Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель с насос форсунками

Насос-форсунка

    280 129 190k
    280 32 281k

Калькулятор расчета производительности форсунки

Калькулятор расчета производительности форсунки онлайн

Насос-форсунка — это механизм системы непосредственного впрыска современных дизельных двигателей, когда в одном корпусе совмещены функционалы насоса и форсунки. В комплекте с форсункой работает одноплунжерный насос, который приводится в движение кулачками распредвала.

Зачем нужны насос-форсунки

Основная функция насос-форсунок — это создавать высокое давления дизельного топлива для впрыска в камеру сгорания, причем в определенный момент и четкое его количество, которые задаются ЭБУ.

Их конструкция позволяет разбивать процесс подачи топлива на фазы предварительного, основного и дополнительного впрыска, а также еще больше увеличить давление впрыска (200-250 МПа). Что в свою очередь приводит к более эффективному и экономному расходу топлива.

Где находится насос-форсунка

Насос-форсунка устанавливается непосредственно в головке блока цилиндров. Часть с насосом находится снаружи блока и крепится к кулачкам распредвала, которые регулируют работу насоса. Часть с форсункой устанавливается внутрь блока — распылитель во время работы как бы “выглядывает” в камеру сгорания, рядом с выходом свечи накала, которая помогает воспламенить смесь.

Так как привод насоса идет от распредвала, насос-форсунки стоят под клапанной крышкой, поэтому снаружи собранного двигателя их не видно.

Конструкция насос-форсунки

Конструкционно насос-форсунка состоит из плунжера, управляющего клапана, запорного и обратного поршней, обратного клапана и иглы распылителя.

Плунжер отвечает за создание давление — именно он крепится к кулачкам распредвала и от них получает энергию для поступательного движения. Возврат в исходную позицию осуществляет плунжерная пружина.

Управляющий клапан регулирует впрыск топлива, а его основным элементом является игла. Сигналы клапану отправляет ЭБУ автомобиля, который полностью управляет работой двигателя.

У форсунки тоже есть пружина, которая прижимает распылитель к седлу в момент впрыска топлива. Пружина сжимается за счет давления топлива. Корректную работу системы обеспечивают запорный поршень и обратный клапан. В нужный момент через иглу распылителя в камеру сгорания под высоким давлением попадает топливо.

Как работает насос-форсунка

В начале процесса работы двигателя кулачковый механизм распредвала инициирует движение коромысла и плунжера вместе с ним. Топливо течет по каналам форсунки. Отсечка топлива осуществляется закрытием клапана. Когда давление топлива в форсунке составляет 13 МПа — подпружиненная игла распылителя занимает верхнее положение, начиная первичный впрыск горючего.

Первичный впрыск топлива инициируется управляющим клапаном. Давление падает по мере увеличения потока топлива по питающей магистрали. Предварительных впрыска может быть два — это определяется режимом работы мотора. Далее плунжер продолжает идти вниз. Закрытие клапана повышает рабочее давление в камере сгорания до 30 МПа. После чего происходит следующий ход иглы распылителя, совершая впрыск основной порции топлива в магистраль.

Количество топлива для каждого впрыска регулируется давлением. После нагнетания до уровня около 220 МПа подача топлива становится наиболее интенсивной, а мощность мотора выходит на пиковые значения. Завершает подачу основной порции топлива открытие клапана. Давление топлива в системе понижается, а игла распылителя закрывается.

Признаки неисправных насос-форсунок

О поломках в системе впрыска говорят следующие факторы:

  • двигатель не заводится вообще, либо заводится с трудом;
  • резкое увеличение расхода топлива;
  • двигатель работает неравномерно;
  • мощность работы двигателя падает на любых оборотах;
  • сильное задымление выхлопа.

Какие могут быть неисправности

Загрязненный распылитель насос-форсунки

Если диагностика выявит что проблемы с двигателем возникают из-за неисправностей в работе насос-форсунок, то выйти из строя могли следующие компоненты:

  • клапанный узел (наиболее часто встречающаяся проблема);
  • распылитель (примерно каждый третий случай);
  • электромагнитные компоненты, плунжер, пружины или корпус (выходят из строя очень редко).

Обслуживание и ремонт насос-форсунок

Специфика современных впрысковых систем заключается в высокой механической сложности узлов. Поэтому насос-форсунка не имеет срока службы и четко определенного перечня регламентных работ.

Спорным вопросом остается применение очищающих присадок в топливо и сама процедура чистки форсунок. Как и в случае с чисткой двигателя вообще, на результат могут повлиять разные факторы — в итоге можно как окончательно угробить насос-форсунки, так и наоборот продлить им жизнь. По сути если работа двигателя вас не беспокоит, то и делать ничего не нужно.

Если какие-то из признаков неисправности заставили Вас обратиться на специализированный сервис, то они могут попробовать отремонтировать насос-форсунку с помощью следующих действий:

  • проверить и исправить параметры работы насос-форсунки на стенде;
  • провести чистку в ультразвуковой ванне только нижней форсуночной части или всех деталей насос-форсунки в разобранном виде;
  • продефектовать и заменить изношенные компоненты;
  • отрегулировать насос-форсунку на стенде после сборки.

Очистка насос-форсунок в ультразвуковой ванне

Регулировка насос-форсунок на стенде после сборки

Если ремонт не помогает, насос-форсунка меняется целиком. Самостоятельно отремонтировать насос-форсунку вряд ли возможно. Во-первых, компоненты и ремкомплекты в основном продаются только специализированным сервисам и найти их очень сложно. Во-вторых, для работы нужен специнструмент и специализированное оборудование. В-третьих, настроить параметры работы форсунки невозможно без специального регулировочного стенда.

Подбор и покупка насос-форсунок

Для надежной работы системы впрыска топлива насос-форсунку подбирают по артикулу, который можно определить по коду детали, или используя VIN-код автомобиля. На каждый мотор устанавливаются только форсунки определенной модели, поэтому выбор сводится только к бренду производителя, которых не так много. Основные мировые производители, продукция которых устанавливается на конвейере — это Bosch, Denso, Siemens, Delphi.

  • Головка блока цилиндров
  • ЭБУ (электронный блок управления)

Подпишись на наш канал в Я ндекс.Дзене

Еще больше полезных советов в удобном формате

Какой дизельный двигатель лучше?

Первым легковым автомобилем, оснащенным дизельным двигателем с непосредственным впрыском, стал в 1986 году Fiat Croma.

Переломным оказался период 1989-1990 года, когда в Ауди дебютировал 2.5 TDI. Подача топлива под высоким давлением была реализована с помощью электронно-управляемого распределительного насоса (роторного) с электронным управлением от Bosch. Двигатель сразу же завоевал популярность. Хотя он был довольно громким, но покорял хорошей динамикой и низким расходом топлива.

Другой важное событие произошло в 1997 году – появилась система питания Common Rail (Alfa Romeo 156 1.9 и 2.4 JTD). Эта система после многочисленных модернизаций используется и сегодня.

В 1998 году концерн VAG представил свой ответ на Common Rail – насос-форсунки (PD, от немецкого Pumpe-Düse). Технология позволила на несколько лет превзойти большинство дизелей с системой впрыска Common Rail. Хотя мотор с насос-форсунками работал громче и грубее, но обеспечивал лучшую динамику при той же мощности и был экономичен. Система PD исчезла примерно через 10 лет после введения последующих все более строгих норм выбросов выхлопных газов. Турбодизели с насос-форсунками не вписывалась в экологические рамки даже с DPF-фильтром.

Сегодня на вторичном рынке присутствуют все три типа систем питания. Попробуем разобраться, какая из них предпочтительней для повседневной эксплуатации. Очевидно, Common Rail будет иметь преимущество, так система до сих пор используется производителями, а, значит, дизельные автомобили с таким двигателем будут сравнительно молодыми и незаезженными. С остальными системами подачи топлива все гораздо сложнее, так как цифры на одометре, скорее всего, смотаны, а реальный пробег – космический.

Читать еще:  В чем плюсы и минусы реактивные двигателей

Дизельные двигатели с роторным насосом

Первым рассмотрим роторный насос с электронным управлением (распределительный, VEP). Это решение использовалось на протяжении 90-х годов. Насос обычно приводился в действие зубчатым ремнем, а иногда отдельной цепью (реже).

На рынке доминируют автомобили с непосредственном впрыском топлива и роторным насосом Bosch типа VP (29/30, 36, 37, 44 и т.д.). Это 1.9 TDI (VAG) до 1998 года, 2.5 V6 TDI (VAG), 2.0 BMW (M47), 1.8 TDDi (Ford) и DI/DTI (Isuzu/Opel). Примечательно, что некоторые двигатели дебютировали с роторным насосом (2.0d BMW M47, 1.8 TDDi Ford), а во время производства переключились на Common Rail (M47TU BMW и 1.8 TDCi Ford).

Большинство агрегатов с распределительным насосом считаются довольно долговечными и надежными, несмотря на большие пробеги. Проблемы могут быть вызваны самим насосом. И дело тут не в плохой конструкции, а в возрасте. Автомобили с такими двигателями, очевидно, прошли уже ни одну сотню тысяч километров. А на продажу они обычно выставляются, когда появляются неполадки – проблемы с запуском, дымление, повышенный расход топлива.

Типичные неисправности: износ нагнетательных элементов, утечки, неисправности электроники. Двигатели с VEP чувствительны к слишком малому количеству топлива. В таком случае насос работает практически без «смазки». Езда на «парах» противопоказана. Если бак опустошен, то лучше вызвать эвакуатор или долить солярки из канистры.

Плохая новость заключается в том, что хороший ремонт по-прежнему стоит приличных денег (20-40 тыс. рублей), а новый насос довольно дорог (свыше 60 000 рублей). Учитывая небольшую стоимость уже немолодого автомобиля, ремонт кажется неоправданно затратным.

Некоторые пытаются отремонтировать насос заменой сгоревшего транзистора в блоке управления насосом. Обычно это помогает, но ненадолго. Транзистор сдается из-за повышенного внутреннего сопротивления изношенного насоса, поэтому новый транзистор вскоре тоже сгорит.

Приличный возраст означает и риск проблем с оборудованием (турбина, маховик) и различными датчиками. Но есть и хорошие новости. Двигатели с насосом VEP обычно имеют сравнительно простые и дешевые форсунки. Поэтому для их ремонта или замены много денег не понадобится.

Дизельные двигатели с Common Rail

В 1997 году на рынке появилась система впрыска Common Rail, а первым серийным автомобилем с CR стал Alfa Romeo 156. Давление впрыска в первом поколении Common Rail было значительно выше (1300 бар), чем в системе с распределительным насосом. Подача топлива под высоким давлением позволила заметно улучшить культуру работы и производительность дизельных моторов.

Со временем система Common Rail развивалась, и наряду с электромагнитными форсунками появились пьезоэлектрические, давление топлива, подаваемого в камеры сгорания, превысило 2000 бар. Сегодняшние системы Common Rail (4-го поколения) настолько точны, что впрыск можно разделить на 7-8 фаз. Благодаря этому в сочетании с мощными системами очистки выхлопных газов двигатели CR вписываются в последние жесткие нормы выбросов.

Другая сторона медали – это стоимость обслуживания и ремонта. Дизели с Common Rail являются более продвинутыми технически, чем питаемые роторным насосом. Это означает необходимость использования только топлива хорошего качества и более высокие затраты на ремонт насоса и форсунок. После 150-200 тыс. км распылители форсунок загрязняются или повреждаются, и топливо перестает дозироваться должным образом. Автомобиль становится вялым, увеличивается расход топлива и обороты, загораются индикаторы неисправности двигателя/свечей накала.

До недавнего времени неисправности пьезоэлектрических форсунок и электромагнитных некоторых производителей (например, Denso) были особенно проблематичными. Отсутствовали запасные части и технологии.

Сегодня затраты на ремонт немного снизились. Электромагнитные форсунки Bosch, Denso и Delphi восстанавливаются без каких-либо проблем. А вот ремонт пьезоэлектрических Denso и Bosch становится проблемой. Среди пьезоэлектрических сравнительно легко воскресить форсунки Siemense/Continental.

Стоимость ремонта? Все зависит от производителя и типа форсунок. За восстановление электромагнитных форсунок попросят от 4000 до 16 000 рублей, а пьезоэлектрических – от 8000 до 16 000 рублей.

Типичные неисправности: загрязнение или износ наконечников форсунок, утечки топлива из-под уплотнений форсунок (запах топлива в салоне), износ топливного насоса высокого давления (15-25 тысяч рублей).

Популярные версии двигателей Common Rail:

— BMW — 2.0d (M47TU, N47), 3.0d (M57, N57);

— Fiat — 1.6, 1.9, 2.0 JTD, JTD, Multijet;

— PSA – 1.6, 2.0 и 2.2 HDi;

— Renault/Nissan – 1.5, 1.9 и 2.0 dCi;

— Kia/Hyundai – 1.7 и 2.0 CRDi;

— Opel – 1.7 и 2.0 CDTI;

— Ford – 1.6 и 2.0 TDCi;

— VAG – 1.6 и 2.0 TDI

— Mercedes – 2.2 и 3.0 CDI;

— Toyota – 2.0, 2.2 D-4D, D-CAT;

— Honda – 1.6 и 2.2 i-CTDi, i-DTEC.

Дизельные двигатели с насос-форсунками

Однако не все пошли по пути «CR». В 1998 году VAG в противовес новой технологии представил 1.9 TDI, работающий с насос-форсунками (PD). Идея – блестящая. Каждая форсунка была объединена с насосом, приводящимся в действие от распределительного вала. Отказ от ТНВД не означал упрощение конструкции. Для работы насос-форсунок требовалась модифицированная головка блока и распределительный вал с дополнительными кулачками, которые и приводили в действие насосы форсунок.

Новая система на момент дебюта превзошла первое поколение CR по давлению впрыска – 2000 вместо 1350 бар. Несмотря на более низкую культуру работы, автомобили с двигателями PD характеризовались хорошей динамикой, податливостью тюнингу и низким расходом топлива. Стоимость производства таких дизелей была значительной, так как требовалась высокая точность изготовления.

«Золотое десятилетие» системы PD закончилось с вводом норм выбросов Евро-5. Но за это время было продано много автомобилей с насос-форсунками. Дизели PD экономичные и динамичные, но, безусловно, громче тех, что оснащены впрыском Common Rail.

Среди дизелей с PD лидируют 1.9 и 2.0 TDI. Но насос-форсунки можно найти в 1.2, 1.4, 2.5 (R5) и 5.0 (V10) TDI. Партия двигателей 2.0 TDI попала под «тихую» сервисную акцию, в процессе которой менялись форсунки. Помимо того, в 2.0 TDI PD встречалось растрескивание головки блока, а в 1.9 TDI BXE – проворачивание вкладышей.

Двигатели с насос-форсунками требуют специального моторного масла – стандарт 505.01 или 507 для DPF. Дизели уязвимы к проблемам с приводом ГРМ – ремень лучше менять вовремя (каждые 60 000 км). Сами насос-форсунки нуждаются в регулировке каждые 80-120 тыс. км (5000 рублей).

Типичные неисправности: заклинивание насоса, проблема с электромагнитом (нечасто), выработка посадочного места, износ уплотнительных колец и повреждение проводки. Симптомы: недостаток мощности, дымление, неравномерная работа двигателя.

Читать еще:  Что такое инерционный двигатель для детской машинки

Заключение

Дизельный двигатель с большим пробегом – это всегда риск. Будьте внимательны с заманчивыми предложениями из объявлений. Стоимость ремонта может превысить стоимость самого автомобиля.

Проблемы моторов с насос-форсункой на примере 1.9 TDI (AWX)

В начале 2000-х концерн VAG начал эксперимент с насос-форсунками. Да, именно эксперимент, так как насос-форсунки продержались на рынке не более 10 лет. Так, первый 1.9-литровый 115-сильный TDI (код AJM) с насос-форсункой дебютировал в конце 1998 года на VW Bora. В 2008 году производство дизелей с насос-форсунками концерн VAG свернул. Тем не менее, сегодня дизели с такой системой питания используются на моторах тяжелой коммерческой техники.

О болячках моторов VAG с насос-форсунками мы поговорим на примере двигателя 1.9 TDI (AWX). Мы сняли видео об этом двигателе.

Мотор 1.9 TDI AWX устанавливался на следующие автомобили:

-Audi A4 с 09/2000 до 06/2003
-Audi A6 c 04/2001 до 01/2005
-Passat B5 c 10/2000 до 05/2005
-Superb с 12/2001 до 03/2008

Мощность мотора составляет 130 л.с., крутящий момент – 285 Нм. У этого мотора есть практически брат-близнец – AVF, с такой же мощностью, но крутящий момент повыше – 310 Нм. «Наш» AWX более тяговит «на низах», а AVF резвее тянет со средних оборотов. Разница в отдаче кроется на самом деле в прошивке – разных углах впрыска. Прошивка у AWX более тяговитая и начальный УОЗ отличен от AVF. Момент мотора AWX урезан, но он работает мягче. Таким образом, у концерна VAG получились два очень похожих, но слегка разных по характеру двигателя. Впрочем, все 1.9 TDI с насос-форсункой очень близки друг другу по деталям и узлам.

Моторы с насос-форсункой имеют ременной привод ГРМ.

Причем ремень ГРМ здесь очень мощный: он как минимум на 5 мм шире ремня ГРМ на дизельном моторе с другой системой впрыска. В приводе ГРМ присутствует демпфер и гидравлический натяжитель

Для компенсации растяжения ремня ГРМ и уменьшения его износа на зубчатом колесе коленвала предусмотрено увеличенное расстояние между отдельными зубьями для уменьшения износа ремня ГРМ

Самые распространенные проблемы мотора 1.9 TDI

Вообще этот двигатель получился достаточно надежным и неприхотливым. Большинство его проблем и неполадок связано с пробегом и экономией на обслуживании.

Двигатель 1.9 TDI может перестать тянуть. В этом случае сразу необходимо делать компьютерную диагностику, которая более или менее точно указывает на причину проблемы. Разумеется, в большинстве случаев оказывается виновата турбина и все, что с ней связано. Может заклинивать «геометрия» турбины, а могут порваться-прохудиться вакуумные трубки, соединяющие ее актуатор и управляющий клапан N75. Если проблема с тягой пропадает на время после запуска мотора, то, скорее всего, «глюк» где-то в электронной части.

Еще мотор 1.9 TDI может неуверенно заводиться. Тут причин может быть много. Могут протекать уплотнительные колечки насос-форсунок: меняем (по регламенту – раз в 150 000 км) целиком весь комплект резиновых и медных колец. Могут быть проблемы по датчику положения коленвала. Также износ тандемного насоса, который создает вакуум и качает топливо. При его износе подача топлива будет недостаточной

И, самое печально, когда все поменяли, но в начале забыли померить компрессию. Обычно наблюдается износ поршневых колец и стенок цилиндров.

Параметры компрессии (избыточного давления) следующие:
-для двигателя без износа: от 25 до 31 бар;
-минимальное значение: 19 бар;
-допустимая разница между цилиндрами: 5 бар.

Если с компрессией все плохо, люди обычно покупают контрактный мотор.

Насос-форсунки крепятся в ГБЦ прижимной планкой с одним болтом. Это архаичная конструкция, которая также перекочевала на немалое количество версий мотора 2,0 TDI (B-серию). Со временем такое ненадежное однобокое крепление приводит к расшатыванию форсунок, которые разбивают в ГБЦ свое посадочное место. Но прежде чем это произойдет, случится другая неприятность. Насос-форсунка, разбалтывающаяся в своем «гнезде» теряет герметичность. Топливо в нее поступает по каналам, проделанным в ГБЦ. В сопряжениях насос-форсунки и ГБЦ предусмотрены резиновые колечки-прокладки. При проявлении малейшего люфта прокладки теряют герметичность. Топливо начнет стекать в цилиндр или будет просачиваться на верхнюю поверхность головки блока. Вдобавок происходит завоздушивание насос-форсунок.

Износ кулачков распредвала, как правило принадлежащих первому цилиндру, мотора 1.9 TDI происходит из-за значительного пробега, особенностей езды на этом двигателей и некачественного масла: всю жизнь мотор AWX нужно «кормить» маслом с правильным допуском. Как правило, изнашиваются кулачки выпускного распредвала. Размер (наибольший диаметр) кулачков в номинале: впуск 62,8 мм, выпуск 62,6 мм.

На распредвалу изнашиваются все кулачки, но неравномерно. Если использовать некачественное масло, эксплуатировать мотор на масле, разбавленным дизтопливом (см. выше про негерметичность форсунок) или ездить на моторе «в натяг», когда качество смазки пар трения в ГБЦ крайне неэффективное, то проблема с выработкой на кулачках распредвала скоро даст о себе знать. Масляное голодание приводит к сухому трению в самых нагруженных парах трения ГБЦ: кулачки-толкатели клапанов, кулачки-коромысла насос-форсунок.

При износе кулачков клапанов, нарушается работа двигателя – сильно ухудшается вентиляция цилиндров из-за недостаточного и непродолжительного открытия клапанов. Наиболее ярко проявляется износ кулачков выпускных клапанов. При этом отработавшие газы не успевают покинуть цилиндры, сжимаются поршнем и затем, при открытии впускных клапанов, прорываются во впускной коллектор. В результате имеем снижение мощности, увеличение расхода топлива и плюс черный выхлоп. И вообще эксплуатировать мотор с такой проблемой просто нельзя – нагрузки на механизм ГРМ чрезмерные, и проявляются точечно. Плюс рвущиеся во впуск выхлопные газы вызывают сильнейшие осевые нагрузки на компрессорное колесо турбины. По итогу владелец «попадает» и на перебор ГБЦ и на восстановление турбины. Износ кулачков распредвала можно услышать: прорывающиеся во впуск отработавшие газы издают пульсирующий или бубнящий звук или гул, который эхом отдается вплоть до корпуса воздушного фильтра.

Износ кулачков мотора 1.9 TDI известен везде, даже в Германии. Спецы советуют обязательно на всем протяжении эксплуатации мотора лить только масло с правильным допуском (505.01 или 506.01) вязкости 5W-40 и менять его не реже чем через 10.000 км.

Но и это может не спасти распредвалы и гидрокомпенсаторы от износа, если в торцах коромысел насос-форсунок (это масляные каналы к паре кулачок/гидрокомпенсатор) отвалятся заглушки масляных каналов. Масло, направляемое к кулачкам, просто будет стекать в ГБЦ

На моторах с насос-форсунками отсутствует ТНВД. Однако за подачу топлива в расположенную в ГБЦ топливную рампу и к насос-форсункам отвечает тандемный насос. Он приводится от распредвала и отвечает за подачу топлива и создание вакуума. И эти обе его части являются причинами неполадок. Вакуумная часть работает с усилителем тормозов, и актуаторами системы рециркуляции (EGR) и турбины с изменяемой геометрией. При неполадках в этой части педаль тормоза становится «колом», возникают ошибки по EGR и управлению турбиной.

Читать еще:  Что такое ванос в двигателе мерседес

Неполадки в топливной части, а именно отклонения в параметрах давления подаваемого топлива (3 бара на холостых и до 7 бар на максимальной скорости работы двигателя) возникают трудности с запуском и снижение мощности двигателя. Топливная часть тандемного насоса не переносит работы «на сухую». Завоздушивание топливных магистралей приводит к его сильному износу. Плюс тандемный насос нередко течет по прокладке между ним и блоком двигателя.

Нужен контрактный мотор? Выбирайте в каталоге «АвтоСтронг»: доставим по РФ и оформим гарантию на 30 дней!

Топливные системы с насос-форсунками

Системы дизельной топливной аппаратуры насос-форсунка начали применяться на грузовых автомобилях с 1994 года и легковых с 1998 года. Модульная конструкция систем питания дизельных двигателей с насос-форсунками позволяет устанавливать без особых затрат времени на двигатели различных конструкций.

Недостатком насос-форсунок является увеличение высоты головки блока цилиндров, что в свою очередь вызывает увеличение высоты двигателя.

Насос-форсунки состоят из трех подсистем:

  • подачи топлива низкого давления
  • подачи топлива высокого давления
  • подачи воздуха и выпуска отработавших газов

Подсистема подачи топлива низкого давления необходима для подачи топлива к насосу высокого давления и очистки топлива.

Подсистема подачи топлива высокого давления служит для создания высокого давления впрыска топлива в камеру сгорания.

Подсистема подачи воздуха и выпуска отработавших газов включает в себя приборы для очистки воздуха, поступающего в цилиндры двигателя и очистки отработавших газов после выпуска их из цилиндров.

Основные компоненты системы питания дизельного двигателя с насос-форсунками показаны на рисунке:

Рис. Система питания дизельного двигателя с насос-форсунками:
1 – топливный бак; 2 – топливопровод к дополнительному отопителю; 3 – охладитель топлива; 4 – датчик температуры топлива; 5 – ограничительный клапан в сливном трубопроводе; 6 – сливной трубопровод; 7 – распределитель топлива; 8 – трубопровод высокого давления; 9 – насос-форсунка; 10 – топливоподкачивающий насос; 11 – редукционный клапан в трубопроводе подачи топлива; 12 – обратный клапан; 13 – топливный фильтр; 14 – трубопровод низкого давления; 15 – топливоподкачивающий насос

Расположенный в баке электрический топливоподкачивающий насос 15 подкачивает топливо к фильтру. Обратный клапан 12 предотвращает слив топлива из распределителя 7 и трубопровода низкого давления 14 в бак после остановки двигателя.

Топливоподающий насос 10 служит для забора топлива из фильтра и подачи его под повышенным давлением к насос-форсункам. Редукционный клапан 11 поддерживает давление подаваемого к насос-форсункам топлива в пределах 8,5 кгс/см2. Ограничительный клапан 5 удерживает давление топлива в сливном трубопроводе на уровне 1 кгс/см2, благодаря ему снижаются пульсации давления в системе.

Из-за высокого давления впрыска в топ­ливных системах дизелей легковых автомо­билей с насос-форсунками и в некоторых системах коммон рейл, топливо нагревает­ся до такой степени, что для предотвраще­ния повреждения топливного бака и датчи­ка уровня топлива оно должно охлаждаться перед возвратом в бак. Топливо, возвраща­ющееся от форсунок, проходит через охла­дитель 3, отда­вая тепло в контуре охлаждения. Датчик температуры топлива 4 вырабатывает сигнал, поступающий в блок управления двигателем.

От фильтра топливо подается в питающую магистраль в головке блока. В питающей магистрали топливо течет по внутренним стенкам распределителя топлива 7 в направлении первого цилиндра. Через отверстия в стенках топливо подается в кольцевую полость между распределителем и стенками головки блока.

Рис. Смешивание топлива в распределителе

Здесь топливо смешивается с нагретым топливом, которое выдавлено от насос-форсунок в питающую магистраль. Благодаря этому достигается одинаковая температура, а значит и одинаковое количество топлива поступающего ко всем насос-форсункам, что обеспечивает равномерную работу двигателя. Без распределителя топливо поступало бы в насос-форсунки неравномерно. Нагретое топливо, выжимаемое от насос-форсунок в питающую магистраль, продвигалось бы поступающим топливом от четвертого цилиндра в направление первого цилиндра. Из-за этого температура топлива повышалась бы от четвертого цилиндра к первому, и к насос-форсункам поступало бы различное количество топлива. Следствием этого была бы неравномерная работа двигателя и слишком высокая температура в зоне передних цилиндров.

Насос-форсунки могут иметь электрический (соленоидный) или пьезоэлектрический клапан управление.

Насос-форсунка с электрическим клапаном управления представляет собой одноцилиндровый насос высокого давления индивидуальный для каждого цилиндра двигателя.

Рис. Насос-форсунка (РDЕ):
1 – упор сферический; 2 – пружина возвратная; 3 – плунжер насоса; 4 – корпус; 5 – штекер для подачи управляющего сигнала; 6 – сердечник электромагнита; 7 – пружина выравнивающая; 8 – игла соленоидного клапана; 9 – якорь электромагнита; 10 – катушка электромагнита; 11 – канал обратного слива топлива; 12 – уплотнение; 13 – отверстия-фильтры подвода топлива (350 шт.); 14 – гидроупор; 15 – седло иглы; 16 – шайба уплотнительная; 17 – камера сгорания; 18 – игла распылителя; 19 – гайка распылителя; 20 – распылитель; 21 – головка блока; 22 – пружина распылителя; 23 – уравнивающий поршень; 24 – полость аккумулирования топлива; 25 – полость высокого давления; 26 – пружина электромагнитного клапана; 27 – вал привода насос-форсунки; 28 – коромысло

Внутри корпус насос-форсунки имеется цилиндрическая полость высокого давления. Соленоидный клапан монтируется как одно целое с насос-форсункой. Крепление насос-форсунки к головке блока осуществляется с помощью прижимной скобы. В приводе насос-форсунки, в отличие от привода механизма газораспределения отсутствуют тепловые зазоры, так как здесь с помощью возвратной пружины осуществляется постоянный контакт между толкателем плунжера, коромыслом и кулачком приводного вала.

Быстродействующий соленоидный клапан в соответствии с параметрами, определяемыми блоком управления, обеспечивает регулировку времени начала впрыска топлива и его конец. В отключенном положении соленоидный клапан открыт и обеспечивает полное прохождение топлива от топливоподкачивающего насоса к подплунжерному пространству насоса. Во время хода плунжера 3 насос-форсунки соленоидный клапан перекрывает подачу топлива, герметизируя плунжерную пару и при ходе плунжера вниз происходит впрыск топлива через форсунку в камеру сгорания. Момент закрытия соленоидного клапана регулирует начало впрыска и его продолжительность. По сравнению с впрыском бензиновых двигателей электромагнитный клапан должен управлять давлением в 300…500 раз большим, при этом переключение клапана происходит в 10…20 раз быстрее.

Использование насос-форсунки исключает применение топливопроводов высокого давления, благодаря чему снижаются потери давления при подаче топлива из-за периодических расширений топливопроводов в начале подачи и разгрузке в конце подачи. Максимальное давление развиваемое насос-форсунками составляет 2050 кгс/см2. Электронные трехмерные параметрические характеристики в комбинации с высоким давлением впрыска приводят к снижению потребления топлива при одновременном снижении выброса токсичных веществ, что имеет большое значение принимая во внимание строгие требования соблюдения европейских стандартов. Используя управление соленоидным клапаном, имеется возможность реализовать предварительный (пилотный) впрыск и отключение отдельных цилиндров из работы при частичных нагрузках, что уменьшает расход топлива.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector