Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Различают естественные и искусственные механические характеристики электродвигателей

Различают естественные и искусственные механические характеристики электродвигателей

Естественная механическая характеристика асинхронного двигателя

Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения

Естественная механическая характеристика двигателя постоянного тока параллельного возбуждения

Естественные и искусственные механические характеристики электродвигателей

ПЛАН ЛЕКЦИИ

Механические характеристики электродвигателей

ТЕМА ЛЕКЦИИ 10

2. Жесткостьмеханических характеристик

6. Механическая характеристика синхронного двигателя.Область применения синхронных двигателей на судах

Механической характеристикой двигателя, независимо от рода тока, называют зависимость угловой скорости вала электродвигателя ω (далее – двигателя) от электромагнитного момента двигателя , т.е зависимость ω ( ).

Здесь следует сделать важное замечание: в соответствии с уравнением моментов, в установившемся режиме = , электромагнитный момент двигателя уравновешивается статическим моментом (моментом сопротивления) механизма. Это означает, что величина электромагнитного момента двигателя полностью зависит от момента механизма – чем больше тормозной момент механизма, тем больше вращающий момент двигателя, и наоборот.

То есть, для любого двигателя входной величиной является момент механизма, а выходной – его скорость.

Скорость почти всех электродвигателей является убывающей функцей момента двигателя, то есть с увеличением момента скорость уменьшается [чил 33]. Но степень изменения скорости у разных электродвигателей различна и характерезуется параметром жесткость механические характеристик.

Жёсткость механические характеристик электропривода β – это отношение разности электромагнитных моментов двигателя при разных скоростях к соответствующуй разности угловых скоростей электропривода.

β = (М2 М1)/( ω2 ω1)= Δ / Δω

Обычно на рабочих участках механические характеристикиэлектродвигателей имеют отрицательную жёсткость β

Каждый электродвигатель имеет одну естественную и множество искусственных характеристик. Число искусственных характеристик зависит от числа ступеней регулирующего элемента, например, числа ступеней регулировочного реостата в цепи обмотки якоря двигателя постоянного тока. Если у двигателя таких ступеней – пять, то такой двигатель имеет шесть характеристик – пять искусственных и одну естественную.

Искусственные механические характеристики применяются для получения таких режимов работы двигателя, как регулирование скорости, реверс, электрическое торможение, и др.

Рассмотрим естественные механические характеристики двигателей разных типов.

Рис. 10.1 Естественная механическая (а) и угловая (б) характеристики синхронного двигателя; θ – угол отставания оси ротора от оси магнитного поля обмотки статора

ЕСТЕСТВЕННАЯ МЕХАНИЧЕСКАЯ ХАРАКТЕРИСТИКА. АСИНХРОННОГО ДВИГАТЕЛЯ

Аналитическую зависимость механической характеристики асинхронного двигателя М = / (s) получим, если в уравнение (11.80) подставим значения / (11.76) и cos cp (II 77):

Пользоваться таким уравнением сложно. Для упрощения урав­нения механической характеристики активным сопротивлением фазы статор-а относительно величины индуктивного сопротивле­ния X]. + -^2 можно пренебречь (Ях ^ 0). Тогда значение крити­ческого скольжения^, при котором двигатель имеет максималь­ный (критический) момент Мк, находят, приравняв по общему пра­вилу производную dMJds нулю (dMJds = 0):

Подставляя это значение в уравнение (11.82), находим

М“ = ± 2ш0 (Х1 + Х’2) • (И’8^

Знак «+» в этих уравнениях относится к двигательному режиму, а знак «—» к генераторному.

Учитывая в исходном уравнении (11.82) принятое допущение

= 0 и что = 2МК (Хх — j — Ху, получим приближенное

аналитическое выражение механической характеристики асин — хронного двигателя, удобное для расчетов:

Построенная по ‘этой формуле механическая характеристика асинхронного двигателя представлена на рис. 26.

На характеристике (см. рис. 26, а) область двигательного ре­жима соответствует изменению скольжения ОТ S = 0 ДО S = 1,

область режима противовключения от s — 1 до ь = — f оо и область генераторного режима с отдачей энергии в сеть — от s = 0 до s = — оо. При этом участок характеристики от s = О до s = s,

  • ИСКУССТВЕННЫЕ МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ
  • АСИНХРОННЫЕ ДВИГАТЕЛИ
  • Рекомендации по выбору бизнеса
  • Строительное оборудование МСД
  • Тепловые насосы

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД В ПРОКАТНОМ ПРОИЗВОДСТВЕ

ЧАСТОТНЫЕ МЕТОДЫ АНАЛИЗА

■Ч- В случае подачи на вход разомкнутой одноконтурной системы гармониче­ского колебания синусоидального типа с угловой частотой ш (для удобства сину­соидальную функцию, изображаемую на комплексной плоскости вектором, за­меняют показательной функцией с …

ОСОБЕННОСТИ ПЕРЕХОДНЫХ РЕЖИМОВ

В замкнутых системах автоматического управления под дей­ствием различных возмущений возникает переходный процесс, характеризующий переход системы из одного установившегося состояния к другому. Характер переходного процесса зависит от свойств и характеристик системы, …

ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ ДЛЯ РЕГУЛИРОВАНИЯ СКОРОСТИ ВРАЩЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Электромашинные преобразователи частоты включают вра­щающиеся электрические машины, имеют механический метод управления частотой, громоздки в своем исполнении. Развитие силовой полупроводниковой техники привело к созданию регули­руемых электроприводов переменного тока, получающих питание от …

Продажа шагающий экскаватор 20/90

Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др.) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788

Читать еще:  Двигатель 405 инжектор заводиться и глохнет

Механические характеристики асинхронных двигателей

Асинхронные двигатели являются основными двигателями, которые наиболее широко используются как в промышленности, так и в агропромышленном производстве. Они обладают существенными преимуществами перед другими типами двигателей: просты в эксплуатации, надежны и имеют низкую стоимость.

В трехфазном асинхронном двигателе при подключении обмотки статора к сети трехфазного переменного напряжения создается вращающееся магнитное поле, которое, пересекая проводники обмотки ротора, наводит в них ЭДС, под воздействием которой в роторе появляются ток и магнитный поток. Взаимодействие магнитных потоков статора и ротора создает вращающий момент двигателя. Появление в обмотке ротора ЭДС, следовательно, и вращающего момента возможно только при наличии разности между скоростями вращения магнитного поля статора и ротора. Это различие в скоростях называют скольжением.

Скольжение асинхронного двигателя — это мера того, насколько ротор отстает в своем вращении от вращения магнитного поля статора. Оно обозначается буквой S и определяется по формуле

, (2.17)

где w — угловая скорость вращения магнитного поля статора (синхронная угловая скорость двигателя); w — угловая скорость ротора; ν – частота вращения двигателя в относительных единицах.

Скорость вращения магнитного поля статора зависит от частоты тока питающей сети f и числа пар полюсов р двигателя: . (2.18)

Уравнение механической характеристики асинхронного двигателя можно вывести на основе упрощенной схемы замещения, приведенной на рис.2.11. В схеме замещения приняты следующие обозначения: Uф — первичное фазное напряжение; I1 — фазный ток в обмотках статора; I2́ — приведенный ток в обмотках ротора; X1 – реактивное сопротивление обмотки статора; R1, R 1 2 – активные сопротивления в обмотках соответственно статора и приведенного ротора; X2΄- приведенное реактивное сопротивление в обмотках ротора; R, X — активное и реактивное сопротивления контура намагничивания; S – скольжение.

В соответствии со схемой замещения на рис.2.11 выражение для тока ротора имеет вид

. (2.19)

Рис. 2.11. Схема замещения асинхронного двигателя

Вращающий момент асинхронного двигателя может быть определен из выражения Мw S=3(I2΄) 2 R2΄ по формуле

. (2.20)

Подставив значение тока I2΄ из формулы (2.19) в формулу (2.20), определяем вращающий момент двигателя в зависимости от скольжения, т.е. аналитическое выражение механической характеристики асинхронного двигателя имеет вид

. (2.21)

График зависимости M=f(S) для двигательного режима представлен на рис.2.12. В процессе разгона момент двигателя изменяется от пускового Mn до максимального момента, который называется критическим моментом Mк. Скольжение и скорость двигателя, соответствующие наибольшему (максимальному) моменту, называют критическими и обозначают соответственно Sк , wк. Приравняв производную нулю в выражении (2.21), получим значение критического скольжения Sk, при котором двигатель развивает максимальный момент:

, (2.22)

где Хк=(Х12΄) – реактивное сопротивление двигателя.

Рис.2.12. Естественная механическая характеристика асинхронного электродвигателяРис.2.13. Механические характеристики асинхронного электродвигателя при изменении напряжения сети

Для двигательного режима Sк берется со знаком “плюс”, для сверхсинхронного — со знаком “минус”.

Подставив значение Sк (2.22) в выражение (2.21), получим формулы максимального момента:

а) для двигательного режима

; (2.23)

б) для сверхсинхронного торможения

(2.24)

Знак “плюс” в равенствах (2.22) и (2.23) относится к двигательному режиму и к торможению противовключением; знак “минус” в формулах (2.21), (2.22) и (2.24) — к сверхсинхронному режиму двигателя, работающего параллельно с сетью (при w>w).

Как видно из (2.23) и (2.24), максимальный момент двигателя, работающего в режиме сверхсинхронного торможения, будет больше по сравнению с двигательным режимом из-за падения напряжения на R1 (рис. 2.11).

Если выражение (2.21) разделить на (2.23) и произвести ряд преобразований с учетом уравнения (2.22), можно получить более простое выражение для зависимости M=f(S):

, (2.25)

где коэффициент.

Пренебрегая активным сопротивлением обмотки статора R1, т.к. у асинхронных двигателей мощностью более 10 кВт сопротивление R1 значительно меньше Хк, можно приравнять а ≈ 0, получаем более удобную и простую для расчетов формулу определения момента двигателя по его скольжению (формула Клосса):

. (2.26) Если в выражение (2.25) вместо текущих значений M и S подставить номинальные значения и обозначить кратность моментов Mк/Mн через kmax, получим упрощенную формулу для определения критического скольжения:

. (2.27)

В (2.27) любой результат решения под корнем брать со знаком “+”, ибо при знаке “-” решение данного уравнения не имеет смысла. Уравнения (2.21), (2.23), (2.24), (2.25) и (2.26) являются выражениями, описывающими механическую характеристику асинхронного двигателя (рис. 2.12).

Искусственные механические характеристики асинхронного двигателя можно получить за счет изменения напряжения или частоты тока в питающей сети либо введения добавочных сопротивлений в цепь статора или ротора.

Рассмотрим влияние каждого из названных параметров (U, f, Rд) на механические характеристики асинхронного двигателя.

Влияние напряжения питающей сети.Анализ уравнений (2.21) и (2.23) показывает, что изменение напряжения сети влияет на момент двигателя и не влияет на его критическое скольжение. При этом момент, развиваемый двигателем, изменяется пропорционально квадрату напряжения:

М≡ kU 2 , (2.28)

где k – коэффициент, зависящий от параметров двигателя и скольжения.

Механические характеристики асинхронного двигателя при изменении напряжения сети представлены на рис 2.13. В данном случае Uн= U1>U2>U3.

Влияние добавочного внешнего активного сопротивления, включенного в цепь статора. Добавочные сопротивления вводят в цепь статора для уменьшения пусковых значений тока и момента (рис.2.14а). Падение напряжения на внешнем сопротивлении является в данном случае функцией тока двигателя. При пуске двигателя, когда величина тока большая, напряжение на обмотках статора снижается.

Читать еще:  Что нужно чтобы сделать вечный двигатель

Рис.2.14. Схема включения (а) и механические характеристики (б) асинхронного двигателя при включении активного сопротивления в цепь статора

При этом согласно уравнениям (2.21), (2.22) и (2.23) изменяются пусковой момент Мп, критический момент Мк и угловая скорость ωк. Механические характеристики при различных добавочных сопротивлениях в цепи статора представлены на рис.2.14б, где Rд2>R д1.

Влияние добавочного внешнего сопротивления, включенного в цепь ротора. При включении добавочного сопротивления в цепь ротора двигателя с фазным ротором (рис.2.15а) его критическое скольжение повышается, что объясняется выражением .

Рис.2.15. Схема включения (а) и механические характеристики (б) асинхронного двигателя с фазным ротором при включении добавочного сопротивления в цепь ротора

В выражение (2.23) величина R / 2 не входит, так как эта величина не влияет на МК, поэтому критический момент остается неизменным при любом R / 2. Механические характеристики асинхронного двигателя с фазным ротором при различных добавочных сопротивлениях в цепи ротора представлены на рис.2.15б.

Влияние частоты тока питающей сети. Изменение частоты тока влияет на величину индуктивного сопротивления Xк асинхронного двигателя и, как видно из уравнений (2.18), (2.22), (2.23) и (2.24), оказывает влияние на синхронную угловую скорость w, критическое скольжение Sк и критический момент Mк. Причем ; ; wºf, где C1, C2 — коэффициенты, определяемые параметрами двигателя, не зависящими от частоты тока f.

Механические характеристики двигателя при изменении частоты тока f представлены на рис.2.16.

Дата добавления: 2019-02-08 ; просмотров: 1058 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Расчет и построение естественных электромеханической и механической характеристик двигателя с последовательным возбуждением , страница 3

Данные двигателя: U = 380/220; Pн = 11 кВт; nн = 953 об/мин; R1 = 0.415 Ом;
x1 = 0.465 Ом; R2 = 0.132 Ом; x2 = 0.27 Ом; Е = 200 В; I = 35.4 А; .

Решение

Расчет механических характеристик асинхронного двигателя будем вести по уточненной формуле Клосса:

где Мк — критический момент; Sk — критическое скольжение; .

Коэффициент приведения сопротивлений:

.

Приведенные значения сопротивлений ротора:

Индуктивное сопротивление короткого замыкания:

Ом.

Критический момент двигателя при номинальном значении питающего напряжения:

, где — скорость идеального холостого хода.

Критическое скольжение на естественной характеристике:

Уравнение естественной механической характеристики:


С помощью данного уравнения рассчитана естественная механическая характеристика асинхронного двигателя (рис. 9.23, кривая 1). Для построения реостатной механической характеристики при R2доб = 0.3 R определим суммарное приведенное сопротивление роторной цепи:

, где Ом — величина дополнительного сопротивления, вводимого в цепь ротора.

Критическое скольжение на реостатной характеристике:

.

Уравнение реостатной характеристики:

.

Соответствующая этому уравнению реостатная механическая характеристика иимеет вид (рис. 9.23, кривая 2).

Для построения механической характеристики при U1 = 0.7 U = 0.7 × 220 = 154 В определим критический момент:

.

Уравнение искусственной механической характеристики при U1 = 154 В имеет вид:

.

Соответствующая механическая характеристика имеет вид (рис. 9.23, кривая 3).

Пример 17

Для двигателя, рассмотренного в примере 16, рассчитать сопротивления пускового реостата при нормальном режиме пуска в три ступени и при МС = МН, пользуясь аналитическим методом.

Решение

Так как режим пуска нормальный, то переключающий момент (М2) должен превышать статический на (10 — 20)%.

Принимаем М2* = 1.2. Отношение максимального момента при пуске (М1) к моменту переключения М2 находим по формуле /2/:

.

Осуществляем проверку на максимальный (пиковый) момент, который должен быть меньше критического:

Сопротивление ступеней пускового реостата при включении их в одинарную звезду:

Пример 18

Для двигателя, рассмотренного в примере 16, рассчитать сопротивления пускового реостата при нормальном режиме пуска в три ступени и при МС = МН, пользуясь приближенным графическим методом.

Решение

При расчете пусковых сопротивлений приближенным графическим методом исходят из прямолинейности механической характеристики, и расчет ведется, как для двигателя постоянного тока с параллельным возбуждением.

На рис. 9.24 построены пусковые характеристики двигателя для указанных условий пуска.

Максимальный момент при пуске:

По графику рис. 9.24 определяем сопротивления ступеней пускового реостата:


Сравнивая результаты расчетов сопротивлений в примерах 17 и 18, видим, что расхождение составляет не более 5 %. Поэтому при практических расчетах можно пользоваться любым из рассмотренных методов.

Пример 19

Для асинхронного двигателя с короткозамкнутым ротором рассчитать и построить естественную и искусственные механические характеристики для двух значений частот тока статора f1 = 35 Гц и f2 = 20 Гц, при регулировании напряжения на статоре по пропорциональному закону: U/f = const.

Данные двигателя: PН = 22 кВт; U = 380/220 В; nН = 727 об/мин; R1 = 0.18 Ом;
X1 = 0.624 Ом; R`2 = 0.153 Ом; X`2 = 0.485 Ом.

Решение

Расчет механических характеристик будем вести согласно методике, приведенной в /2, 11/. При пропорциональном законе частотного регулирования U/f = const электромагнитный момент двигателя определяется по формуле:

где m — число фаз статора; U — фазное номинальное напряжение статора при частоте 50 Гц; f* = f/fН — относительная частота; Сf — коэффициент зависящий от частоты f*.

Механическая характеристика асинхронного двигателя

Механическая характеристика асинхронного двигателя это зависимость частоты вращения вала двигателя от момента на его валу n2=f(M) или S=f(M). Механическая характеристика изображена на рис. 13. На характеристике можно выделить четыре характерные точки:

1 Точка идеального холостого хода. В ней М=0, S=0;

Читать еще:  Громко работает двигатель на 2000 оборотах

2 Точка номинального режима работы. В ней М=МН, S=SН. Значения n и МН можно определить по каталожным данным двигателя;

3 Точка максимального или критического момента. В ней М=Мm, S=SK. Данная точка характеризует перегрузочную способность двигателя.

Рис. 13

В каталогах для определения параметров данной точки приводится величина кратности критического момента двигателя:

.

Величина кратности позволяет определить максимально возможный момент двигателя.

4. Точка пуска. В ней М=МП, S=1. Данная точка характеризует пусковые свойства двигателя. В каталогах для определения пусковых свойств приводится величина кратности пускового момента двигателя:

.

В каталогах приводится также коэффициент кратности пускового тока

который позволяет определить величину тока двигателя в момент пуска.

Синхронные машины

Синхронные машины как двигатели применяются обычно в приводах большой мощности (более 600 кВт) или как микродвигатели, где требуется строгое постоянство скорости: электрочасы, самопишущие приборы и др. Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами, часто называемыми турбогенераторами (неявнополюсными машинами с частотой вращения ротора не ниже 1500 мин -1 ). Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения. Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

Схема синхронной машины показана на рис. 14. Синхронная машина отличается от асинхронной тем, что ток в обмотке ротора появляется не при вращении ее в магнитном поле статора, а подводится к ней от постороннего источника постоянного тока. Статор синхронной машины выполнен так же, как и асинхронной, и на нем обычно расположена трехфазная обмотка. Обмотка ротора в синхронной машине создает магнитный поток возбуждения и называется обмоткой возбуждения. Вращающаяся обмотка ротора соединяется с внешней цепью источника постоянного тока с помощью контактных колец и щеток. Обмотка якоря в машине (генераторе) — это обмотка, в которой индуцируется ЭДС и к которой присоединяется нагрузка.

Рис. 14. Схема синхронной машины:

В — обмотка возбуждения, Uв — напряжение В цепи возбуждения

Результирующий магнитный поток создается совместным действием обмоток возбуждения и статора и вращается с той же частотой, что и ротор, поэтому такие машины называются синхронными.

В схеме на рис. 14 статор является якорем, а ротор — индуктором (возбудителем), но может быть и обращенная схема, в которой статор — индуктор, а ротор — якорь как у машины постоянного тока.

В машине с неподвижным якорем применяются две разновидности ротора: явнополюсный ротор имеет явно выраженные полюсы, неявнополюсный ротор не имеет явно выраженных полюсов.

Рис. 15.Принцип устройства явнополюсной (а) и неявнополюсной (б) синхронной машины

/ — статор (якорь), 2 — ротор (индуктор), 3 — обмотка возбуждения

Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.

При вращении ротора с частотой n2 его магнитное поле возбуждения наводит в статоре ЭДС E1, частота которой

Из формулы следует, что чем больше число пар полюсов синхронной машины p*, тем меньше должна быть ее скорость вращения п для получения заданной частоты fi.

Поэтому синхронные генераторы обычно выпускают явнополюсными с большим числом пар полюсов.

Синхронный двигатель несколько сложнее, чем асинхронный, кроме того, требуются два вида тока – переменный и постоянный. Такие двигатели обычно выпускаются большой мощности и имеют большие габариты. Синхронные двигатели имеют проблемы пуска, обусловленные введением ротора в синхронный режим при запуске двигателя. Возможны следующие способы пуска синхронного двигателя: асинхронный пуск на полное напряжение сети и пуск на пониженное напряжение через автотрансформатор. При асинхронном пуске в момент включения (подключения обмоток статора к системе трехфазного тока) обмотки ротора не соединены с источником постоянного тока, а замкнуты накоротко. Двигатель при этом становится по принципу действия асинхронным. После разгона ротора его замкнутые обмотки размыкаются и подключаются к источнику постоянного тока.

Вместе с тем синхронный двигатель обладает рядом преимуществ, что позволяет применять его в ряде случаев вместо асинхронного.

1. Основным достоинством синхронного электродвигателя является возможность получения оптимального режима по реактивной энергии, который осуществляется путем автоматического регулирования тока возбуждения двигателя. Синхронный двигатель может работать, не потребляя и не отдавая реактивной энергии в сеть, при коэффициенте мощности (cos фи) равным единице. Если для предприятия необходима выработка реактивной энергии, то синхронный электродвигатель, работая с перевозбуждением, может отдавать ее в сеть.

2. Синхронные электродвигатели менее чувствительны к колебаниям напряжения сети, чем асинхронные электродвигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высокую перегрузочную способность. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя.

4. Скорость вращения синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.

Механическая характеристика синхронного электродвигателя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector