Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое асинхронный пуск синхронного двигателя

12.3.2. Асинхронный пуск синхронного двигателя

Этот способ несложен, но сопровождается значительными вспле­сками тока и электромагнитных сил и требует дополнительных мер:

а) на роторе необходима замкнутая многофазная обмотка (или замкнутые контуры), что­бы двигатель смог разгоняться как асинхронный под действием асинхронного электромагнитного момента (от взаимодействия поля и наведенных токов в этой обмотке). Эту обмотку называют пусковой и устраивают как короткозамкнутую беличью клетку: неизолирован­ные медные или латунные стержни располагают в пазах полюсных наконечников и приваривают к медным сегментам, образующим короткозамыкающие кольца;

б) при пуске вращающееся поле наводит в замкнутой цепи об­мотки возбуждения синхронного двигателя однофазный переменный ток, создающий электромагнитный момент, ухудшающий условия пус­ка; оставить же цепь обмотки возбуждения разомкнутой нельзя из-за опас­ности пробоя изоляции этой обмотки значительной наводимой ЭДС, так как обмотка возбуждения имеет большое количество витков и ее потокосцепление изменяется с большой частотой в начале пуска. Выход: обмотку возбуждения замыкают на разрядное сопротивление Rp=(5. 12)Rв, где Rв — сопротивление обмотки возбуждения. При этом невелики напряжение на зажимах обмотки возбуждения и переменный ток в этой обмотке.

Итак, предварительно обмотку возбуждения отключают от возбудителя и замыкают на разрядное сопротивление Rp. Далее обмотку статора включают в сеть, и двигатель запускается как асинхронный. Возникающее вращающееся маг­нитное поле статора наводит в электропроводящих контурах ротора ЭДС и токи с частотой f2=f1s, где s – скольжение ротора относи­тельно поля. В используемой на стенде синхронной машине имеется два типа электропроводящих контуров на роторе: обмотка возбуждения и контуры, образованные ферромагнитными частями (сер­дечниками полюсов). Пусковая обмотка отсутствует. Обмотка воз­буждения подключена к большому разрядному сопротивлению Rp , поэто­му ее ток и соответствующий электромагнитный момент невелики. Создаётся асинхронный момент в основном от взаимодействия наведённых токов в ферромагнитных частях ротора с вращающимся полем обмотки статора. Под действи­ем этого асинхронного момента ротор разгоняется и скольжение уменьшается. Пока скорость двигателя невелика, сколь­жение s и частота f2 достаточно большие. Примерно через 3-5 с после включения скорость ротора при­близится к синхронной (n  0,95n1), s и f2 уменьшаются. При этом сле­дует сразу же подать возбуждение в синхронный двигатель (переключить SAI5В), чтобы он втянулся в синхронизм. Возникают всплеск тока якоря и дополнительные электромагнитные моменты, под действием которых ротор после ударов и качаний, как правило, втягивается в синхронизм.

Подаваемый ток возбуждения должен обес­печить ЭДС Е U1. При подсинхронной скорости разность частот f1f составляет около 5%. Совпадение фаз ЭДС машины и напряжения сети здесь не контролируется вообще, поэтому асинхронный пуск соответствует грубой синхронизации. Наилучшие условия втягивания в синхронизм получаются, если возбуждение подается при n ≥ 0,95n1 и если момент нагрузки меньше номинального входного мо­мента Mвх. Последний представляет собой электромагнитный момент, развиваемый машиной при асинхронном пуске, когда n = 0,95n1.

Асинхронный пуск является самым распространенным способом пуска синхронных двигателей.

12.4. V образные характеристики

V- образные характеристики представляют собой зависимость тока якоря I и коэффициента мощности cos двигателя от тока воз­буждения iв при постоянных значениях напряжения обмотки якоря U и его частоты f и постоянной отдаваемой механической мощности P2 . Эти характеристики отражают важную особенность синх­ронных двигателей возможность регулирования их реактивной мощности и cos.

Рассмотрим V — образные характеристики двигателей на при­мере неявнополюсной машины. Необходимые пояснения даны с помощью упрощенных векторных диаграмм синхронного двигателя, представленных на рис. 12.3.

Если принять потери в обмотке и стали якоря, механические и добавочные потери постоянными, то при P2= const подводимая к обмотке якоря мощность также постоянна, P1= mUIcos = const, и, следовательно, активная составляющая тока якоря также неизменна — Iа=Icos =const. Поэтому на векторной диаграмме (рис.12.3) конец вектора тока якоря I при разных значениях тока возбуждения iв скользит по прямой АВ. Для каждого значения I величина iв может быть определена из уравнения токов синхронной машины , отра­жающего уравнение МДC . Так,iв пред­ставляет собой результирую­щую МДС в зазоре F в масштабе тока возбуждения, I — МДС реакции якоря Fa в масштабе тока возбуждения или приведенный ток якоря. Ток возбуждения прямо пропорционален МДС Fв обмотки возбуждения.

Величина iв может быть определена по результирующей ЭДС E обмотки якоря , индуктированной резуль­тирующим магнитным полем воздушного зазора. Если пренебречь для простоты сопротивлениями рассеяния xsa= 0 и активным ra= 0, то и, следова —

Рис. 12.3. Упрощённые векторные диаграммы синхронного двигателя

тельно, iвconst. Вектор , как и вектор результирующего потока в зазоре , опережает на 90 о . Вектор совпадает по направлению с током якоря, и конец его скользит по прямойA’B’, параллельной линии АВ, так как I прямо пропорционален току якоря.

На рис. 12.3 построены векторные диаграммы токов для четырёх то­чек V-образной характеристики и получены токи возбуждения для соответствующих им токов якоря. Для точки 1 на рис.12.3 вы­полнено также построение векторной диаграммы напряжений по урав­нению, гдеЕ — ЭДС, индуктированная в обмотке якоря полем обмотки возбуждения; xc — синхронное индуктивное сопротивление.

Читать еще:  Bmw 5 series какой двигатель лучше

На рис. 12.4 представлены V- образные характеристики I = f(iв) и cos = f(iв) для P2= 0 (холостой ход) и P2= const 0.

На рис.12.3 и на характеристиках рис. 12.4 точка 1 соответству­ет перевозбуждению двигателя, когда реактивная мощность отдает­ся в сеть, Q>0; точка 2 — нормальному возбуждению, когда Q = 0 и cos = 1; точка 3 — недовозбуждению, когда реактивная мощ­ность потребляется из сети, Q 25 / 31 25 26 27 28 29 30 31 > Следующая > >>

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Типовые схемы и способы пуска синхронных двигателей

Для обеспечения работы мощных электроприводов применяются синхронные электродвигатели. Они нашли применение в компрессорных установках, насосах, в системах, прокатных станах, вентиляторах. Применяются в металлургической, цементной, нефтегазовой и других отраслях промышленности, где необходимо использовать оборудование большой мощности. В этой статье мы решили рассказать читателям сайта Сам Электрик, как может выполняться пуск синхронных двигателей.

  • Преимущества и недостатки
  • Способы пуска
  • Запуск с помощью разгонного двигателя
  • Асинхронный запуск
  • Частотный пуск
  • Системы возбуждения

Преимущества и недостатки

Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:

  • Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
  • По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
  • Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
  • Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
  • При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.

При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.

Способы пуска

Пуск синхронных электродвигателей можно осуществить тремя способами – с помощью дополнительного двигателя, асинхронный и частотный запуск. При выборе способа учитывается конструкция ротора.

Он выполняется с постоянными магнитами, с электромагнитным возбуждением или комбинированным. Наряду с обмоткой возбуждения на роторе смонтирована короткозамкнутая обмотка – беличья клетка. Её также называют демпфирующей обмоткой.

Запуск с помощью разгонного двигателя

Этот метод пуска редко применяется на практике, потому что его сложно реализовать технически. Требуется дополнительный электродвигатель, который механически соединен с ротором синхронного двигателя.

С помощью разгонного двигателя раскручивается ротор до значений близких к скорости вращения поля статора (к синхронной скорости). После чего на обмотку возбуждения ротора подают постоянное напряжение.

Контроль осуществляется по лампочкам, которые включены параллельно рубильнику, подающему напряжение на обмотки статора. Рубильник должен быть отключен.

В первоначальный момент лампы мигают, но при достижении номинальных оборотов они перестают гореть. В этот момент подают напряжение на обмотки статора. После чего синхронный электродвигатель может работать самостоятельно.

Затем дополнительный мотор отключается от сети, а в некоторых случаях его отсоединяют механически. В этом состоят особенности пуска с разгонным электродвигателем.

Асинхронный запуск

Метод асинхронного пуска на сегодня самый распространенный. Такой запуск стал возможен после изменения конструкции ротора. Его преимущество в том, что не нужен дополнительный разгонный двигатель, так как дополнительно к обмотке возбуждения в ротор вмонтировали короткозамкнутые стержни беличьей клетки, что дало возможность запускать его в асинхронном режиме. При таком условии этот способ пуска и получили широкое распространение.

Сразу же рекомендуем просмотреть видео по теме:

При подаче напряжения на обмотку статора происходит разгон двигателя в асинхронном режиме. После достижения оборотов близких к номинальным, включается обмотка возбуждения.

Электрическая машина входит в режим синхронизма. Но не все так просто. Во время пуска в обмотке возбуждения возникает напряжение, которое возрастает с ростом оборотов. Оно создает магнитный поток, который воздействует на токи статора.

При этом возникает тормозящий момент, который может приостановить разгон ротора. Для уменьшения вредного воздействия обмотки возбуждения подключают к разрядному или компенсационному резистору. На практике эти резисторы представляют собой большие тяжелые ящики, где в качестве резистивного элемента используются стальные спирали. Если этого не сделать, то из-за возрастающего напряжения может произойти пробой изоляции. Что повлечет выход оборудования из строя.

После достижения подсинхронной частоты вращения, от обмотки возбуждения отключаются резисторы, и на нее подается постоянное напряжение от генератора (в системе генератор-двигатель) или от тиристорного возбудителя (такие устройства называются ВТЕ, ТВУ и так далее, в зависимости от серии). В результате чего двигатель переходит в синхронный режим.

Читать еще:  Датчик температуры двигателя для бортового компьютера

Недостатками этого метода являются большие пусковые токи, что вызывает значительную просадку напряжения питающей сети. Это может повлечь за собой остановку других синхронных машин, работающих на этой линии, в результате срабатывания защит по низкому напряжению. Для уменьшения этого воздействия цепи обмоток статора подключают к компенсационным устройствам, которые ограничивают пусковые токи.

  1. Добавочные резисторы или реакторы, которые ограничивают пусковые токи. После разгона они шунтируются, и на обмотки статора подается сетевое напряжение.
  2. Применение автотрансформаторов. С их помощью происходит понижение входного напряжения. При достижении скорости вращения 95-97% от рабочей, происходит переключение. Автотрансформаторы отключаются, а на обмотки подается напряжение сети переменного тока. В результате электродвигатель входит в режим синхронизации. Этот метод технически более сложный и дорогостоящий. А автотрансформаторы часто выходят из строя. Поэтому на практике этот метод редко применяют.

Частотный пуск

Частотный пуск синхронных двигателей применяется для запуска устройств большой мощности (от 1 до 10 МВт) с рабочим напряжением 6, 10 Кв, как в режиме легкого запуска (с вентиляторным характером нагрузки), так и с тяжелым пуском (приводов шаровых мельниц). Для этих целей выпускаются устройства мягкого частотного пуска.

Принцип работы аналогичен высоковольтным и низковольтным устройствам, работающим по схеме преобразователя частоты. Они обеспечивают пусковой момент до 100% от номинала, а также обеспечивают запуск нескольких двигателей от одного устройства. Пример схемы с устройством плавного пуска вы видите ниже, оно включается на время запуска двигателя, а затем выводится из схемы, после чего двигатель включается в сеть напрямую.

Системы возбуждения

До недавнего времени, для возбуждения применялся генератор независимого возбуждения. Он располагался на одном валу с синхронным электродвигателем. Такая схема еще применяется на некоторых предприятиях, но она устарела и теперь не применяется. Сейчас для регулировки возбуждения используются тиристорные возбудители ВТЕ.

  • оптимальный режим пуска синхронного двигателя;
  • поддержание заданного тока возбуждения в заданных пределах;
  • автоматическое регулирование напряжения возбуждения в зависимости от нагрузки;
  • ограничение максимального и минимального тока возбуждения;
  • мгновенное увеличение тока возбуждения при понижении питающего напряжения;
  • гашение поля ротора при отключении от питающей сети;
  • контроль состояния изоляции, с оповещением о неисправности;
  • обеспечивают проверку состояния обмотки возбуждения при неработающем электродвигателе;
  • работают с высоковольтным преобразователем частоты, обеспечивая асинхронный и синхронный запуск.

Эти устройства отличаются высокой надежностью. Основным недостатком является высокая цена.

В заключение отметим, что самый распространенный способ пуска синхронных двигателей – это асинхронный запуск. Практически не нашел применения пуск с помощью дополнительного электродвигателя. В то же время частотный запуск, который позволяет в автоматическом режиме решить проблемы пуска, довольно дорогостоящий.

3.15 Неисправности синхронных машин,
затруднения при асинхронном пуске синхронного двигателя

3-15-2. Двигатель не идет в ход; в одной фазе статора нет тока.

3-15-3. Двигатель не идет в ход или идет в ход, но не разворачивается до нормальной частоты вращения. Сила тока во всех трех фазах одинакова.

A. При пуске пониженное напряжение сети; пуск двигателя от несоответствующего ответвления автотрансформатора или через неправильно выбранный реактор.

Измерить напряжение сети на первичных зажимах пускового автотрансформатора или реактора; если напряжение на 10—15 % ниже номинального, то это может быть причиной того, что двигатель не идет в ход. Необходимо в таком случае повысить напряжение сети до номинально­го. Если же это невозможно или напряжение сети окажется нормальным, то для повышения пускового напряжения необходимо переключить двигатель на следующую ступень пускового автотрансформатора или реактора.

Если пусковой автотрансформатор выполнен с ответвлениями на первичной обмотке, то соответствующим переключением первичной обмотки также может быть повышено его вторичное (пусковое) напряжение.

Если пуск осуществляется от реактора, то для увеличения пускового напряжения нужно уменьшить реактивное сопротивление катушки, что достигается весьма просто — увеличением воздушного зазора между верхней и нижней половинами сердечника.

Если же увеличение зазора невозможно, то необходимо уменьшить число витков катушки.

Б. Слишком велика нагрузка при пуске.

Снизить нагрузку при пуске.

B. При автотрансформаторном пуске возбуждение в двигатель подается не при полном (номинальном) напряжении на зажимах статора, а при пониженном. В связи с этим двигатель не развивает так называемого подсинхронкого момента (мо­мента при частоте вращения, составляющей 95 % синхронной), необходимого для вхождения двигателя в синхронизм.

Перестроить схему пуска двигателя с подачей воз­буждения при полном напряжении на зажимах статора.

Следует отметить, что хорошие условия пуска синхронного двигателя могут быть достигнуты при пуске от полного напряжения сети, т. е. при так называемом прямом пуске — без каких-либо пусковых устройств (автотрансформатор, реактор). При таком пуске достигается значительное упрощение пусковой схемы; пусковая обмотка ротора, как показал опыт, нагревается за время пуска меньше, чем при пуске от пониженного напряжения. Таким образом, прямой пуск значительно упрощает эксплуатацию двигателя, не снижая при этом надежность его работы. Поэтому, если двигатель плохо разворачивается, следует перейти на его прямой пуск. Для большинства двигателей, работающих от достаточно мощной питающей сети, такой пуск является вполне допустимым и никакой опасности для электродвигателя не представляет.

Читать еще:  Шаговый двигатель как генератор большой мощности

В некоторых случаях для такого пуска может оказаться необходимым усилить крепление лобовых частей обмотки статора. И лишь в довольно ограниченном числе случаев, например когда речь идет о двигателях весьма большой мощности (компенсаторах), прямой пуск может оказаться недопустимым или нежелательным.

Вопрос о переводе двигателя на прямой пуск следует согласовать с заводом-изготовителем.

Г. Междувитковое соединение в некоторых катушках обмотки возбуждения.

Найти неисправные катушки , отремонтировать их или заменить новыми.

3-15-4. То же, что в п. 3-15-3, но в роторе иногда появляются вспышки или искрение.

Плохой контакт в пусковой (демпферной) обмотке, а также в местах соединения отдельных стержней с короткозамыкающими кольцами или в перемычках, соединяющих отдельные сегмен­ты короткозамыкающего кольца между собой.

Проверить все контакты пусковой обмотки. Стержни, имеющие плохой контакт с кольцами, припаять тугоплавким припоем; все соединения между отдельными сегментами короткозамыкающих колец вскрыть для проверки, так как возможно окисление контактных поверхностей, незаметное при наружном осмотре.

Контактные поверхности тщательно вычистить и в случае надобности вновь пригнать и облудить.

3-15-5. Двигатель не идет в ход и сильно гудит. Сила тока во всех трех фазах различна. Часть обмотки статора сильно нагревается.

3-15-6. То же, что в п. 3-15-5, но обмотка статора не нагревается.

Неисправен пусковой автотрансформатор, или неправиль­но сделано внутреннее соединение обмотки статора (см. п. 3-8-3, Б).

Для определения причины неисправности следует отсоединить двигатель от пускового автотрансформатора (реактора), включить последний в сеть без двигателя и измерить напряжение на всех его ступенях (ответвлениях). Если междуфазные напряжения окажутся различными или будет обнаружена какая-либо другая неисправность, то необходимо исправить автотрансформатор.

Если же трансформатор окажется в порядке, то имеется неисправность двигателя.

Проверить соединение катушек и при обнаружении неисправности ликвидировать ее.

ПУСК СИНХРОННОГО ДВИГАТЕЛЯ

Синхронный двигатель при подключении его обмоток к источни­ку питания не развивает пускового момента. Ротор по причине своей инерционности не может

мгновенно достичь частоты вращения, рав­ной частоте вращения магнитного поля статора, которая устанавлива­ется почти одновременно с включением обмотки статора в сеть. По­этому между полюсами возбужденного ротора и вращающегося поля статора не возникает устойчивой магнитной связи, создающей син­хронный враща-ющий момент.

Для пуска синхронного двигателя необходимо предварительно привести ротор во вращение с частотой, близкой частоте вращения поля статора. При этом поле статора настолько медленно перемеща­ется относительно полюсов ротора, что при подключении обмотки возбуждения к источнику питания между полюсами ротора и вра­щающегося поля статора устанавливается магнитная связь, обеспечи­вающая возникновение синхронного электромагнитного момента. Под действием этого момента ротор втягивается в синхронизм, т. е. начинает вращаться с синхронной частотой.

Существует несколько способов пуска синхронного двигателя, но практическое применение получил асинхронный способ. Для его реа­лизации в пазах полюсных наконечников ротора располагают стержни пусковой короткозамкнутой обмотки, выполненной аналогично обмотке короткозамкнутого ротора . Обычно стержни этой обмотки делают из латуни или меди и замыкают с двух сторон медными коль­цами (см. рис. 10).

Для пуска синхронного двигателя с электромагнитным возбуж­дением замыкают обмотку возбуждения ОВ на резистор r (рис. 12, а), подключают к трехфазной сети обмотку статора.

Рис. 12. Асинхронный пуск синхронного двигателя с электромагнитным возбуждением.

Вращающееся поле статора наводит в пусковой обмотке ЭДС, которая создает в стержнях обмотки токи. В результате взаимодействия этих токов с вращаю­щимся

полем статора на каждый стержень ротора действует электро­магнитная сила FЭМ

(рис. 12, б). Совокупность таких сил создает асинхронный электромагнитный момент Ма под действием которого ро­тор начинает вращаться в ту же сторону, что и поле статора. После разгона ротора до частоты вращения, близкой к синхронной

(n2 ≈ 0,95 n1), обмотку возбуждения ОВ подключают к источнику постоянного тока, При этом двигатель возбуждается (полюса ротора намагничиваются), между вращающимся полем статора и полюсами ротора устанавливается устойчивая магнитная связь, создающая синхронный электромагнитный момент М, и двигатель втягивается в синхронизм, т. е, его ротор начинает вращаться синхронно с вращающимся магнитным полем. В пусковой обмотке ротора больше не наводится ЭДС, асин­хрон-ный момент Ма = 0. Пусковая короткозамкнутая обмотка в режи­ме синхронного вращения ротора выполняет роль демпферной (успо­коительной) обмотки, ограничивая возможные колебания (качания) ротора, вызванные изменениями нагрузки на валу двигателя. Переход ротора от частоты вращения n2

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector