, по данным НАСА, мог выводить в космическое пространство «Сатурн-5». Поэтому декларируемая НАСА способность «Сатурна-5» выводить на орбиту такие сверхтяжёлые объекты осталась неподтверждённой со стороны иностранных специалистов.
6. После завершения программы «Аполлон» и разового запуска станции «Скайлэб» великое достижение американской ракетной техники – лунная ракета «Сатурн-5» более никогда не использовалось ни целиком, ни по частям в виде двигателей. И это, несмотря на то, что, по сведениям НАСА, у неё после завершения указанных программ ещё оставались три такие ракеты.
Как видим, в истории ракеты «Сатурн-5» есть довольно много странных обстоятельств. И всё сказанное по этому поводу заставляет задуматься: «А не скрывался ли за грандиозными стартами гигантских ракет какой-то, пока непонятный нам, но не менее грандиозный обман?»
Но, как бы то ни было, а решение НАСА было таково: «Сатурнам-5» – стартовать, а астронавтам – собираться лететь на Луну. А, когда решение принято, то всякие сомнения в успехе дела и тем более его критика, вредны и даже недопустимы. Поэтому поговорим о тех, кто своим неверием и критикой мешал успеху программы «Аполлон».
Читайте также
Страшнее американских ракет
Страшнее американских ракет У входа в Министерство обороны (со стороны кинотеатра «Художественный») топчется на морозе группа телевизионщиков — проводят опрос: «За кого вы будете голосовать?» Офицеры при виде телекамеры ведут себя по-разному: одни отворачиваются и
Русские в Японии: жертвы самураев и двигатели прогресса
Русские в Японии: жертвы самураев и двигатели прогресса О русской эмиграции в Японии знают мало и у нас, и у них. Эта страна настолько экзотична, что нам трудно себе представить, как там среди гейш и самураев могут жить наши люди. Японцы, знающие, что ни гейш, ни самураев
Без тяжелых ракет, со спидом
Без тяжелых ракет, со спидом 18.04.2000Теперь, когда путинская Дума ратифицировала СНВ-2 и Россия осталась без тяжелых ракет, и старики-оборонщики, понимающие суть военных процессов, рыдают о погибели русского суверенитета, и старуха Олбрайт, с бриллиантовой жабой на животе,
ПОЧЕМУ Я ВДРУГ ЗАТОСКОВАЛ ПО СОВЕТСКОЙ ЛИТЕРАТУРЕ
ПОЧЕМУ Я ВДРУГ ЗАТОСКОВАЛ ПО СОВЕТСКОЙ ЛИТЕРАТУРЕ Сознаться сегодня в приличном обществе, что тоскуешь по советской эпохе, — примерно то же самое, как в году 25-м сознаться, что скучаешь по царизму. Расстрелять не расстреляют, но на будущее обязательно запомнят…И все же.Я
ПОЧЕМУ Я ВДРУГ ЗАТОСКОВАЛ ПО СОВЕТСКОЙ ЛИТЕРАТУРЕ
ПОЧЕМУ Я ВДРУГ ЗАТОСКОВАЛ ПО СОВЕТСКОЙ ЛИТЕРАТУРЕ Сознаться сегодня в приличном обществе, что тоскуешь по советской эпохе, — примерно то же самое, как в году 25-м сознаться, что скучаешь по царизму. Расстрелять не расстреляют, но на будущее обязательно запомнят…И все же.Я
Почему Горбачев так ненавидел наши ракеты и боялся космической гонки?
Почему Горбачев так ненавидел наши ракеты и боялся космической гонки? Прежде мне хотелось бы поискать ответа на вопрос, почему Горбачев так страстно жаждал уничтожить половину русских стратегических ракет? Он что, их подсознательно ненавидел? И почему он так боялся
Падение «Сатурна»
Падение «Сатурна» На фоне небывалых пожаров и перебоев с электричеством плачевное финансовое состояние подмосковных спортивных команд казалось не такой уж страшной трагедией, но только не для болельщиков.В январе 2010 года поклонники подмосковного футбольного клуба
Почему я вдруг затосковал по советской литературе
Почему я вдруг затосковал по советской литературе Сознаться сегодня в приличном обществе, что тоскуешь по советской эпохе, – примерно то же самое, как в году 25-м сознаться, что скучаешь по царизму. Расстрелять не расстреляют, но на будущее обязательно запомнят…И все же.Я
Караваны ракет
Караваны ракет Каждый раз, когда в эфире звучит сообщение ТАСС о запуске пилотируемых космических кораблей, люди с жадностью ловят слова диктора, уверенные в том, что сейчас услышат что-то новое, необычное, совсем непохожее на то, что уже слышали раньше. И они не
Л. Троцкий. РАБОЧИМ, КРЕСТЬЯНАМ И ВСЕМ ЧЕСТНЫМ ГРАЖДАНАМ СОВЕТСКОЙ РОССИИ И СОВЕТСКОЙ УКРАИНЫ[149]
Л. Троцкий. РАБОЧИМ, КРЕСТЬЯНАМ И ВСЕМ ЧЕСТНЫМ ГРАЖДАНАМ СОВЕТСКОЙ РОССИИ И СОВЕТСКОЙ УКРАИНЫ[149] (Воззвание Совнаркома)Английское правительство обратилось 11 июля к нам с предложением прекратить войну с Польшей и прислать наших представителей в Лондон для переговоров о
МОЛОТЫ ПРОТИВ РАКЕТ
МОЛОТЫ ПРОТИВ РАКЕТ Одна за одной прокатывались по стране волны манифестаций протеста в связи с планами вашингтонской администрации разместить в Западной Европе новые ядерные ракеты. Демонстрации проходили у военных лабораторий и испытательных полигонов,
Двигатели торговли / Автомобили / Новости
Двигатели торговли / Автомобили / Новости Двигатели торговли / Автомобили / Новости Вроде пустяки: чуть другие фары, бампер, хромированный кант поохватистее — а впечатление Chevrolet Captiva оставляет совсем другое. Достаточно было сменить облицовку от
Землю ждут кольца Сатурна
Землю ждут кольца Сатурна Юлия Новицкая 2 октября 2014 1 Общество Наука Чем опасен космический мусор — рассказывает главный научный сотрудник научно-технологического центра «Космонит», доктор технических наук, профессор А.И. Назаренко «ЗАВТРА». Андрей Иванович, более
«Кассини» сфотографировал спрятавшиеся за кольцами спутники Сатурна
«Кассини» сфотографировал спрятавшиеся за кольцами спутники Сатурна А.П. Космический зонд NASA «Кассини» сделал очередной красивый снимок. На нем запечатлены спутники Сатурна — Рея и Янус. Впрочем, небольшой Янус (111 км) на этом фото рассмотреть непросто — на нём он
Ворота Прикамья по формуле «Сатурна»
Ворота Прикамья по формуле «Сатурна» ПОМНЮ, архитектор Людмила Мельникова рассказывала, как они работали над проектом этого дома. Очень интересно рассказывала и вдруг замешкалась, подыскивая слова. Возникла вполне понятная пауза. Потому что Мельникова хотела сказать об
ТРИ СЕКРЕТА РУССКОГО КОСМОСА Почему с Байконура до сих пор взлетают ракеты
ТРИ СЕКРЕТА РУССКОГО КОСМОСА Почему с Байконура до сих пор взлетают ракеты ТРИ СЕКРЕТА РУССКОГО КОСМОСА Почему с Байконура до сих пор взлетают ракеты 0 Ольга Рубан ТРИ СЕКРЕТА РУССКОГО КОСМОСА Почему с Байконура до сих пор взлетают ракеты Громкими словами «космодром
Журнал «Все о Космосе»
РН «Saturn V»
Ракета «Сатурн-5» на стартовом столе
Сатурн-5 ( Saturn V ) — американская ракета-носитель. Использовалась для реализации пилотируемой посадки на Луну и подготовке к ней по программе «Аполлон», а также в двухступенчатом варианте для выведения на околоземную орбиту орбитальной станции «Скайлэб». Главный конструктор Вернер фон Браун.
Ракета «Сатурн-5» остаётся самой грузоподъёмной, наиболее мощной, самой тяжёлой и самой большой из созданных на данный момент человечеством ракет, выводивших полезную нагрузку на орбиту. Ракета могла вывести на низкую околоземную орбиту 141 т (эта масса включает в себя корабль «Аполлон» и массу последней ступени с остатками топлива для разгона к Луне), и на траекторию к Луне 47 т полезного груза (65,5 т вместе с 3-й ступенью носителя). Полная масса, выведенная на орбиту при запуске станции Скайлэб, составила 147,36 тонн, в том числе станция Скайлэб с головным обтекателем — 88,5 т и вторая ступень с остатком топлива и не отделившимся переходником.
Ракета-носитель выполнена по трёхступенчатой схеме, с последовательным расположением ступеней.
На первой ступени устанавливались пять кислородно-керосиновых ЖРД F-1, которые по сей день остаются самыми мощными однокамерными ракетными двигателями из когда-либо летавших.
На второй устанавливались пять двигателей, работающих на топливной паре жидкий водород-жидкий кислород, на третьей ступени — один водородно-кислородный ЖРД, аналогичный использованному на второй ступени.
Разработка
От C-1 к C-4
С 1960 по начало 1962 гг. в Центре космических полётов им. Джорджа Маршалла НАСА рассматривались проекты ракет-носителей серии «Сатурн C» (Сатурн C-1, C-2, C-3, C-4) для осуществления (кроме «Сатурн C-1», предназначенной только для полётов на околоземную орбиту; проект «Сатурн C-1» был реализован впоследствии в ракете-носителе «Сатурн-1») пилотируемого полёта на Луну.
Ракеты-носители, разрабатывавшиеся по проектам C-2, C-3 и C-4, предполагалось использовать для сборки на орбите Земли лунного корабля, после чего он должен был выйти на траекторию к Луне, прилуниться и взлететь с Луны. Масса такого корабля на околоземной орбите должна была составлять, по разным проектам, от примерно 140 до более чем 300 тонн.
«Сатурн С-2» должна была выводить на низкую околоземную орбиту полезную нагрузку массой в 21,5 тонны, по этому проекту предполагалось собрать корабль для полёта на Луну за пятнадцать пусков.
По проекту «Сатурн C-3» предусматривалось создание трёхступенчатой ракеты-носителя, на первой ступени которой должны были быть установлены два двигателя F-1, на второй — четыре двигателя J-2, а третья ступень представляла собой вторую ступень ракеты-носителя «Сатурн-1» — S-IV. «Сатурн C-3» должна была выводить на низкую околоземную орбиту полезную нагрузку массой 36,3 тонны, и по этому проекту лунный корабль должен был быть собран за четыре или пять пусков.
«Сатурн C-4» также должна была быть трёхступенчатой ракетой, первая ступень которой должна была иметь четыре двигателя F-1, вторая ступень была той же, что и на C-3, и третьей ступенью была S-IVB — увеличенный вариант ступени S-IV. «Сатурн C-4» должна была выводить на низкую околоземную орбиту полезную нагрузку массой 99 тонн и по этому проекту лунный корабль должен был быть собран за два запуска.
10 января 1962 года НАСА опубликовала планы строительства ракеты-носителя «Сатурн C-5». На первой её ступени должны были быть установлены пять двигателей F-1, на второй ступени — пять двигателей J-2, и на третьей — один J-2. С-5 должна была выводить на траекторию к Луне полезную нагрузку массой 47 тонн.
В начале 1963 года НАСА окончательно выбрала схему пилотируемой экспедиции на Луну (основной корабль остаётся на орбите Луны, посадку же на неё совершает специальный лунный модуль) и дало ракете-носителю «Сатурн C-5» новое имя — «Сатурн-5».
Технические данные
Схема ракеты-носителя «Сатурн-5».
Ступени
«Сатурн-5» состояла из трёх ступеней: S-IC — первая ступень, S-II — вторая и S-IVB — третья. Все три ступени использовали жидкий кислород как окислитель. Горючим в первой ступени был керосин, а во второй и третьей — жидкий водород.
Первая ступень, S-IC
Первая ступень, использованная в запуске «Аполлона-8» в корпусе вертикальной сборки на космодроме
S-IC производилась компанией «Боинг». На ступени было установлено пять кислородно-керосиновых двигателей F-1, суммарная тяга которых была более 34 000 кН. Первая ступень работала около 160 секунд, разгоняла последующие ступени и полезную нагрузку до скорости около 2,7 км/с (в инерциальной системе отсчёта; 2,3 км/с относительно земли), и отделялась на высоте около 70 километров. После разделения ступень поднималась до высоты около 100 км, затем падала в океан. Один из пяти двигателей был зафиксирован в центре ступени, четыре других симметрично расположены по краям под обтекателями и могли поворачиваться для управления вектором тяги. В полёте центральный двигатель выключался раньше, чтобы уменьшить перегрузки. Диаметр первой ступени 10 метров (без обтекателей и аэродинамических стабилизаторов), высота 42 метра.
Вторая ступень, S-II
S-II производилась компанией «Норт Америкэн». Ступень использовала пять кислородно-водородных двигателей J-2, общая тяга которых составляла около 5100 кН. Как и на первой ступени, один двигатель был в центре и на внешнем круге четыре остальных, которые могли поворачиваться для управления вектором тяги. Высота второй ступени 24,9 метра, диаметр 10 метров, как и у первой ступени. Вторая ступень работала приблизительно 6 минут, разгоняя ракету-носитель до скорости 6,84 км/с и выводя её на высоту 185 км.
Третья ступень, S-IVB
S-IVB производилась компанией «Дуглас» (с 1967 года — компанией «Мак-Доннэл Дуглас»). На ступени был установлен один двигатель J-2, который использовал жидкий кислород в качестве окислителя и жидкий водород в качестве горючего (аналогично второй ступени S-II). Ступень развивала тягу более 1000 кН. Размеры ступени: высота 17,85 метра, диаметр 6,6 метра. Во время полётов на Луну ступень включалась дважды, первый раз на 2,5 минуты для довыведения «Аполлона» на околоземную орбиту и во второй раз — для вывода «Аполлона» на траекторию к Луне.
Программа отработки надёжности
Огневые технологические испытания первой ступени S-IC в сборе с пятью ЖРД F-1 на стенде Космического центра Маршалла. 1967 год.
Особенностью предполётной отработки “Сатурна-5” стал беспрецедентный объём наземных испытаний ракетного комплекса. Один из руководителей Управления пилотируемых полётов НАСА Джордж Эдвин Миллер, ответственный по этому вопросу, сделал ставку на наземную стендовую отработку всех ракетных систем и в первую очередь ЖРД. Он наглядно и убедительно показал, что только чёткое разделение отработки на наземные и лётные этапы позволит уложиться в сроки полёта на Луну. Для этого были построены дорогостоящие стендовые сооружения, необходимые для проведения огневых испытаний как отдельных двигателей F-1 и J-2, так и целиком первых и вторых ступеней ракеты.
Транспортировка
Для перевозки ракет «Сатурн-5» к стартовой площадке использовались специальные гусеничные транспортёры (англ. crawler-transporter). В то время (1965—1969 годы; до появления в 1969 году шагающего экскаватора 4250-W) они являлись крупнейшими и наиболее тяжёлыми образцами наземной самоходной техники в мире. Эти транспортёры также оставались самыми большими и тяжёлыми гусеничными машинами в мире до 1978 года (когда появился экскаватор Bagger 288).
Скайлэб
Последний запуск «Сатурн-5», выводящий на низкую околоземную орбиту орбитальную станцию «Скайлэб»
Орбитальная станция «Скайлэб» была запущена 14 мая 1973 года с помощью двухступенчатой модификации ракеты-носителя «Сатурн-5».
С 1964 года по 1973-й из федерального бюджета США было выделено на программу «Сатурн-5» 6,5 миллиарда долларов. Максимум пришёлся на 1966 год — 1,2 миллиарда. С учётом инфляции на программу «Сатурн-5» было за этот период потрачено 47,25 миллиарда долларов в ценах 2014 года. Приблизительная стоимость одного запуска «Сатурн-5» составляла 1,19 миллиарда долларов в ценах 2014 года.
Одна из главных причин досрочного прекращения лунной программы США после трёх облётов Луны пилотируемыми кораблями (в том числе один — «Аполлон-13» — аварийный) и шести успешных высадок на Луну (первоначально планировались два облёта пилотируемыми кораблями и 10 высадок) была её высокая стоимость. Так, в 1966 году НАСА получила самый большой (если учитывать инфляцию) бюджет за свою историю — 4,5 миллиарда долларов (что составляло около 0,5 процента тогдашнего ВВП США).
Запуски Сатурна 5
В 1967-73 годах произведено 13 пусков ракеты-носителя «Сатурн-5». Все признаны успешными.