Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внутреннего сгорания: виды, принцип действия, преимущества и недостатки

Двигатель внутреннего сгорания: виды, принцип действия, преимущества и недостатки

Двигатель внутреннего сгорания (ДВС) – автомобильный механизм, работа которого зависит от преобразования одного вида энергии (в частности, химической реакции от сгорания топлива) в другой вид (механическую энергию для запуска автомобиля).

В качестве достоинств двигателя внутреннего сгорания, которые определяют его широчайшее использование, отмечают: автономность, относительно невысокая стоимость, возможность использования на различных потребителях, многотопливность (двс могут работать на бензине, дизельном топливе, газе и даже на спирте и рапсовом масле). Так же к достоинствам можно отнести достаточно высокую надежность ДВС и неприхотливость в работе, простоту обслуживания.

При этом двигатели внутреннего сгорания обладают рядом недостатков: низкий коэффициент полезного действия, токсичность, шумность.

Однако по сочетанию своих достоинств и недостатков на сегодняшний день в транспортной сфере (в качестве автомобильных двигателей) серьезных конкурентов у двигателей внутреннего сгорания нет, и в ближайшее время не предвидится.

ДВС могут разделяться по нескольким категориям

По типу преобразования энергии:

  • турбинные;
  • поршневые;
  • реактивные;
  • комбинированные

По типу рабочего цикла:

  • с 2-мя тактами цикла;
  • с 4-мя тактами цикла

По типу топлива, которое используется:

  • на бензине;
  • на дизеле;
  • на газе

Устройство ДВС

ДВС имеет достаточно сложное устройство, которое может быть оснащено:

  • корпусом (блоком и головкой цилиндров);
  • рабочими механизмами (кривошипно-шатунным и газораспределительным);
  • различными системами (топливной, впускной, выпускной, смазки, зажигания, охлаждения и управления).

КШМ (кривошипно-шатунный механизм) обеспечивает движение возвратно-поступательного характера поршня и обратное вращательное движение вала.

Газораспределительный механизм предназначен для подачи топлива и воздуха в цилиндры, для вывода отработанной газовой смеси.

Топливная система предназначена для обеспечения автомобильного двигателя топливом.

Система впуска отвечает за своевременную подачу воздуха в ДВС, а система выпуска – за вывод отработанных газов, уменьшения уровня шума от работы цилиндров, а также снижения их токсичности.

Система впрыска обеспечивает доставку ТПС в двигатель ВС.

Система розжига (зажигания) выполняет функцию розжига смеси воздуха и топлива, которая поступает в ДВС.

Система смазки обеспечивает своевременную смазку всех внутренних частей и деталей двигателя.

Система охлаждения обеспечивает интенсивное охлаждение рабочей системы ДВС во время работы.

Система управления отвечает за контроль над слаженной работой всех важных систем ДВС.

Принцип работы ДВС

Двигатель работает на тепловой энергии газов, образующихся при сгорании используемого топлива, что в свою очередь запускает поршневое движение в цилиндре. ДВС работает циклически. Для того чтобы повторялся каждый последующий цикл, отработанная смесь удаляется, а в поршень поступает новая часть топлива и воздуха.

В современных моделях автомобилей используются двигатели, работающие на 4-х тактах. Работа такого двигателя основана на четырех равных по времени частях. Такт – это процесс, который осуществляется в цилиндре автомобильного двигателя за один рабочий ход (поднятие/опускание) поршня.

Поршень в цилиндре осуществляет четыре тактовых движения – два вверх и два вниз. Тактовое движение начинается с крайней точки (нижней или верхней) и проходит следующие этапы: впуск, сжатие, движение и выпуск.

Более детально рассмотрим особенности работы ДВС на каждом из тактов.

Впуск начинается в крайней точке (МТ – мертвая точка). Не имеет значения, с какой точки начинается движение, с верхней МТ или нижней МТ. Начиная свое движение в цилиндре, поршень захватывает поступившую топливно-воздушную смесь при открытом клапане впуска. При этом ТВС может образовываться как во впускном коллекторе, так и в камере сгорания.

При сжатии клапаны впуска полностью закрыты, ТВС начинает сжиматься непосредственно в цилиндрах. Это происходит за счет обратного поршневого движения от одной МТ к другой. При этом ТВС сжимается до размера самой камеры сгорания. Сильное сжатие обеспечивает более продуктивную работу ВДС.

Такт движения (рабочий ход)

На данном такте осуществляется розжиг воздушно-топливной смеси. Это может быть как путем самовоспламенения (для дизельных двигателей), так и принудительным воспламенением (для бензиновых двигателей). Вследствие возгорания ВТС происходит быстрое образование газов, энергия которых воздействует на поршень, приводя его в движение. КШМ трансформирует поступательные поршневые движения во вращательные вала. Клапаны системы на такте движения, как и на такте сжатия должны быть полностью закрытыми.

На последнем такте выпуска происходит открытие всех выпускных клапанов, после чего газораспределительный механизм удаляет отработанные газы из ДВС в выпускную систему, где происходит очистка, охлаждение и снижение уровня шума. В конце происходит полный выброс газов в атмосферу.

После завершения такта выпуска, циклы повторяются, начиная с такта впуска.

Видео, в котором наглядно показывается устройство и работа двигателя внутреннего сгорания:

Классификация и назначение ДВС

Как известно, на сегодняшний день существует большое количество различных типов двигателей внутреннего сгорания. Указанные типы силовых агрегатов являются источником энергии для транспортных средств, механизмов и агрегатов, а также отличаются по производительности, конструкции, по назначению и т.д.

В наших предыдущих статьях мы уже рассматривали всевозможные виды двигателей, которые устанавливаются на автомобили. Далее мы намерены поговорить о том, какая существует классификация двигателей внутреннего сгорания.

Общая классификация двигателей

Начнем с того, что двигатели внутреннего сгорания классифицируют по ряду признаков и особенностей. Прежде всего, силовые установки отличаются по своему назначению. ДВС бывают:

  • стационарного типа;
  • двигатели на транспорте;

Также силовые установки отличаются по типу используемого топлива. Двигатели могут работать на:

  • жидком и легком топливе (бензин, дизтопливо, спирт);
  • жидком тяжелом топливе (мазут, соляровое масло, газойль)
  • газовом топливе;
  • использовать горючее комбинированного типа, когда в двигателе одновременно используется жидкое топливо и газ (например, газодизель);
  • применяется сразу несколько видов топлива для многотопливного ДВС (агрегат работает как на бензине, так и на керосине и т.д.);

Также двигатели внутреннего сгорания можно разделить по тому, как реализовано преобразование тепловой энергии в результате сжигания топлива в механическую полезную работу. Двигатели бывают:

  • поршневыми ДВС (сгорание и преобразование тепловой энергии в механическую работу происходит в цилиндре двигателя;
  • газотурбинные двигатели (в таких двигателях топливо сгорает в особой камере сгорания, после тепловая энергия преобразуется в механическую на лопатках турбинного колеса;
  • двигатели комбинированного типа, в которых топливо сгорает в цилиндрах поршневого двигателя, при этом такой двигатель является генератором газа. Это значит, что тепловая энергия только частично превращается в механическую в цилиндре, а также частично преобразование происходит на лопатках турбинного колеса (например, турбопоршневой двигатель).
Читать еще:  Что такое насосные потери в двигателе

Еще двигатели внутреннего сгорания отличаются по способу смесеобразования. Силовые агрегаты бывают:

  • моторы с внешним смесеобразованием (рабочая смесь образуется не в цилиндре). Если просто, это карбюраторные бензиновые и газовые двигатели, а также инжекторные двигатели с впрыском топлива во впускной коллектор.
  • установки с внутренним смесеобразованием (на такте впуска в цилиндр отдельно подается воздух, затем прямо в камеру сгорания впрыскивается топливо, а рабочая смесь образуется уже в самом цилиндре). Такое смесеобразование происходит в дизельных двигателях, в бензиновых установках с искровой системой зажигания и газовых двигателях, где реализована подача горючего в цилиндр перед началом сжатия.

Также двигатели классифицируют и по способу воспламенения рабочей топливно-воздушной смеси. Смесь может воспламеняться:

  • от внешнего источника, которым выступает электрическая искра на свече зажигания;
  • от сжатия, где смесь воспламеняется от высоких температур во время сильного сжатия воздуха и топлива в цилиндре (например, дизельный ДВС);
  • агрегаты с форкамерно-факельным зажиганием. В таких форкамерных моторах имеется две камеры сгорания. В первой (малой) камере смесь воспламеняется от искры, затем дальнейшее воспламенение основного заряда в основной (большой) камере происходит благодаря распространению фронта пламени из малой камеры.
  • двигатели, которые работают по принципу первичной подачи небольшого количества жидкого топлива (самовоспламеняется от сжатия), в результате чего удается поджечь и основной заряд, который состоит из газового топлива (газодизельный двигатель).

Что касается наддува, двигатели бывают компрессорными и турбированными, а также могут сразу иметь оба решения. Моторы с турбокомпрессором получают газовую турбину, которая работает благодаря воздействию отработавших газов.

Агрегаты с механическим компрессором конструктивно оснащены устройством, которое приводится в действие от двигателя, забирая у него часть энергии. Комбинированный тип предполагает, что двигатель одновременно имеет и турбокомпрессор, и механический нагнетатель.

Еще следует упомянуть различия по способу регулирования подачи топлива в цилиндры при изменении нагрузки. Существуют двигатели с регулированием смеси по:

  • качеству;
  • количеству;
  • смешанного типа;

В первом случае речь идет об изменении состава смеси с учетом нагрузок и режимов работы ДВС. Во втором случае состав не меняется, при этом подается только большее или меньшее количество. В двигателях со смешанным регулированием меняется как состав смеси, так и количество, что зависит от нагрузок на агрегат.

Напоследок отметим, что классификация автомобильных двигателей затрагивает поршневые ДВС (бензиновые, дизельные и газовые), карбюраторные и инжекторные, с внешним смесеобразованием или прямым впрыском топлива, с воспламенением от искры или с воспламенением от сжатия.

Также на некоторых авто можно встретить газотурбинные, форкамерные или роторно-поршневые двигатели, однако сегодня такие агрегаты нельзя назвать массовыми применительно к автоиндустрии.

Основные конструктивные отличия ДВС

Если говорить о главных отличиях в конструкции поршневых двигателей, различные силовые агрегаты делятся на рядные горизонтальные и вертикальны по расположению цилиндров. Также двигатели бывают V-образными, оппозитными и т.д.

Еще агрегаты бывают однопоршневыми двигателями, когда в одном цилиндре имеется один поршень и рабочая полость. При этом также встречаются ДВС, в которых поршни движутся противоположно в одном цилиндре, а рабочая полость находится между двумя поршнями. Также бывают моторы двойного действия, в которых по обеим сторонам от поршня имеются рабочие полости.

При этом существуют варианты роторного двигателя, где поршень-ротор не движется, а планетарное движение совершает корпус ДВС. Еще одной разновидностью можно считать агрегаты, в которых движется как корпус, так и сам ротор.

Что в итоге

Итак, выше были рассмотрены назначение и классификация двигателей внутреннего сгорания. При этом данная информация наглядно демонстрирует широчайшую сферу применения поршневых ДВС.

С учетом тех или иных особенностей конкретного типа ДВС такие агрегаты используются как на транспортных средствах, так и в качестве генераторов, устройств привода всевозможных агрегатов и механизмов.

Разновидности ДВС и принцип действия теплового двигателя. Рабочий цикл и такты, преимущества и недостатки. Основные и альтернативные виды топлива.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Список самых надежных бензиновых и дизельных моторов: 4-х цилиндровые силовые агрегаты, рядные 6-ти цилиндровые ДВС и V-образные силовые установки. Рейтинг.

Устройство и схема работы инжектора. Плюсы и минусы инжектора по сравнению с карбюратором. Часты неисправности инжекторных систем питания. Полезные советы.

Какие существуют самые маленькие двигатели внутреннего сгорания. Для чего используются миниатюрные ДВС. Самый маленький дизель в мире: особенности.

Особенности и отличия оппозитного двигателя от других поршневых ДВС. Преимущества оппозитного мотора, минусы данной конструкции, нюансы обслуживания.

Бензиновый двигатель внутреннего сгорания

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Содержание

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..
Читать еще:  Шум двигателя на холостом ходу причины

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Читать еще:  Что такое продувка двухтактного двигателя дизеля

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

двигатель внутреннего сгорания

Содержание

  • 1 Русский
    • 1.1 Тип и синтаксические свойства сочетания
    • 1.2 Произношение
    • 1.3 Семантические свойства
      • 1.3.1 Значение
      • 1.3.2 Синонимы
      • 1.3.3 Антонимы
      • 1.3.4 Гиперонимы
      • 1.3.5 Гипонимы
      • 1.3.6 Меронимы
    • 1.4 Этимология
    • 1.5 Перевод

Русский [ править ]

Тип и синтаксические свойства сочетания [ править ]

Устойчивое сочетание (термин). Используется в качестве именной группы.

Произношение [ править ]

  • МФА: [ ˈdvʲiɡətʲɪlʲ ˈvnutrʲɪnʲ(ː)ɪvə zɡɐˈranʲɪɪ̯ə ]

Семантические свойства [ править ]

Значение [ править ]
  1. техн.тепловая машина, в которой сжиганиетоплива и нагреваниерабочего телапроисходятвнутрицилиндра ◆ Какой бы ни была передача энергии, до сих пор основу силовой установки поезда составляет двигатель внутреннего сгорания , дизель или турбогенераторная установка. Александр Шатров, «Мотор-колесо», 1975 г. // «Техника — молодёжи» ◆ И химический аккумулятор, и двигатель внутреннего сгорания изобретены примерно в одно и то же время ― в третьей четверти прошлого века. Варшавский И., Гуревич М., «Второе открытие электромобиля», 1967 г. // «Химия и жизнь»
Синонимы [ править ]
  1. ДВС
Антонимы [ править ]
  1. двигатель внешнего сгорания
Гиперонимы [ править ]
  1. тепловая машина, двигатель
Гипонимы [ править ]
  1. компрессорный двигатель, двигатель с воспламенением от сжатия (ДВС, дизель)
Меронимы [ править ]
  1. картер, цилиндр, поршень, шатун, поршневой палец, коленчатый вал, карбюратор, подшипник, свеча

Этимология [ править ]

Перевод [ править ]

  • Английский en: internal combustion engine
  • Арабский ar: محرك الاحتراق الداخلي
  • Африкаанс af: suier binnebrandenjin
  • Баскский eu: barne-errekuntzako motorra, eztanda motorra
  • Болгарский bg: двигател с вътрешно горене
  • Вьетнамский vi: động cơ đốt trong
  • Иврит he: מנוע בעירה פנימית
  • Идиш yi: אינטערנל קאמבאסטשען ענזשין
  • Идо и io: motoro per interna explozo
  • Индонезийский id: mesin pembakaran dalam
  • Исландский is: sprengihreyfill, brunahreyfill
  • Испанский es: motor de combustión interna, motor de explosión
  • Итальянский it: motore a combustione interna
  • Корейский ko: 내연 기관
  • Латышский lv: iekšdedzes dzinējs
  • Литовский lt: vidaus degimo variklis
  • Люксембургский lb: verbrennungsmotor
  • Немецкий de: Brennkraftmaschine; Verbrennungsmotor
  • Нидерландский nl: verbrandingsmotor
  • Норвежский no: intern forbrenningsmotor
  • Польский pl: silnik o spalaniu wewnętrznym
  • Португальский pt: motor a explosão
  • Словацкий sk: spaľovací motor
  • Словенский sl: motor z notranjim zgorevanjem
  • Тамильский ta: உள் எரி பொறி
  • Турецкий tr: içten yanmalı motor
  • Украинский uk: двигун внутрішнього згоряння
  • Финский fi: polttomoottori
  • Французский fr: moteur à combustion interne
  • Чешский cs: motor s vnitřním spalováním
  • Шведский sv: förbränningsmotor
  • Эсперанто и eo: eksplodmotoro
  • Эстонский et: sisepõlemismootor
  • Японский ja: 内燃エンジン

Это незаконченная статья. Вы можете помочь проекту, исправив и дополнив её .
В частности, следует уточнить сведения о:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector