Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дизельный двигатель с турбонаддувом

Дизельный двигатель с турбонаддувом

История создания дизельных двигателей с турбонаддувом

Турбокомпрессоры применялись для повышения мощности двигателей внутреннего сгорания еще на этапе развития этого вида технологий. Запатентованный американцем Альфредом Бюхи в 1911 году турбокомпрессор на заре своего развития сыграл значительную роль в военной авиации – турбированные бензиновые двигатели ставились на истребители и бомбардировщики для повышения их высотности. Свое применение в автомобильном дизелестироении технология нашла относительно недавно. Первым серийным автомобилем с турбированным дизелем был появившийся в 1978 г. Mercedes-Benz 300 SD, а в 1981 г. за ним последовал VW Turbodiesel.

Устройство и принцип работы дизельного двигателя с турбонаддувом

Принцип работы турбированного дизельного двигателя основан на использовании энергии выхлопных газов. Покинув цилиндр, отработавшие газы попадают на крыльчатку турбины, вращая ее и закрепленную с ней на одном валу турбину компрессора, встроенного в систему подачи воздуха в цилиндры.

Таким образом, в отличие от атмосферных дизелей, в турбокомпрессорных агрегатах воздух в цилиндры подается принудительно под более высоким давлением. В итоге объем воздуха, попадающего в цилиндр за один цикл, возрастает. В сочетании с увеличением объема сгорающего топлива (пропорции топливно-воздушной смеси остаются неизменными) это дает прирост мощности до 25%.

Для еще большего повышения объема поступающего в цилиндры воздуха дополнительно применяют интеркулер – специальное устройство, охлаждающее атмосферный воздух перед нагнетанием в двигатель. Из школьного курса физики известно, что холодный воздух занимает меньше места, чем теплый. Таким образом, при охлаждении можно «затолкать» в цилиндр больше воздуха за цикл.

В результате у турбодизеля меньше удельный эффективный расход топлива (в граммах на киловатт-час) и выше объемная мощность (количество лошадиных сил на литр объема двигателя). Все это обеспечивает возможность существенно подрастить суммарную мощность мотора без значительного увеличения его габаритов и числа оборотов.

Плюсы и минусы дизельного двигателя с турбонаддувом

Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр. Также в работе двигателей с турбинами низкого давления может присутствовать эффект «турбоямы», выражающийся в заметном «проседании» на низких и средних оборотах двигателя.

Турбированные моторы менее экономичны, чем атмосферные дизели, потребляя на 20 – 50% больше топлива при том же объеме. Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя, а турбированные дизели еще менее ремонтопригодны, чем их атмосферные братья.

Да и вообще, наличие технически сложного турбокомпрессора, нуждающегося в дополнительных устройствах стабилизации давления, аварийного его сброса и так далее делает силовую установку автомобиля более замысловатой, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.

Современные технологии усовершенствования дизельных двигателей

Значительную популярность сегодня приобрела система повышения эффективности и гибкости режимов дизеля под названием «Common-Rail». Если в традиционном дизельном двигателе каждая секция насоса высокого давления подает топливо в отдельный топливопровод, замкнутый на одну форсунку. Даже несмотря на изрядную толщину стенок топливопроводов при подаче в них жидкости под давлением в 1500-2000 атмосфер они незначительно, но «раздуваются». В результате попадающая в цилиндр порция топлива отличается от расчетной. «Довесок», сгорая, увеличивает расход горючего, повышает дымность и снижает полноту сгорания топливно-воздушной смеси.

Удачное инженерное решение этой проблемы разработали одновременно сразу несколько автопроизводителей. В новой системе топливный насос высокого давления подает горючее в общий трубопровод — топливную рампу, которая, помимо прочего, играет роль ресивера, то есть стабилизатора давления в контуре. В рампе все время присутствует постоянный объем топлива, находящегося не под пульсирующим давлением, а под постоянным.

К тому же, развитие интеллектуальных технологий позволило оснастить форсунки электронными системами открытия (в традиционных дизелях регулировка циклов впрыска происходит гидромеханическим способом при повышении давления в трубопроводе). Электронный блок, управляющий работой форсунок, учитывает информацию о положении педали акселератора, давлении в рампе, температурном режиме двигателя, его нагрузке и т.д. На основе этих данных рассчитывается размер порции топлива и момент его подачи.

Еще одно новшество, появившееся благодаря развитию автомобильной электроники – двухэтапная подача топлива в камеру сгорания. Сначала впрыскивается «разгонная» (около миллиграмма) порция. При сгорании она дополнительно к эффекту сжатия повышает температуру в камере, и основная доза, впрыскиваемая следом, сгорает более плавно, также плавно наращивая давление в цилиндре. В результате двигатель работает мягче и менее шумно, а расход топлива сокращается примерно на 20% при одновременном возрастании крутящего момента на малых оборотах на 25%. Что немаловажно — уменьшается содержание в выхлопе сажи.

Среди новых разработок, призванных улучшить экологические характеристики дизелей одновременно с оптимизацией их экономичности, наиболее перспективной считается система BlueTec, разработанная специалистами концерна Daimler AG. Основная ее составляющая – инновационная методика каталитической нейтрализации выхлопных газов.

Каталитические нейтрализаторы современных автомобилей работают за счет керамических или металлических «сот», покрытых слоем химически активных веществ — катализаторов. Катализаторы окисляют или восстанавливают токсичные соединения CO, CH и NOx до углекислого газа, простого азота и воды.

Однако особенности дизельного топлива, а также процессов образования и сгорания топливно-воздушной смеси в дизеле таковы, что выхлоп содержит не только вредные химические компоненты, но большое количество сажи. Причем если начать уменьшать долю сажи возрастает содержание NOx, и наоборот. Таким образом, для комплексной очистки дизельного выхлопа нужна многокомпонентная химико-механическая система, усложняющая конструкцию автомобиля и, как следствие, снижающая рентабельность производства.

Технология BlueTec построена на сочетании традиционных и новых решений. Сначала отработавшие газы проходят имеющийся на большинстве дизельных автомашин противосажевый фильтр и катализатор, «истребляющий» соединения углерода. Далее в выпускной тракт впрыскивается активный реагент AdВlue на основе мочевины (раствора аммиака в воде). Получившаяся смесь попадает в специальный нейтрализатор избирательного действия (SCR), в котором аммиак из AdBlue под влиянием катализа при температуре 250–300°С вступает в химическую реакцию с окислами азота, «разбирая» их на азот и воду. Здесь же «дожигаются» остальные вредные компоненты.

При очевидных плюсах BlueTec имеет не менее очевидные минусы. Хранение запаса компонента AdВlue требует отдельной емкости. Сама система осложняется за счет присутствия дополнительных узлов и магистралей. К тому же, система еще более прихотлива к качеству топлива и может работать только на солярке с минимальным содержанием серы.

Еще одна весьма актуальная для России проблема — раствор AdВlue замерзает при минус 11,5 градусов. Поэтому инженеры BlueTec сейчас активно работают над совершенствованием систем без использования мочевины. Сегодня проходят опробование и доработку комплексы из противосажевого фильтра, платинового каталитического нейтрализатора и двух SCR-катализаторов, «заряженных» исключительно на борьбу с оксидами азота. В настоящее время система позволяет обеспечить содержание NOx в выхлопе дизелей примерно на уровне Евро-5.

FAQ судовой дизель: для чего необходим турбонаддув с интеркулером

Судовой дизель с турбонаддувом

Основной характеристикой судовых дизелей, как в прочем и любых двигателей, является мощность. Для ее увеличения, без существенного изменения объема двигателя и количества цилиндров применяют турбонаддув. Он представляет собой один из видов нагнетания дополнительного воздуха в камеру сгорания, который происходит за счет работы турбокомпрессора. Судовой дизель, оборудованный турбонаддувом, неизменно демонстрирует лучшие мощностные показатели, чем равноценные аналоги с атмосферным нагнетанием воздуха.

Читать еще:  Briggs stratton 35 classic двигатель характеристики

Турбонаддув в судовых двигателях осуществляется за счет специального устройства – турбокомпрессора. Именно это приспособление, используя энергию отработанных газов, позволяет увеличить содержание кислорода в горючей смеси.

Если рассматривать сам принцип действия данного вида нагнетания воздушного потока, то в общих чертах схема выглядит так: колесо турбины, вращающееся за счет выхлопных газов, приводит в движение компрессорное колесо, которое и отвечает за сжатие и нагнетание воздушных масс в камеру сгорания.

Указанный процесс сопровождается неминуемым нагреванием воздуха до крайне высоких температурных показателей (до 200 °С). Стоит отметить, что и сам турбированный компрессор подвергается нагреванию со стороны отработанных газов. Данный факт обусловил появление сразу нескольких проблем: во-первых, перегрев элементов судового дизеля, в конечном итоге, приведет к его отказу, а во-вторых, горячий воздух обладает меньшей плотностью, что самым негативным образом сказывается на давлении наддува. Иными словами, судовой дизель будет работать в разы эффективнее, если потоки, циркулирующие в турбокомпрессоре, подвергать охлаждению.

Судовой дизель с интеркулером

Для решения данной задачи был придуман интеркулер – одновременно простое и гениальное устройство, позволяющее уменьшить температуру воздуха примерно до 50° С. Судовой дизель, в котором присутствует интеркулер, получает в свое распоряжение до 20% дополнительной мощности. Согласитесь, это внушительный показатель, особенно если учесть, что судовой дизель при этом не претерпевает никаких серьезных изменений. Конструкция промежуточного охладителя, как иначе называют интеркулер, относительно несложная: больше всего он напоминает радиатор с множеством длинных патрубков и ходов, выполненных из меди или алюминия. Выбор именно этих металлов продиктован их прекрасной теплоотдачей. Особенности строения И определяют и его «слабое место». Воздушный поток, проходя через многочисленные элементы интеркулера, частично теряет давление. Кроме того, он утяжеляет судовой дизель как минимум на несколько килограммов. Именно поэтому реальный показатель эффективности работы промежуточного охладителя оценивается в 70%, хотя в идеальном случае предполагается достижение всех 100%. Учитывая темпы развития современного машиностроения, можно предположить, что в скором времени будет найден путь для минимизации потери давления.

На данный момент существует только два вида интеркулеров:

  • с воздушным охлаждением: они обладают наиболее простой конструкцией, однако уступают второму типу в эффективности;
  • с водяным охлаждением: наиболее продуктивный вид И, но, за счет сложности установки и эксплуатации, встречается реже.

Подводя итог, можно с уверенностью заявить, что судовой дизель с турбонаддувом в сочетании с интеркулером даст внушительный прирост мощности.

7 заблуждений про автомобили с турбодвигателями

Зачем двигателю турбонаддув? В обычном атмосферном ДВС заполнение цилиндров топливовоздушной смесью происходит за счет разрежения, возникающего при движении поршня вниз. При этом наполнение цилиндра даже при полностью открытой дроссельной заслонке происходит не более чем на 95% — сказывается сопротивление впускного тракта.

А как увеличить объем подаваемой в цилиндр смеси, чтобы получить большую мощность? Нужно нагнетать воздух под давлением. Это и делает турбокомпрессор. Выхлопные газы раскручивают турбину, которая через вал вращает рабочее колесо компрессора. Оно сжимает поступающий снаружи воздух и буквально заталкивает его в цилиндр. Соответственно, больше воздуха, больше топлива, выше мощность. О турбомоторах мы рассказывали не так давно. Продолжим.

Двигатель с турбонаддувом нельзя сразу глушить — отчасти правда

Ни один производитель не запрещает сразу глушить двигатель даже после работы с большими нагрузками. А зря! Если вы двигались с большой скоростью по трассе или преодолевали горные серпантины, то, заехав на парковку, лучше дать двигателю поработать, чтобы турбокомпрессор немного остыл. В противном случае даже лучшее масло может закоксоваться во втулке и уплотнениях вала турбокомпрессора. А если вы, перед тем как припарковаться, ехали медленно, дополнительного времени на охлаждение компрессору не требуется.

Гибридные автомобили не бывают с турбонаддувом — неправда

Несложные и сравнительно недорогие гибридные автомобили чаще комплектуют безнаддувными ДВС, работающими на максимально экономичных циклах Аткинсона. Но такие моторы располагают сравнительно скромной удельной мощностью, поэтому некоторые производители включают в состав гибридных установок турбомоторы. Например, на автомобиле Mercedes-Benz E300de (W213) вместе с электромотором работает турбодизель. А в моторном отсеке BMW 530e стоит 2,0-литровый наддувный бензиновый двигатель от модели 520i. В паре с электродвигателем они выдают мощность 249 л.с.

Турбомоторы нечувствительны к температуре воздуха — неправда

Практически все современные турбодвигатели снабжены охладителями наддувочного воздуха — интеркулерами. Ведь сжимаемый в компрессоре воздух нагревается, плотность воздушного заряда снижается, наполнения цилиндров ухудшается. Поэтому на пути потока воздуха из компрессора во впускной трубопровод устанавливают теплообменник, который снижает температуру наддувочного воздуха. Но эффект от обдува наружным воздухом в жару будет намного меньше, чем в холодную погоду. Недаром стритрейсеры перед заездом кладут на пластины интеркулера сухой лед. Кстати, безнаддувные моторы в холодную и влажную погоду тоже тянут чуть лучше: выше плотность заряда и отодвинут порог детонации.

Турбокомпрессор начинает работать только на больших оборотах — неправда

Турбокомпрессоры начинают вращаться при работе двигателя на минимальном холостом ходу, а с ростом оборотов мотора их производительность растет. Турбояма осталась в прошлом. Благодаря небольшим размерам и облегченной конструкции ротора инерционность турбокомпрессора невелика, и он быстро разгоняется до нужных оборотов. Мало того, современные конструкции имеют регулируемый сопловой аппарат турбины с электронным управлением, благодаря чему турбокомпрессор работает всегда с оптимальной производительностью. Поэтому двигатель уже при небольших оборотах способен выдать максимальный крутящий момент и довольно долго поддерживать его на постоянном значении — это называется «полкой».

Турбомоторы сочетаются не со всеми трансмиссиями — отчасти правда

Многие производители, рапортующие о высочайшей надежности их вариаторов, тем не менее опасаются агрегатировать их с высокомоментными дизельными двигателями. Все же несущая способность ремня ограничена, что и подтверждают практически все существующие комбинации «мотор — коробка».

Что касается бензиновых двигателей, то ситуация не столь однозначна. Чаще всего японские производители ставят вариаторы в паре с бензиновыми атмосферными моторами, у которых пик крутящего момента бывает при 4000–4500 об/мин. Очевидно, ремню в трансмиссии не понравится, когда хороший наддувный агрегат выкатит весь свой немаленький крутящий момент к 1500 об/мин. Дизель максимальный момент выдает на сравнимых оборотах, но обычно он ощутимо выше.

У всех производителей есть простые машины с безнаддувными моторами — неверно

Многие европейские производители (например, Volvo, Audi, Mercedes-Benz и BMW) перестали выпускать автомобили даже самых малых классов с безнаддувными моторами.

А знаете, как определить, есть турбонаддув у двигателя или нет, только просматривая основные технические характеристики?

Если количество литров рабочего объема двигателя, умноженное на сто, ощутимо больше количества лошадиных сил, то двигатель — безнаддувный. Например, мотор рабочим объемом два литра и мощностью 150 л.с — значит, атмосферник.

Времена, когда хондовские моторы рабочим объемом 1,6 л развивали без наддува 160 л.с., давно прошли. Тридцать лет назад такие моторы имели минимальные ограничения по токсичности и крутились до 8000 об/мин. Наддувные моторы располагают значительно большей удельной мощностью. Так, мотор совместной разработки Mercedes-Benz и Renault рабочим объемом 1,33 л, который в том числе устанавливают на массовую Аркану, выдает 150 л.с. А двухлитровый агрегат Volvo — 249 л.с. Бывают редкие исключения, например мотор 1,4 TSI на Поло развивает мощность 125 л.с.

Читать еще:  Что такое угол нагрузки синхронного двигателя

У турбомоторов такой же ресурс, как и у атмосферников — отчасти верно

В последнее время идет выравнивание ресурса наддувных и безнаддувных моторов. Но не из-за того, что «турбо» подтягиются — скорее наоборот. Многие простые атмосферники стали ходить меньше.

До 200 000 км пробега дотягивают немногие. Причин много: требования к экономичности и экологичности, и облегчение конструкции, и экономия производителей на конструкционных материалах. Да и хозяева стали относиться к машинам потребительски. Первым владельцам, ездящим до окончания гарантии, вопросы ресурса неинтересны, а «вторые руки» часто, поездив некоторое время и нарвавшись на ряд отказов, сплавляют машину дальше. А там следы честного пробега, сервисной и ремонтной истории теряются окончательно.

  • В этом материале показано, что действительно большие пробеги могут обеспечить только самые простые, нефорсированные двигатели устанавливаемые на небольшие легковые автомобили.
  • Продлить срок службы узлов и агрегатов автомобиля можно при помощи специальных присадок. Лучше всего себя зарекомендовали продукты от SUPROTEC и VALENA.

Разрушители легенд. Турбонаддув дизеля. Часть №1. Обзорно-болталогическая.

Для чего нужна турбина?

Для того чтобы ПОЛНОСТЬЮ сжечь 1кг горючего(любого углеводородного) нужно около 3,5 кг кислорода. Такое количество кислорода содержится в 15кг воздуха.

Соответственно мощность двигателя напрямую зависит от его «литража». Чем больше воздуха мы сможем загнать в камеру сгорания — тем больше топлива мы сможем спалить — тем больше энергии сможем получить на коленвалу.

Турбокомпрессор выполняет две функции. С одной стороны он позволяет напихать в камеру сгорания гораздо больше воздуха и получить с того же объёма двигателя гораздо больше мощности. С другой стороны — он утилизирует энергию выхлопных газов и реализует цикл с продолженным расширением, который увеличивает общий КПД двигателя.
Если сказать человеческим языком — то ЧАСТЬ работы по сжатию воздуха в турбодизеле перекладывается с поршневой на турбокомпрессор. Турбокомпрессор работает на энергии выхлопных газов(которые обычно просто выбрасываются в атмосферу) — соответственно непосредственно сам двигатель получает возможность больше мощности передавать на колёса.

МЕХАНИЧЕСКИЕ нагрузки на кривошипно-шатунный механизм при турбировании ДИЗЕЛЯ возрастают незначительно — это позволяет не сильно морочаться вопросами прочности и ресурса турбируемого атмосферника.

Казалось бы всё замечательно. НО!

Разработка современных двигателей уже давно пляшет от экологического законодательства, которое напрямую определяет режимы сгорания топлива в камере сгорания. На НОМИНАЛЬНОМ(не максимальном! это важно!) режиме работы двигателя в связке с турбиной процессы сгорания доводятся до некоего оптимума. При этом некоторые характеристики конструкции непосредственно самого турбодвигателя получаются заметно отличающимися от его атмосферного аналога. В первую очередь отличается степень сжатия — в цилиндры воздуха поступает больше за счёт турбокомпрессора, но поршнями этот воздух сжимается слабее — фактическое давление в конце такта сжатия практически одинаковое получается и у атмосферника и у турбодвигателя.
На НОМИНАЛЬНОМ РЕЖИМЕ турбокомпрессора.
Потому ничего там в турбодизеле лучше не сгорает. Сказки дедушки Ергена. Лучшее сгорание — больше окислов азота, а это недопустимо. Потому процессы сгорания одинаковы на НОМИНАЛЬНОМ РЕЖИМЕ и однозначно хуже у турбодизеля на всех остальных режимах. Почему?

Давайте посмотрим подробнее, что происходит с турбодизелем на ВСЕХ режимах его работы и насколько отличаются его характеристики от атмосферного дизеля.

В интернет-обзорах обычно втюхивают для сравнения два типа дизелей одинакового ОБЪЁМА. Мне не кажется такое сравнение корректным — это как сравнивать… трёхлитровый двигатель и… пятилитровый…
Я ни разу не встречал сравнения турбодизеля и атмодизеля с разницей в объёме ОБРАТНО-пропорциональной заявляемому с трепетом превосходству турбодизеля. И это неспроста.
Я потому и предлагаю сравнить три дизеля.
Они стары как говно мамонта, но до сих пор бодры и распространены.

Первый(2L) — атмосферный вихрекамерный дизель-прародитель.
Два других — форсированные потомки ОДИНАКОВОЙ МАКСИМАЛЬНОЙ МОЩНОСТИ.

НО!
Один(2LTE) — форсировали турбиной, а другой(5L) — простым наращиванием объёма:
2L… … …22:1…2446куб.см… 85лс 4000RPM…165Н/м 2400RPM…Атмо
2LTE… …21:1…2446куб.см… 97лс 4000RPM…221Н/м 2400RPM…Турбо
5L… … …22:1…2986куб.см… 97лс 4000RPM…192Н/м 2400RPM…Атмо

Эта линейка удобна тем, что это практически один и тот же агрегат до последнего болтика. Потомки 2L имеют одинаковую максимальную мощность и с точки зрения обычного автопотребителя это должны быть абсолютно равнозначные двигатели. Есть куча реальных водителей, попробовавших и то и другое во всех мыслимых и немыслимых режимах — они не дадут соврать. Нихрена это не равнозначные двигатели, хоть МАКСИМАЛЬНАЯ мощность у них и одинаковая.
Вот и давайте немного «поэксплуатируем» эти ДВА дизеля-потомка в реальных условиях:

1). Запуск и холостой ход.
Турбодизель отличается от атмосферного аналога двумя вещами — пониженной степенью сжатия и пониженным литражём. И первое и второе дополняется турбиной. НО! Только на НОМИНАЛЬНОМ РЕЖИМЕ! При работе на холостом ходу и сам турбонагнетатель и интеркулер(если есть) и гораздо более протяжённый впускной коллектор оказывают только лишнее сопротивление. При запуске(особенно на морозе) пониженная степень сжатия турбодизеля способствует худшим пусковым свойствам. Меньший литраж турбодизеля подразумевает несколько меньший расход топлива на холостом ходу — но за счёт меньшей степени сжатия и высоких насосных потерь во впускной системе реальный расход топлива редко отличается заметно.
Итог сравнения — паритет.

2). Режим низких нагрузок и низких оборотов.
Этот режим также характеризуется СОПРОТИВЛЕНИЕМ всего впускного тракта и РАЗРЯЖЕНИЕМ на впуске. Поскольку турбодизель имеет меньший литраж и степень сжатия — то мы имеем на этом режиме НАМНОГО(до 30%) МЕНЬШИЙ момент турбодизеля, чем у атмосферного аналога.
Итог сравнения — явный и несомненный проигрыш турбодизеля.

3). Режим средних нагрузок и оборотов.
Этот режим характеризуется выходом турбонагнетателя на рабочий режим — создание избыточного давления во впускном тракте. Но избыточное — это ещё не НОМИНАЛЬНОЕ. До тех пор, пока давление турбонагнетателя не приблизится к НОМИНАЛЬНОМУ — характеристики турбодизеля будут отставать от характеристик атмосферного аналога.
Из приятных новостей — турбина потихоньку начинает вступать в процесс утилизации энергии выхлопных газов и по мере роста создаваемого ей давления общий КПД двигателя стремительно растёт. Соответственно падает расход топлива по сравнению с атмосферным дизелем.
Итог сравнения — по мере приближения к номинальному режиму характеристики дизелей сближаются. Турбодизель всё так же обладает меньшей мощностью, но и потребляет чуть меньше топлива.
Есть ещё один фактор, который обычно выпускают из поля зрения подобных сравнений. Это инерционность турбонагнетателя. Приотпустив даже на мгновение педаль газа — мы не получим вновь прежнюю мощность от двигателя, пока турбонагнетатель опять не выйдет на режим. Турбояма на этом режиме очень досаждает.
Особенно на высокогорье.

4). Номинальный режим.
Именно на этом режиме проявляются все плюсы турбодизеля. К сожалению на дизеле с примитивным турбонагнетателем этот участок очень узкий — не более 500-700 оборотов. Именно в точке достижения номинального давления турбонагнетатель и обладает максимальным КПД. Потому и двигатель в этой ТОЧКЕ(для 2LTE это приблизительно 2400 оборотов) обладает максимальным превосходством перед атмосферным аналогом в плане расхода топлива. Турбонагнетатель с изменяемой геометрией имеет более широкую полку максимальной эффективности, но обычно она смещена в сторону низких оборотов.
Самый большой плюс — в районе НОМИНАЛЬНОГО режима МОМЕНТ турбодизеля заметно превосходит момент атмосферного аналога. Т.е. и МОЩНОСТЬ турбодизеля на ЭТОМ режиме будет ВЫШЕ мощности атмосферника.
Правда КОЭФФИЦИЕНТ ПРИСПОСОБЛЯЕМОСТИ у турбодизеля по моменту — меньше на 4%, а по оборотам — почти на 8%, соответственно турбодизель ещё хуже, чем даже атмосферный дизель(а уж тем более бензинка) подходит для транспортных средств.
Итог сравнения — явный выигрыш турбодизеля как в плане МОМЕНТА, так и в плане расхода. Отрыв определяется характеристиками турбонагнетателя. Правда «явный» выигрыш — это не значит «большой». Конкретно 2LTE имеет МАКСИМАЛЬНЫЙ момент на 13% больше, чем у 5L и на 25% больше, чем у 2L.
Современные турбодизеля с твинтурбо и эффективным интеркулером могут иметь момент(а потому и мощность) на этом режиме в 1,5-2 РАЗА(!) выше чем у атмосферника. И CommonReal здесь совершенно ни при чём — весь прирост тяги обуславливается исключительно турбонаддувом…

Читать еще:  Я поставил двигатель от опель на ваз

За счёт высокого количества выхлопных газов турбонагнетатель на ЭТОМ режиме «скисает» не сильно даже при полностью отпущенной педали газа и турбояма потому выражена слабо.

5). Сверхноминальный режим — режим близкий к максимальной мощности и максимальным оборотам.
По мере увеличения количества выхлопных газов — часть их начинает перепускаться в обход турбонагнетателя перепускным клапаном — соответственно всё бОльшая часть энергии выхлопных газов перестаёт утилизироваться.
Да и непосредственно сам турбокомпрессор(крайне нелинейный агрегат) стремительно теряет КПД. За счёт всё бОльшего сопротивления турбокомпрессора давление перед турбинным колесом стремительно нарастает — выхлопные газы уже не самостоятельно покидают цилиндр, а их бОльшую часть приходится выдавливать поршнем:

Продувка цилиндров стремительно ухудшается — всё больше отработанных газов остаётся в камере сгорания, количество кислорода снижается, горение затягивается, температура растёт. Получается некая аналогия системы ЕГР. Хоть сама система ЕГР и отключается на этих режимах — это помогает слабо. Турбодизель настолько стремительно теряет момент с ростом нагрузки и оборотов, что на оборотах максимальной мощности сравнивается с атмосферником.
Повышенное давление во впускном коллекторе перестаёт играть положительную роль ПОЛНОСТЬЮ. И даже хуже — затраты на создание этого давления никуда не деваются — потому турбодизель потребляет намного(чуть ли не в разы) больше топлива и потому намного сильнее греется, чем его атмосферный аналог. Шутка ли — у турбодизеля на впуске под 1 атмосферу избытка, у атмосферника на впуске — разрежение на уровне 0.2-0.3атм, а мощность вырабатывается ОДИНАКОВАЯ.
Если же сравнить максимальную мощность атмосферника и турбодизеля одинакового ОБЪЁМА — то выигрыш у турбодизеля всего 12%.
Итог сравнения — очередной провал турбодизеля.

Итак. Что мы имеем в сухом остатке?

Минусы:
БОльший вес и сложность турбодизеля.
Меньший моторесурс и надёжность. Повышенная требовательность к качеству смазочных материалов.
БОльший расход и склонность к перегреву под повышенной нагрузкой.
Высокая нелинейность и латентность мощностных характеристик.
Меньший коэффициент приспособляемости к нагрузке.

Плюсы:
На номинальном режиме турбодизель кушает чуть меньше топлива, при этом обладает небольшим запасом крутящего момента. Потому при необходимости может выдать до 15-20% момента больше, чем атмосферник ОДИНАКОВОЙ МАКСИМАЛЬНОЙ МОЩНОСТИ(и до 20-35% больше чем атмосферник ОДИНАКОВОГО ОБЪЁМА), правда уже при непропорционально бОльшем расходе топлива и тепловыделении.

Эта непропорциональность вызвана не только «насыщением» турбонагнетателя, но и неким «насыщением» топливной аппаратуры. Дизельная топливная аппаратура, как и всё в современном двигателе, заточена под НОМИНАЛЬНЫЙ режим и экологию. Потому впрыск дизельного топлива осуществляется настолько медленно, насколько это возможно. И точкой оптимизации является НОМИНАЛЬНЫЙ режим. Но после превышения номинального режима длительность впрыска(а в существующих ПЛУНЖЕРНЫХ топливных системах количество впрыскиваемого топлива определяется именно ВРЕМЕНЕМ впрыска) становится настолько продолжительной, что значительная часть топлива впрыскивается в камеру сгорания турбодизеля намного позже оптимального момента и больше греет двигатель, чем влияет на его мощность. Этого ПРИНЦИПИАЛЬНОГО недостатка лишены топливные аппаратуры CommonRail, но в реальности двигателя с CommonRail должны соответствовать ещё более жёстким экологическим нормам и потому топливо впрыскивают ещё дольше для борьбы с окислами азота…
При этом выделяется херова туча сажи, которую улавливают сажевым фильтром. Выгорает эта сажа даже в присутствии катализаторов не на всех режимах, потому CommonRail осуществляет дополнительный подвпрыск топлива для поддержания высокой(до +600С) температуры выхлопа. Именно поэтому расход дизелей с CommonRail не настолько низок, как этого следовало бы ожидать…

Конечно, я мог бы сравнивать дизеля одинакового объёма. Тогда недостатки турбодизеля были бы заметно скромнее, а достоинства — выпяченнее. К сожалению жизнь показывает, что при всём прогрессе на замену 4,2 литровому 6-горшковому атмосфэрнику нам почему-то предлагают не 6,5 литрового V8 дизельного твинтурбо, а втюхивают 3-ёх литрового турбозадохлика…
У задохлика крутой нрав и высокая потенция высокий потенциал. «Но пушки есть пушки», как говаривал Рафаэль Саббатини… Объём есть объём и никакая турбина его не переплюнет. Особенно на автомобиле, предназначенном для движения в сложных дорожных условиях.
Потому следующие мои статьи будут посвящены тому — как сделать из задохлика(ZD30) человека.
Дома. На коленке.

Пока же я предлагаю в качестве домашнего задания сравнить аж целых пять реинкарнаций всеми нами любимого ZD30:

Первый(ZD30DD) — атмосферный прямовпрысковый дизель-прародитель:
ZD30DD…18,5:1…2953куб.см…105лс@3800RPM…230Nm@2000RPM

Второй(ZD30DDT) — турбо-вариант с VGT-турбиной
ZD30DDT…18:1…2953куб.см…148лс@3400RPM…314Nm@2000RPM

Третий(ZD30DDTi) — турбо-вариант с VGT-турбиной и интеркулером
ZD30DDTi…18:1…2953куб.см…170лс@3600RPM…353Nm@1800RPM

Четвёртый(ZD30 CR) — COMMON RAIL турбо-вариант с VGT-турбиной и интеркулером
ZD30 CR…18:1…2953куб.см…150лс@3400RPM…350Nm@1200-2800RPM

Пятый(ZD30 CR TTi) — COMMON RAIL TWIN-турбо-вариант c интеркулером
ZD30 CR TTi…18:1.2953куб.см…170лс@2600PRM…540Nm@1400-2200RPM

Очень наглядно прослеживается влияние турбины, интеркулера и COMMON RAIL.
Как видно по характеристикам — нулевой эффективностью обладает только COMMON RAIL.

VGT-турбина с интеркулером обеспечивают уже полуторократное(прогресс на месте не стоИт) преимущество в моменте над атмосферным прародителем.
Вероятно 4,5 литровый атмосферник ещё можно сделать сопоставимым по массе и размерам? Неважно…
Форсированный TWIN-турбо-вариант c интеркулером обладает моментом уже 540Nm(удвоенным по сравнению с атмосферником) начиная уже с 1200-1400 оборотов и таскает восьмитонник Nissan NT500:

Мне было бы очень интересно посмотреть на поршня этого TWIN-турбового ZD30 — они такие же облегчённые, как и на обычном ZD30? Если такие же — значит перегревается и разрушается обычный задохлик исключительно благодаря косякам в системе охлаждения…

Для конкуренции по максимальному моменту понадобится уже 7-ми литровый атмосферник…
Так что турбина — это бОльшая половина СОВРЕМЕННОГО дизеля и от этого факта никуда уже не деться.
Современный турбодизель с высоким наддувом(3-4 бар избытка) за счёт современных материалов и технологий выглядит намного более выигрышно, чем рассмотренные выше модели 90-ых и 2000-ых годов.
Всё чаще мне попадаются обзоры современных дизелей с объёмом уже около 2(!) литров и характеристиками 4-5-6 литровых старых дизелей. Догадайтесь с трёх раз — за счёт чего они имеют заявленный крутящий момент?

Кому интересно — почитайте и, например, вот это — www.drive2.ru/l/490025395538624709/
со ссылками. Даже гадать отказываюсь — сколько они вдули в этот дизель, что степень сжатия пришлось снижать до 14…
Подобные статьи примечательны ещё и тем, что все теоретические выкладки в них — чистейший бред и откровенные подтасовки. Судя по всему — это теперь трэнд.

Самое интересное — как шарикомалят со степенью сжатия. Но про степень сжатия вплотную поговорим в другой раз.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector