Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Оптимизация выбора компонентов для транспортных средств на водородных топливных элементах

Оптимизация выбора компонентов для транспортных средств на водородных топливных элементах

Оптимизация выбора компонентов для транспортных средств на водородном топливе

Чак Хейз (Chuck Hayes), главный инженер

Во всем мире в сектор транспортных средств на водородном топливе и соответствующую инфраструктуру вкладываются значительные инвестиции.

Почему? По мере того как производители транспортных средств стремятся все больше и больше повышать эффективность и снижать выбросы, производство и применение водородных топливных элементов становится все более привлекательным. Транспортные средства на водородных топливных элементах используют газообразный водород и кислород для вырабатывания электричества в топливном элементе; электричество приводит в действие электродвигатель, во время работы которого не образуются вредные выбросы, при этом мощность и крутящий момент двигателя позволяют применять его в тяжелых условиях эксплуатации.

Это перспективная технология, и рынок быстро и активно развивается. Правительства и ведущие компании отрасли направляют свои силы на устранение барьеров к внедрению технологии и реально вкладывают средства в поддержку и развитие транспорта на водороде. Что касается компонентов, то мы работаем над разработкой подходящих решений для производства и применения водородных топливных элементов, которые позволили бы использовать весь потенциал этой технологии как в отношении самих транспортных средств, так и в отношении активно формирующейся инфраструктуры, которая потребуется при масштабном внедрении технологии.

Для обеспечения надежной работы транспортных средств и инфраструктуры необходимо обращать внимание на ряд важных факторов при выборе компонентов для транспортных средств на водородном топливе и составлении технических условий для их производства. Необходимо принимать во внимание следующее.

Материал имеет значение. Предотвращение коррозии имеет важное значение при любом применении трубных обжимных фитингов, но влияние водорода — это особый, уникальный вызов. Присутствие водорода может приводить к охрупчиванию нержавеющей стали 316, сплава, который широко используется для изготовления фитингов, клапанов и трубок, в том числе тех, которые часто используются в компоновке транспортных средств на водородном топливе.

В частности, данное явление имеет место из-за того, что водород состоит из очень маленьких молекул — настолько маленьких, что водород может проникать в стенки кристаллической решетки материала, разрывая молекулярные связи и нарушая целостность материала. В сущности, в присутствии водорода некоторые марки нержавеющей стали могут охрупчиваться и вести себя скорее как чугун: становиться очень хрупкими и предрасположенными к образованию трещин.

Следовательно, разработчики инфраструктуры для транспортных средств на водородном топливе должны обращать особое внимание на состав нержавеющей стали. Высокое содержание хрома и никеля может предотвратить водородное охрупчивание благодаря повышению пластичности и стойкости к коррозии. Согласно требованиям Американского общества по испытанию материалов (American Society for Testing and Materials, ASTM) нержавеющая сталь 316 должна содержать как минимум 10 % никеля, но для водородных систем лучше подходит нержавеющая сталь 316 более высокого качества с содержанием никеля 12 %. Компания Swagelok использует нержавеющую сталь с содержанием никеля как минимум 12 %.

Работа под давлением. В жидкостных и газовых системах отсутствие утечек крайне важно. Однако применение в транспортных средствах на водородном топливе и соответствующей инфраструктуре требует особого внимания при выборе компонентов для соединений и составлению технических условий для их производства.

Прежде всего следует отметить, что водород находится под высоким давлением; чем выше давление, тем больше дальность следования транспортного средства. На сегодняшний день в транспортных средствах на водородном топливе газ находится под давлением 350 или 700 бар (5000 или 10 200 фунтов на кв. дюйм) в зависимости от требований области применения. Например, на многих транспортных средствах, совершающих поездки на короткие расстояния, используется давление 350 бар (5000 фунтов на кв. дюйм), когда каждое транспортное средство может каждый вечер вернуться на центральную станцию для заправки. В транспортных средствах, совершающих поездки на более длинные расстояния, например на грузовиках, используется давление 700 бар (10 000 фунтов на кв. дюйм), которое обеспечивает дальность следования до 1000 км (400 миль). Чем выше давление, тем должна быть выше надежность компонентов, и традиционные варианты исполнения просто исключены.

Виброустойчивость также крайне важна. Наряду с тем что виброустойчивость важна в промышленных системах, фитинги и соединения для применения в водородных системах должны быть надежными и выдерживать повторяющиеся и постоянные вибрации, связанные с движением транспортного средства. К примеру, соединения на основе фитингов с конусом и резьбой выполняются вручную. Качество подготовки трубок зависит от лица, осуществляющего монтаж, а водород не прощает несовершенства. Может происходить утечка крохотных молекул газа через ничтожно малые зазоры, и даже самые незначительные утечки могут стать большой проблемой. Только современные надежные фитинги, такие как фитинги Swagelok серии FK, могут обеспечить надежную работу.

Компоненты для конкретных областей применения. Несмотря на общие принципы устройства транспортных средств на водородном топливе, у разных транспортных средств разные требования к конструкции и компонентам. Возьмем, к примеру, городские автобусы, наиболее перспективный вид транспорта для применения энергии водородных топливных элементов. Из-за того, что у них баки для хранения топлива размещаются на крышах, топливная система автобуса требует наличия некоторой гибкости по сравнению с транспортными средствами для перевозок на дальние расстояния; соответственно, такую гибкость могут обеспечить шланги, способные выдержать давление 350 бар (5000 фунтов на кв. дюйм), а не система жестких стальных трубок.

В этом случае важно, чтобы выбор шлангов осуществлялся по правильным критериям. По тем же причинам, по которым в водородных системах следует рассматривать использование трубок и фитингов из высококачественной нержавеющей стали 316, шланги с полимерной центральной трубкой и металлической оплеткой не подойдут для использования в автобусах на водородном топливе. Разработчики должны подходить к выбору шлангов с учетом тех же факторов и выбирать шланги из высококачественных материалов, подходящих для конкретных областей применения.

Надежное техническое обслуживание. Стремясь к максимальному использованию потенциала транспортных средств на водородном топливе, разработчики и производители должны стремится к сотрудничеству с поставщиками компонентов, у которых есть обширный опыт в этой сфере.

Наши специалисты работают с газовыми системами, в том числе и с водородом, на протяжении всей истории нашей организации. Наш опыт в обеспечении работоспособности компонентов и глубокое знание материалов в сочетании с надежным обслуживанием и технической поддержкой по всему миру могут помочь производителям транспортных средств на водородном топливе не упустить новые и растущие возможности в этой сфере.

Хотите узнать больше? Свяжитесь с компанией Swagelok уже сегодня и узнайте, как мы можем помочь вам создать надежные транспортные средства на водородном топливе и построить инфраструктуру для них.

Статьи по Теме

Реализация проекта водородных топливных элементов Luxfer

Благодаря духу сотрудничества в Swagelok и желанию компании инвестировать в сертификат EC-79 предприятие Luxfer получило возможность создавать системы подачи топлива, приводящие в движение 144 автобуса на водородных топливных элементах. Узнайте, как высокий уровень ответственного отношения в Swagelok Manchester помогает предприятию Luxfer развивать инновации.

Читать еще:  Что такое эбу на двигателе bmw

Контрольный перечень мер безопасности для промышленных жидкостных и газовых систем

Используйте данные рекомендации, чтобы повысить уровень безопасности своих промышленных жидкостных и газовых систем.

АВТОМОБИЛЬ НА ТОПЛИВНЫХ ЭЛЕМЕНТАХ

Автомобиль вошел в нашу жизнь так широко, что породил немало проблем, многие из которых требуют безотлагательного решения. Наиболее серьезные из них — шум и загрязнение воздуха. Предсказывают, что через 20-30 лет нефть кончится. Естественно, возникает вопрос: чем заменить нефтяное топливо, чтобы сделать автомобиль безвредным для окружающей среды, а заодно и сберечь нефть для более важных целей, чем работа двигателя внутреннего сгорания?

В США серьезная борьба с загазованностью атмосферы началась с 60х годов прошлого столетия, в Европе — в 80-х. Сейчас принятые нормы токсичности (содержание вредных веществ в отработанных газах) автомобилей в Западной Европе и в США почти не различаются. Последние отечественные модели автомобилей тоже соответствуют принятым во всем мире нормам.

Основные компоненты, с которыми приходится бороться, — окись углерода, двуокись углерода, углеводороды и окислы азота. В зависимости от режима работы двигателя, они поступают в атмосферу в разных количествах и в разных пропорциях. Выполнить нормы, соответствующие стандартам ЕВРО-1, ЕВРО-2, ЕВРО-3, ЕВРО-4, технически вполне возможно, дозируя поступление топлива в цилиндры двигателя и очищая выхлопные газы каталитическим нейтрализатором. Нейтрализатор начинает работать при температуре 600 о С. Нагревается он выхлопными газами. На это уходит время, в течение которого выхлопные газы полностью еще не очищаются.

Казалось, электромобиль, который гарантирует тишину и чистый воздух, — наилучший выход из сложившейся ситуации. Идея его создания была особенно популярна в 70е годы, когда прорабатывалась американская программа нулевой токсичности. Но на пути экологически чистой машины появились препятствия, которые помешали ей стать единственным и окончательным решением проблемы.

До сегодняшнего дня нет способа компактного хранения электрической энергии, который позволял бы без подзарядки проезжать столько же, сколько можно проехать на одной заправке бензобака. И если представить себе электромобиль, способный пробежать 600 км, то он сможет везти только аккумуляторы, а время их заправки составит восемь часов. Следует также отметить, что стоимость этих аккумуляторов в несколько раз превосходит стоимость самого автомобиля. Пытались вместо аккумуляторов применить конденсатор ные батареи. Они быстро заряжаются, но так же быстро и разряжаются.

В настоящий момент по земле ездят несколько сотен миллионов автомобилей. Представьте, что будет, если их все станут заряжать одновременно. Откуда взять столько электроэнергии? Чтобы перевести все автомобили на аккумуляторы, необходимы электрические мощности, равные тем, которыми сегодня располагает человечество. А это значит, что надо как минимум удвоить производство электроэнергии.

Для снижения суммарной токсичности автомобилей американцы решили «разбавлять» автомобили с двигателями внутреннего сгорания электромобилями. Согласно этой идее, часть выпускаемой продукции каждого автопроизводителя должны составлять электромобили. Таков следующий шаг по уменьшению токсичности.

Но есть и другое решение. 200 лет назад был изобретен генератор, в котором водород, соединяясь с кислородом, производит воду, а «побочным» продуктом реакции становится электричество. Принцип его работы, грубо говоря, таков: имеется некая пластина, обладающая свойством пропускать протоны и не пропускать электроны. С каждой ее стороны — два электрода — положительный (анод) и отрицательный (катод), связанные между собой в электрическую цепь. С одной стороны пластины подается водород, с другой — кислород. Катализатор, нанесенный на пластину, активирует реакцию расщепления водорода на протон и электрон. Протон проходит через пластину и, соединяясь с кислородом, дает воду. А электрон уходит в подсоединенную электрическую цепь.

Водородно-кислородные топливные элементы были применены на американских и российских лунниках, на «Шаттле» и «Буране». Как часто случается, космические технологии нашли применение и на земле, в автомобильной промышленности.

Топливный элемент, призванный заменить двигатель внутреннего сгорания, состоит из множества ячеек (маленьких генераторов). Напряжение каждой ячейки — от 0,6 до 1,0 В. Соединив ячейки последовательно, можно получить необходимое напряжение. Сегодня мы располагаем технологиями, позволяющими делать ячейки толщиной в полтора миллиметра. Значит, можно добиться того, что масса и габариты новой топливной установки останутся теми же, что и у двигателя внутреннего сгорания равной мощности.

Большая проблема — цена топливной установки (сегодня она примерно в 100 раз дороже двигателя внутреннего сгорания), потому что в ее изготовлении используются дорогие материалы и очень деликатные технологии. Без кропотливой работы по материалам и конструкции, а главное — по созданию технологии массового производства задачу не решить.

Чтобы топливная установка заработала, нужно разместить на борту автомобиля баллоны с газообразным водородом и кислородом. Отсюда — сложности. Во-первых, баллоны с газом занимают много места, а во-вторых, возить их в непосредственной близости друг от друга небезопасно. Поразмыслив, ученые решили, достаточно возить с собой только баллон с водородом, а кислород можно взять из воздуха.

На Волжском автомобильном заводе работы по автомобилям на топливных элементах были начаты в 2000 году, а в 2001 году собран первый автомобиль на топливных элементах — «Антэл-1». Скорее это был не автомобиль, а макет или лаборатория на колесах. Собран он из агрегатов, разработанных ранее для «Бурана», электромобилей и автомобилей ВАЗ и адаптированных для совместной работы на автомобиле.

«Антэл-1» собран на базе пятидверной Нивы. В салоне по-прежнему осталось пять мест. Энергоустановка, работающая на водороде и кислороде, мощностью 17 кВт вырабатывала ток напряжением 120 В. Впоследствии ее заменили на более мощную — 25 кВт. Максимальная скорость была соответственно 70 и 85 км/ч. Емкость баллонов для водорода и кислорода составляла 60 и 36 л, давление газов — 250 атм. Пробег такого автомобиля на одной заправке — 200 км. Энергоустановка разместилась в багажнике автомобиля, а системы управления, тяговый двигатель и стартовая аккумуляторная батарея — под капотом. По сравнению с базовой моделью масса автомобиля увеличилась на 250 кг.

Автомобиль «Антэл-1» демонстрировался на 5-м Московском международном автосалоне, и после его закрытия на Дмитровском автополигоне были проведены тестовые заезды для журналистов.

Работа с «Антэл-1» показала, что на достаточно быстрый разгон первому автомобилю на топливных элементах не хватает мощности. Для того чтобы исключить проблему, решили использовать буферный источник тока. Им стала аккумуляторная батарея. Буферная система работает по принципу: принять — выбросить.

Для нового автомобиля «Антэл-2» была разработана никель-металлгидридная аккумуляторная батарея с высокой удельной энергоемкостью ( емкость батареи — 10 А . ч) и напряжением 200 В, способная быстро заряжаться и разряжаться. Новая батарея позволила кратковременно увеличивать мощность при разгонах почти в два раза за счет энергии, «принятой» при торможении. Когда происходит торможение автомобиля, то кинетическая энергия превращается в «Антэл-2» в электрическую. Она заряжает аккумуляторную батарею. При разгоне энергия буферной аккумуляторной батареи подается на тяговый электродвигатель, дополняя энергию генератора.

Тормозная система автомобиля тоже претерпела изменения. На автомобиле «Антэл-2» установлен компактный электроусилитель тормозов, благодаря которому управлять автомобилем стало гораздо легче.

Читать еще:  Грм двигателя цепь на каких автомобилях

«Антэл-2» проезжает без подзарядки 350 км. На его борту предусмотрена система хранения и подачи водорода, оснащенная тремя сверхлегкими и прочными баллонами по 30 л. Водород в них находится под давлением 400 атм.

На то, чтобы закачать в 60-литровый баллон (на «Антэл-1») водород под давлением 250 атм, уходило два часа. Это никого не устраивало. Но если не закачивать газ в пустой баллон, а дать ему туда перетечь из некой емкости, в которой он хранится под определенным (необходимым и постоянно поддерживаемым) давлением, то на всю процедуру уйдет 5-10 минут. Именно такая технология внедрена на «Антэл-2». Сейчас мы строим опытную заправочную станцию.

В «Антэл-1» очень много времени уходило и на запуск установки. Чтобы автомобиль тронулся с места, нужно было ждать около полутора часов, пока генератор разогреется до 60 о С (на полную мощность он выходит при 95 о С). Время запуска автомобиля «Антэл-2» удалось сократить до 10-15 минут благодаря специальным нагревателям, установленным прямо в генератор. Питаются они от буферной батареи. При достижении температуры 60 о С включается генератор, который, работая, сам выделяет тепло; таким образом, время выхода на максимальную мощность сокращается.

С самого начала было понятно, что возить в непосредственной близости баллоны с водородом и кислородом опасно, к тому же они занимают много места и требуют заправки. Поэтому задача перевести работу электрохимического генератора кислорода на воздух ни у кого не вызывала сомнения. Во втором автомобиле на топливных элементах мы ее решили: «Антэл-2» укомплектован первым отечественным щелочным водородно-воздушным генератором на топливных элементах напряжением 240 В и мощностью 25 кВт. Система оснащена компрессором, способным подавать 100 кг воздуха в час в батарею топливных элементов под давлением 3,3 атм.

Так как в устройстве генератора используется щелочь — едкий калий (им пропитывается пластина, разделяющая водородную и воздушные полости), пришлось разработать систему очистки воздуха (до тысячных долей процентов) от углекислого газа, дабы избежать реакции превращения щелочи в соль.

Еще для автомобиля «Антэл-2» разработан новый тяговый электродвигатель переменного тока максимальной мощностью 90 кВт, напряжением 200-300 В, кпд более 90% и массой 30 кг (электродвигатель «Антэл-1» имел показатели соответственно: 25 кВт, 120 В, 75% и 68 кг).

Остается отметить, что «Антэл-2» представляет собой пятиместный «Универсал» с полноразмерным багажником (базовой моделью послужила ЛАДА 111). А все узлы и системы энергоустановки разместились под полом и в подкапотном пространстве.

Работа над следующим автомобилем на топливных элементах уже идет. В первую очередь вместо газобаллонного хранения водорода на новом автомобиле будет установлен топливный процессор для получения водорода из бензина на борту автомобиля. Это позволит увеличить пробег на одной заправке до 900-950 км. Испытания «Антэл-2» покажут и другие направления, в которых следует работать.

Сегодня весь мир работает над созданием чистых автомобилей, в которых топливом служит водород. Но путь этот — не единственный. Перейти на один вид транспорта не удастся, да и не нужно. Для разных целей должны использоваться разные машины. Например, если на аккумуляторном электромобиле развозят по магазинам города хлеб и колбасу, а водитель, закончив работу, отправляется отдыхать, то длительная подзарядка аккумуляторов никому не повредит. А где подзаряжаться? Французы и швейцарцы уже решают этот вопрос. На любой бензозаправке есть розетка: включаешь в нее разъем, опускаешь монету и заряжаешь электромобиль. Такие же розетки есть во дворах жилых домов. Есть много ситуаций, в которых выгодно и экономично использовать именно этот вид транспорта. Электромобиль нужен для ближних поездок, а в гараже должен стоять еще и автомобиль (может быть, водородный) на «дальнюю дорогу».

Хочу воспользоваться случаем, чтобы поблагодарить наших партнеров по работе над созданием автомобилей на топливных элементах с Уральского электрохимического комбината (г. Новоуральск), Уральского электромеханического завода и из Научно-производственного объединения «Автоматика» (г. Екатеринбург), Научно-исследовательской лаборатории двигателей (г. Рыбинск), ВНИИ экспериментальной физики (г. Саров), Института катализа Сибирского отделения РАН (г. Новосибирск), Аккумуляторной компании «Ригель» (Санкт-Петербург), Ракетно-космической корпорации «Энергия» (г. Королев).

Кандидат технических наук, профессор Г. Мирзоев,
советник вице-президента ОАО «АВТОВАЗ» по техническому развитию.
Записала А. МАГОМАЕВА.

Автомобили на топливных элементах — чистая энергия с «водяным выхлопом»

Автомобили на топливных элементах — чистая энергия с «водяным выхлопом»

Глобальная разработка автомобилей на топливных элементах началась еще в середине 90-х годов. Причиной поиска альтернативного топлива на экологически чистых компонентах, стал энергетический кризис и начало введения новых стандартов выброса в атмосферу углекислого газа. Возможности единственного эко транспорта этого периода — электромобилей, были крайне ограничены: малый запас хода, длительная зарядка батарей и дороговизна комплектующих подталкивали производителей к поиску других способов производства чистой энергии, которая могла бы приводить автомобили в действие.

Изначально, основным топливным элементом был выбран водород. Его химические свойства, распространенность в природе, экологичность предоставляли разработчикам большие перспективы.

Автомобили на водороде, могли бы проезжать такие же расстояния, как и машины с ДВС, иметь схожую скорость и мощность.
Сложность состояла в том, что нужно было создать соответствующий двигатель и направить энергию водорода в нужное русло.

Как функционирует двигатель на топливных элементах

Определить, кто первым изобрел двигатель внутреннего сгорания, работающий на водороде довольно сложно. Если говорить откровенно, то это сделал еще в начале 19 века, французский естествоиспытатель Франсуа де Риваз, который производил водород электролизом воды. Что касается современности, то автомобили на водородном топливе появились у крупных производителей практически в одно и то же время, а их базовые технические характеристики были во много одинаковы.

Принцип работы и типы двигателей на топливных водородных элементах имеют схожую с электромобилями модель работы, однако кардинально отличаются способом создания энергии приводящей двигатель и автомобиль в движение.

Схема работы автомобиля на топливных элементах

  1. Контроль мощности.
  2. Двигатель.
  3. Батареи.
  4. Водородный баллон.
  5. Аккумулятор.

Если описывать принцип работы двигателя на топливных элементах простым языком, то прежде всего стоит пояснить, что «приготовление» самого топлива, то есть движущей силы происходит непосредственно внутри «топливного бака», ведь создание энергии в установках на топливных элементах целиком основано на происходящих в них физико-химических процессах.
Начинается все с того, что в корпус установки помещается проводящая исключительно протоны мембранная перегородка, которая выполняет функцию разделителя анодной и катодной камер. В процессе работы происходит обмен реактивами, в анодный отсек подается водород, а в отдел с катодом кислород.

Электроды установки покрывают усиливающим реакции катализатором, зачастую им выступает платина. Взаимодействие с катализатором приводит к потере водородом своих электронов. Параллельно сквозь мембрану начинается движение протонов к катоду, которые под влиянием катализатора (платины) связуются с электронами. Результатом реакции является образование воды, а освободившиеся электроны из анодного отсека движутся по электроцепи подсоединенной к мотору, образуя энергию. То есть, физико-химическая реакция водородных элементов преобразуется в чистый электрический ток, с водой в качестве «выхлопа».

Читать еще:  Что такое контрактный двигатель или акпп

Заправка и обслуживание автомобилей на топливных элементах

Расчетной единицей водородного топлива служит килограмм. Заправка автомобилей водородом имеет три формата.

  1. Мобильные станции.
  2. Стационарные станции.
  3. Домашние станции.

Что интересно, практически каждая из станций может производить водород самостоятельно, к примеру, домашний тип производит топливо в любое время путем электролиза воды. Такая станция может вырабатывать до 1000 кг водорода в год, чего вполне хватает на заправку двух авто.

Заправка автомобиля водородом на станциях происходит привычным для нас образом. Весь процесс отнимает не более 3 минут.

Что касается обслуживания, то для всех доступных автомобилей на водороде оно пока производится в профильных сервисных центрах каждого бренда.

Водородный двигатель в современных реалиях

Перспективы использования двигателя на топливных элементах огромны. Во-первых, это на 100% экологически чистый вид энергии. Во-вторых, мощность, скорость и КПД двигателей идентичны современным авто с ДВС. В-третьих, полная независимость от бензина или дизеля.

Но есть и определенные недостатки. К сожалению, из-за дороговизны компонентов, прежде всего платины, автомобили этой категории в ближайшее время будут стоить немалых денег, к примеру, цена японского представителя сегмента выпущенного ограниченным тиражом Honda Clarity, стартует от $67 тысяч и это далеко не люксовый автомобиль. Немного дешевле обходится и первый серийный экокар на топливных элементах Toyota Mirai, но и он далек от массовой доступности из-за внушительного ценника в $57 тысяч.

Honda Clarity FCV и Toyota Mirai FCV

Куда радужнее перспективы водородных двигателей в сегменте общественного транспорта. Германией уже вовсю курсируют городские и туристические автобусы с двигателем на топливных элементах. А уже в этом году анонсирован запуск первого «водородного» поезда, который призван заменить старые дизельные тягачи.

Водородные автомобили: есть ли у них будущее

Загрязнение атмосферы вызывает серьезную озабоченность общественности, организаций по защите окружающей среды. Реальной альтернативой ДВС являются водородные транспортные средства и автомобили на электротяге.

Электричество или водород

В настоящее время существует актуальная проблема, которая заключается в том, что 60% электроэнергии, потребляемой во всем мире, производится на тепловых электростанциях. Для того чтобы обеспечить возросший спрос на электричество, придется сжигать углеводороды в еще больших количествах. Даже при полной замене ДВС электродвигателями произойдет перераспределение вредных выбросов, уменьшение будет не столь значительным. Концентрация CO2 в воздухе снизится в мегаполисах, но возрастет в местах расположения ТЭС. Кроме того, автомобиль не единственный источник загрязнения окружающей среды: об электрических кораблях, самолетах пока не идет даже речи.

Водородная энергетика в этом смысле предпочтительнее. Добыча водорода сопровождается микроскопическими, по сравнению со сжиганием углеводородов, выбросами токсичных веществ. Выхлоп автомобиля на водороде на 99,99% состоит из чистого водяного пара, безвредного для окружающей среды. Но тут возникают другие проблемы, которые носят экономический, технологический, инфраструктурный характер.

Как устроен водородный двигатель

Разработаны два вида двигателей работающих на водороде:

  • обычный ДВС, где вместо бензина используется водород;
  • с применением топливных элементов.

В первом случае используется все тот же двигатель внутреннего сгорания. Инженерные решения направлены на оптимизацию горения смеси водорода с воздухом, разработку системы питания и снижение взрывоопасности. Данная концепция распространения не получила. Водород, который отличается высокой чистотой, в камере сгорания контактирует с маслом. Поэтому отработанные газы, пусть в значительно меньшем количестве, но содержат токсичные компоненты. Помимо этого, эксплуатация таких автомобилей небезопасна, требует значительных затрат.

При использовании топливных элементов транспортное средство, которое приводится в движение водородным двигателем, принципиально является тем же электромобилем. Разница в том, что на чистой электротяге батарея заряжается от внешних источников, а в водородном автомобиле электроэнергия непрерывно черпается из топливных элементов.

Они состоят из двух камер, одна из которых является анодом, а другая катодом. Между ними находится мембрана. Все компоненты покрыты дорогостоящими редкоземельными металлами, играющими роль катализатора. В результате реакции гидролиза водород, находящийся в анодной камере, соединяясь с кислородом из атмосферного воздуха в катоде, превращается в водяной пар. Процесс сопровождается выделением свободных электронов, которые поступают в электрическую сеть автомобиля.

Такая схема значительно эффективнее, практически отсутствуют вредные выхлопы. Львиная доля усилий конструкторов направлена на развитие двигателей на топливных элементах.

Преимущества и недостатки водородных двигателей

Достоинства и недостатки силовых агрегатов с топливными элементами вытекают из особенностей водорода как топлива, технического уровня двигателей. Факторы, считающиеся безоговорочным достоинствами:

  • простота конструкции, соответственно, надежность;
  • КПД, превышающий таковой у бензинового двигателя, но уступающий электрическому;
  • отсутствие каких-либо шумов;
  • почти полное отсутствие вредных выбросов;
  • высокая мощность двигателей;

приемлемая автономность: современные водородные автомобили способны преодолевать на одной заправке до 500 километров.

Среди недостатков можно выделить следующие:

  • увеличенная масса автомобиля;
  • взрывоопасность водорода, которая резко повышается при наличии неисправностей в двигателе;
  • высокая стоимость эксплуатации автомобиля.

Реальная эксплуатация показывает, что километр пути на автомобиле с водородным двигателем обходится минимум на 50% дороже, по сравнению с бензиновым ДВС. Расход водорода в несколько раз меньше, чем бензина, но все перекрывает его цена.

В этом кроется главная проблема водородной энергетики. В виде соединений с другими веществами запасы H2 на Земле безграничны, но в чистом виде его почти нет. Для его получения используется сложная технология. К этому добавляются проблемы хранения, транспортировки, создания инфраструктуры.

Перспективы водородных автомобилей

Для того чтобы полноценно осветить на этот вопрос, необходимо точно знать цель, с которой бензиновый двигатель пытаются заменить водородным. Если речь идет о внедрении технически более совершенного двигателя, то в этом ракурсе перспективы водородоавтомобилей почти такие же, как и у бензиновых агрегатов, немного выше. ДВС, как бы он не совершенствовался, имеет принципиальное ограничение: низкий коэффициент полезного действия.

Водородный двигатель в этом смысле предпочтительнее, но уступает электромобилям. С другой стороны, обогреть салон чистым электричеством, без снижения автономности, невозможно: запас на автомобиле ограничен. Водородные двигатели таких проблем не знают: при гидролизе выделяется тепло.

Если приоритетом является экология, здесь водородный двигатель имеет приоритет перед остальными. Но не все так однозначно. Современные технологии добычи водорода находятся на таком уровне развития, что дешевле всего получать H2 путем сжигания газа или угля. При этом выделяется углекислый газ, для борьбы с которым и внедряют водородный автомобиль. Экологически чистые способы добычи водорода не обладают достаточной производительностью, значительно повышают его стоимость, которая и так немаленькая.

Если удастся разработать экономичную, производительную, экологически чистую технологию добычи водорода, автомобиль на таком топливе, без сомнения, получит широкое распространение. По эксплуатационным характеристикам он уже сейчас превосходит ДВС.

По сравнению с электрическим у водородного двигателя существует ключевое преимущество: на заправку водородом потребуется около 5 минут, тогда как зарядка батареи на специальных станциях занимает несколько часов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector