Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Голая правда о технологии Mazda SkyActive

Голая правда о технологии Mazda SkyActive

Компания Мазда не так давно действительно сделала бензиновый атмосферный двигатель с рекордной степенью сжатия — 14:1, достигнутой в том числе и за счет «улучшения вентиляции цилиндров» — оригинальной доработки системы выпуска. Снижение «средней температуры цикла» позволило вроде бы бороться и даже победить «неизбежную детонацию».

Степени сжатия практически всех современных атмосферных моторов (которых уже скоро и вовсе не останется) достигли критических величин в 10,5-11* единиц еще лет 20 назад и остаются практически неизменны с того момента (хороший пример — моторы BMW M50 и BMW S50). Рекордные же показатели, находящиеся в общем-то на грани теоретической детонации, чаще всего демонстрируют немногочисленные «докрученные» моторы спортивных автомобилей. Так или иначе, в мировом двигателестроении до недавнего времени существовали единицы моторов с СЖ около 12.

Зачем же, почему и чем именно важен этот показатель? Зачем стране такие рекорды?

*Здесь и далее говорим только про атмосферные моторы.

Важность степени сжатия можно оценить рассмотрев прямой показатель эффективности двигателя — крутящий момент приведенный к объему. Понятно, что на деле это может быть лишь точка, или же довольно узкий участок на моментной характеристике — нам важна лишь максимально достигнутая цифра. Около 20 лет назад, BMW одной из первых добилась соотношения 1 Нм на 10 кубиков рабочего объема. И прогресс в эффективности на этом фактически остановился. Компании начали больше заниматься экологией и интегральной характеристикой момента — работать с фазами газораспределения и их эффективностью. Фазовращателями просто «раскатали» моментную характеристику влево и вправо. Про все это я уже говорил.

На момент 2012 года, не существует атмосферного гражданского мотора с характеристиками существенно превышающими «золотое» соотношение эффективности — 1 Нм на 10 куб.см. рабочего объема. Моторы получающие хотя бы на 7-10% больше — дожаты до предела — это привелегия спортивных двигателей Ferrari, Porsche, BMW Motorsport. Тут чаще всего или помудрили с фазами, или выставили критические углы зажигания ну и степень сжатия, разумеется, по верхней возможной границе сделали.

Массовый же потребитель в основном ориентируется на гонку лошадиных сил и фактически не замечает, что продают-то ему почти тот же самый мотор, если не хуже. Разумеется, он стал ЕВРО4, старт-стоп и чего-то там еще, но эффективность осталась такая же, если не ниже.

Лишние 10-20 лошадиных сил, по сравнению с предыдущей моделью, подняты заменой прошивки с сопутствующим добавлением оборотов. Также, возможно, конструкторы чуть поиграли с фазами — приподняли холостые — сдвинули всю характеристику вправо. По такому пути идут все производители: так или иначе, именно такова главная тенденция в ретроспективе развития мирового моторостроения за последние 20-30 лет.

Вернемся к понятию «степень сжатия» и вспомним волговский «ЗМЗ-21», мотор американской технологии 50-х годов: СЖ 6,7:1, фактически — обычный распространенный в то время «американец» советского изготовления. Переваривал бензины от А-66 до А76 (современный — АИ-80). На нем был достигнут момент около 167 Нм при рабочем объеме около 2,44 л. BMW в 1991 году примерно с такого же объема двигателя M50B25 снимали привычные сейчас 250 Нм. Прогресс по степени сжатия — примерно полуторакратный. Прогресс по моменту. практически те же 1,5 раза! Линейная зависимость. Ну так давайте увеличим СЖ еще в 1,5 раза, примерно до 15 единиц и мы получим что-нибудь около 375 Нм?!

Ничего подобного: на самом деле, эффективность двигателя зависит от степени сжатия нелинейно. К 10-11 единицам теоретическая кривая эффективности входит в зону насыщения и к условным 12,5 единицам на графике наступает перегиб — дальнейший рост происходит крайне неохотно. Об этом же говорит и сама Мазда:

К чему я все это? Мазда обещает СЖ 14:1? Рекорд? Разберемся, по сравнению с чем?

Практически все современные моторы оснащены непосредственным вспрыском. Послойное смесеобразование, использование дополнительной «обычной» форсунки, оптимизация камеры сгорания — все это пути для понижения температуры смеси — снижения склонности к детонации. Один и тот же двигатель с СЖ 11-12 может быть более, или напротив — менее склонен к детонации, в зависимости от режима его питания.

Так что берем обычный современный двигатель, редактируем его в сторону снижения детонации и получаем 12:1 с допустимой эксплуатацией на АИ-95. И не детонирует. Думаю, с обязательным ограничением на 98-й, получим и беспроблемные 12,5:1 при использовании, повторюсь, совершенно доступных технологий. То есть, если и сравниваем, при прочих равных, то сравниваем не с мотором 80-х, а с мотором 2012 года — со всеми возможными современными ухищрениями. Если сравниваем «маздовские» 14:1, то примерно с 12:1, что сегодня вполне себе норма, как видите.

Одна из ключевых технологий при этом — непосредственный впрыск и оптимизация формы камеры сгорания.

Кроме того, стоит рассматривать каждый случай в отдельности — декларируемая цифра может несколько отличаться от реалий — идеально точно геометрию камеры сгорания редко кто высчитывает. Чаще всего, указанные производителем данные о степени сжатия довольно условны, отображают, так сказать, общую тенденцию, или «среднетехнологическое» значение. Компрессия двигателей M54B22 и M54B30, или же M50B20 и M50B25, например, отличается заметно больше, чем того стоит ожидать зная указанные степени сжатия этих моторов. В Сети хватает и практических расчетов для конкретного мотора. Реальные цифры могут варьироваться в довольно широком диапазоне. Разумеется, всему есть предел и двигатель с заявленной степенью сжатия 10:1 на деле вряд ли окажется дожатым до 12:1. Учитывая естественный технологический разброс и, например, возможный нагар в камере сгорания, вы никогда не сможете точно предсказать фактическую склонность двигателя к детонации на основе одной только паспортной степени сжатия.

К чему я все это пишу: даже указанная производителем степень сжатия требует фактической проверки. Самая простая из которых — точное измерение компрессии. И вот тут, при прочих равных, можно пытаться строить теорию склонности этого ДВС к детонации. Одна-две «лишних» атмосферы и стоит выбирать следующий сорт бензина.

Хорошо, представим, что «честные» 12:1 сопоставляются с технологическим совершенством — честными и рекордными 14:1. Сравнение, допустим, полностью корректное. Что нам дадут «рекордные» дополнительные 2 единицы? Хотя бы +10% к эффективности? Ничуть не бывало: перед нами, как видно, все те же 200-205 Нм которые показывают в паспортных данных на Skyactive-G. Кстати, почему, интересно, для канадского рынка указана степень сжатия 13:1? Дефорсировали мотор? Отнюдь: показатели момента и мощности те же самые. А теперь сюрприз. Что случилось с Mazda3 с таким же мотором? Нам говорят, что «охладительный» волшебный коллектор не поместился, там стоит обычный и заявленная степень сжатия уже не 14 и даже не 13. 12:1! Все характеристики прежние, заявленная разница в моменте — 3 Нм. Полагаю, даже одинаковые двигатели могут давать такой разброс на практике. Оставили бы все как есть — чем было бы оправдать отсутствие оригинального коллектора? Если эти 3 Нм действительно соответствуют разнице «технического» прорыва по сравнению с обычным двигателем с СЖ 12:1, то оно того стоит вообще? Ради чего городили весь этот огород? 3 Нм? Что-то около 1% на моментной характеристике?

Читать еще:  Что такое фланец у асинхронного двигателя

Суровая действительно такова: двигатели MAZDA SKYACTIV-G в вариантах степеней сжатия 14:1, 13:1 и 12:1 фактически ничем друг от друга не отличаются. Да, это один и тот же мотор. Вот такой вот извращенный изощренный маркетинг. Mazda сделала совершенно обычный современный двигатель (ничем не лучше и не хуже аналогов) и завернула его в блестящую маркетинговую шелуху. Продавать же как-то надо.

Что такое фактическая степень сжатия двигателя

Газовый двигатель априори имеет меньшую мощность и худшую топливную экономичность по сравнению с базовым дизелем. Снижение мощности газового двигателя объясняется уменьшением наполнения цилиндров топливовоздушной смесью за счет замещения части воздуха газом, имеющим больший объем по сравнению с жидким топливом. Для компенсации снижения мощности применяют наддув, что требует дополнительного снижения степени сжатия. При этом уменьшается индикаторный КПД двигателя, сопровождающийся ухудшением топливной экономичности.

В качестве базового двигателя для конвертации на газ был выбран дизель семейства ЯМЗ-536 (6ЧН10,5/12,8) с геометрической степенью сжатия ε=17,5 и номинальной мощностью 180 кВт при частоте вращения коленчатого вала 2300 мин -1 .

Рис.1. Зависимость максимальной мощности газового двигателя от степени сжатия (граница детонации).

На рисунке 1 приведена зависимость максимальной мощности газового двигателя от степени сжатия (граница детонации). В конвертированном двигателе при стандартных фазах газораспределения заданная номинальная мощность 180 кВт без детонации может быть обеспечена только при значительном снижении геометрической степени сжатия с 17,5 до 10, вызывающем ощутимое уменьшение индикаторного КПД.

Избежать детонации без снижения или при минимальном снижении геометрической степени сжатия, а значит и минимальном уменьшении индикаторного КПД позволяет реализация цикла с ранним закрытием впускного клапана. В этом цикле впускной клапан закрывается до прихода поршня к НМТ. После закрытия впускного клапана при движении поршня к НМТ газовоздушная смесь сначала расширяется и охлаждается и только после прохождения поршнем НМТ и его движения к ВМТ начинает сжиматься. Потери наполнения цилиндров компенсируются за счет повышения давления наддува.

Основными задачами исследований являлось выявление возможности конвертации современного дизеля в газовый двигатель с внешним смесеобразованием и количественным регулированием с сохранением высоких мощности и топливной экономичности базового дизеля. Рассмотрим некоторые ключевые моменты подходов к решению поставленных задач.

Геометрическая и фактическая степени сжатия

Начало процесса сжатия совпадает с моментом закрытия впускного клапана φa. Если это происходит в НМТ, то фактическая степень сжатия εф равна геометрической степени сжатия ε. При традиционной организации рабочего процесса впускной клапан с целью улучшения наполнения за счет дозарядки закрывается через 20-40° после НМТ. При реализации цикла с укороченным впуском впускной клапан закрывается до НМТ. Поэтому в реальных двигателях фактическая степень сжатия всегда меньше геометрической степени сжатия.

Закрытие впускного клапана на одинаковую величину либо до, либо после НМТ вызывает одинаковое уменьшение фактической степени сжатия по сравнению с геометрической степенью сжатия. Так, например, при изменении φa на 30° до или после НМТ фактическая степень сжатия уменьшается приблизительно на 5% [4].

Изменение параметров рабочего тела в процессе наполнения

При проведении исследований были сохранены стандартные фазы выпуска, а фазы впуска менялись за счет вариации угла закрытия впускного клапана φa. В этом случае при раннем закрытии впускного клапана (до НМТ) и сохранении стандартной продолжительности впуска (Δφвп =230°) впускной клапан пришлось бы открывать задолго до ВМТ, что вследствие большого перекрытия клапанов неизбежно привело бы к чрезмерному росту коэффициента остаточных газов и нарушениям в протекании рабочего процесса. Поэтому раннее закрытие впускного клапана потребовало значительного уменьшения продолжительности впуска до 180°.

На рисунке 2 приведена диаграмма давления заряда в процессе наполнения в зависимости от угла закрытия впускного клапана до НМТ. Давление в конце наполнения pa ниже давления во впускном трубопроводе, причем понижение давления тем больше, чем раньше до НМТ закрывается впускной клапан.

При закрытии впускного клапана в ВМТ температура заряда в конце наполнения Ta несколько выше температуры во впускном трубопроводе Tk. При более раннем закрытии впускного клапана температуры сближаются, и при φa>35. 40° ПКВ заряд в ходе наполнения не нагревается, а охлаждается.

Рис.2.Влияние угла закрытия впускного клапана на изменение давления в процессе наполнения.

Оптимизация фазы впуска на режиме номинальной мощности

При прочих равных условиях наддув или повышение степени сжатия в двигателях с внешним смесеобразованием ограничиваются одним и тем же явлением — возникновением детонации. Очевидно, что при одинаковом коэффициенте избытка воздуха и одинаковых углах опережения зажигания условия возникновения детонации соответствуют определенным значениям давления pc и температуры Tc заряда в конце сжатия, зависящим от фактической степени сжатия [5].

При одинаковой геометрической степени сжатия и, следовательно, одинаковом объеме сжатия отношение pc/Tc однозначно определяет количество свежего заряда в цилиндре. Отношение давления рабочего тела к его температуре пропорционально плотности. Поэтому фактическая степень сжатия показывает, на сколько увеличивается плотность рабочего тела в процессе сжатия. На параметры рабочего тела в конце сжатия, кроме фактической степени сжатия, существенное влияние оказывают давление и температура заряда в конце наполнения, определяемые протеканием процессов газообмена, в первую очередь процесса наполнения.

Рассмотрим варианты двигателя с одинаковой геометрической степенью сжатия и одинаковой величиной среднего индикаторного давления, один из которых имеет стандартную продолжительность впуска (Δφвп=230°), а в другом впуск укорочен (Δφвп=180°), параметры которых представлены в таблице 1. В первом варианте впускной клапан закрывается через 30° после ВМТ, а во втором варианте впускной клапан закрывается за 30° до ВМТ. Поэтому фактическая степень сжатия εф у двух вариантов с поздним и ранним закрытием впускного клапана одинакова.

Параметры рабочего тела в конце наполнения для стандартного и укороченного впуска

Влияние степени сжатия на индикаторный КПД двигателя

Рис. 1
Зависимость КПД η теоретического цикла от степени сжатия

Г.Р. Рикардо рассчитал и проверил на экспериментальном двигателе зависимость индикаторного КПД от степени сжатия для чистого воздуха [2]. Результаты его опытов изображены на рис. 1. При этом делается допущение, что рабочее тело – чистый воздух и что при сгорании углеводородного топлива в среде чистого воздуха образуются только CO2 и H2O. Другое допущение предполагает, что в течение всего цикла отсутствует теплообмен со стенками цилиндра. При этих допущениях КПД такого теоретического цикла:

Читать еще:  Большое давление масла в двигателе рено

где ε – степень сжатия; k – показатель адиабаты (отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме), равный 1,4 для воздуха.

Этот КПД можно использовать для сравнения, но он значительно отличается от реально достижимых, поскольку:

В двигателе идеальные условия не могут быть выдержаны и поэтому его КПД значительно ниже. На рис. 2 кривой а обозначен КПД теоретического цикла с подводом теплоты при постоянном объёме согласно рис. 1. Кривая б показывает расчётный КПД этого же цикла для бензовоздушной смеси с 50 %-ным недостатком топлива, кривая в – с 20 %-ным недостатком топлива. Кривая г рассчитана для стехиометрической смеси бензин-воздух. Во всех расчётах циклы считались термодинамическими идеальными, т. е. принималось, что теплота подводится мгновенно в ВМТ, а теплообмен со стенками цилиндра отсутствует.

Нижняя кривая д показывает результаты измерения индикаторного КПД на опытном двигателе при степени сжатия 4 – 7. Опыты проводились на смеси с недостатком 15 % топлива, поэтому их можно сравнить с расчетной кривой е при 20 %-ном недостатке топлива. Хорошо видна разница между кривыми в и д , характеризующая потери теплоты за счет излучения, теплопередачи через стенки цилиндра и неполноты процесса сгорания.

Кривая д показывает зависимость индикаторного КПД от степени сжатия у реальных двигателей. Для всех кривых расчетом или измерением был определен показатель k .

Средняя теплоемкость газов увеличивается с ростом их температуры. Объём цилиндра после полного сгорания топлива заполнен смесью азота, углекислого газа и водяных паров. У азота, составляющего основную часть этой смеси, средняя теплоемкость увеличивается медленней, чем у других газов (таблица ниже). Быстрее всего она растет у водяного пара. Топливо, содержащее большой процент углерода, который сгорит до СО2, выгоднее, чем топливо с большим процентом содержания водорода. Большее значение средней теплоёмкости газа, входящего в состав рабочего тела, способствует тому, что теплота, подводимая к нему, повысит его температуру в меньшей степени, поскольку значительная часть этой теплоты уйдет на нагрев газа. Меньшая же максимальная температура рабочего тела снижает его давление и индикаторный КПД.

Влияние температуры на среднюю теплоёмкость сгорания углеводородного топлива

Продукты сгорания100 – 500 °C1000 °C1500 °C2000 °C2500 °C3000 °C
Азот1,001,021,0651,111,161,22
Водяной пар1,001,111,221,351,551,79
Углекислый газ1,001,1151,221,271,321,33

При температуре выше 2000 °C начинается диссоциация водяного пара на H2 и O2, а углекислого газа – на CO и O2. На этот процесс расходуется значительное количество теплоты, вследствие чего рост максимальной температуры рабочего тела тормозится. При охлаждении водород и кислород опять соединяются и образуют воду, а CO вновь превращается в CO2. Эти процессы протекают с выделением теплоты, однако полностью она не используется, так как возвращается в цикл в течение достаточно продолжительного процесса расширения.

Рис. 3
Зависимость КПД η теоретического цикла от количества теплоты, вводимой в него при постоянном объёме QV=const или при постоянном давлении Qp=const .

Зависимость КПД η теоретического цикла от соотношения долей топлива, сгоревшего при постоянном объёме V и давлении p , показана на рис. 3. Если сгорает 100 % топлива при постоянном объёме, то достигается максимальное значение КПД. Если 100 % топлива сгорает при постоянном давлении, то этот КПД минимален, так как топливо, которое догорает в процессе продолжительного расширения, для совершения работы имеет в своем распоряжении только малую часть пути, проходимого поршнем. Падение КПД особенно заметно, если при постоянном объеме сгорает менее 60 % топлива.

Влияние степени сжатия на КПД и мощность двигателя весьма значительно. Вплоть до степени сжатия ε = 10 КПД увеличивается особенно быстро. Расчетные значения КПД хотя и служат только для сравнения, но наглядно показывают замедление роста КПД при высоких степенях сжатия.

Дросселирование воздуха во впускном трубопроводе бензинового двигателя при частичной нагрузке приводит к тому, что давление конца сжатия в цилиндре значительно снижается. Так называемую реальную степень сжатия можно определить по величине давления в конце сжатия [3]. На рис. 4, а показано поле реальных степеней сжатия, полученное путем измерения давлений конца сжатия в карбюраторном двигателе с геометрической степенью сжатия ε = 8,5 . Верхняя граничная кривая показывает реальную степень сжатия при полностью открытой дроссельной заслонке в зависимости от частоты вращения двигателя n . Ниже этой кривой показано все поле реальных степеней сжатия при различных открытиях дроссельной заслонки. При большом дросселировании заряда во впускном трубопроводе значение реальной степени сжатия падает до ε = 3,5 , вследствие чего значительно уменьшается КПД. Это оказывает большое влияние на средний расход топлива при частичных нагрузках бензинового двигателя.

Рис. 4
Реальные степени сжатия в бензиновом двигателе, вычисленные по действительным значениям давления конца сжатия: Aуд — удельная работа, совершаемая в цилиндре.

Дросселирование заряда или воздуха, являющееся в бензиновом двигателе способом регулирования его нагрузки, необходимо для сохранения примерно постоянного состава топливовоздушной смеси, что обеспечивает ее надежное зажигание. С другой стороны, желательное повышение степени сжатия ограничено опасностью возникновения детонации, зависящей от давления и температуры смеси в конце хода сжатия. На рис. 5 показано изменение температур сжатой смеси в цилиндре в зависимости от частоты вращения n и степени открытия дроссельной заслонки двигателя со степенью сжатия ε = 8,5 .

Автомобильный двигатель работает большую часть времени при частичной нагрузке и поэтому очень важно улучшить расход топлива именно в этих условиях. На рис. 4, б показано поле реальных степеней сжатия при увеличении геометрической степени сжатия до ε = 12,5 . При малой нагрузке реальная степень сжатия повышается на 2,5 единицы, что соответствует улучшению КПД на 10 %.

Поршневой двигатель с простым кривошипным механизмом имеет равные между собой геометрические степень сжатия и степень расширения. Однако это свойство невыгодно при использовании энергии давления газов, которая в момент открытия выпускного клапана еще довольно высока. Поэтому еще на начальном этапе развития двигателей внутреннего сгорания искались пути использования давления газов в конце рабочего хода увеличением степени расширения. Одно из таких решений было реализовано в виде специального кривошипного механизма с тремя шатунами и двумя коленчатыми валами. Однако такие сложные механизмы имеют низкий механический КПД из-за увеличения числа подшипников, вращающихся и колеблющихся масс. Кроме того, они неработоспособны при высоких частотах вращения, поэтому их использование не принесло ожидаемого улучшения КПД.

Читать еще:  Газ 32212 двигатель 421640 расход топлива

По этой причине более выгодно использовать повторное расширение газа после его выхода из цилиндра. В настоящее время повторное расширение проводится главным образом в турбине, работающей на отработавших газах.

Различных степеней сжатия и расширения можно частично добиться регулированием моментов открытия и закрытия клапанов. Процесс сжатия начинается только после закрытия впускного клапана, поэтому большое запаздывание закрытия впускного клапана после НМТ вызывает снижение фактической степени сжатия. В то же время открытие выпускного клапана непосредственно перёд НМТ повышает степень расширения. Однако его нужно открывать заранее с тем, чтобы давление газов в цилиндре успело снизиться и при последующем выталкивании газов поршнем при его ходе вверх от НМТ к ВМТ не оказывалось большого сопротивления движению поршня.

Из этого примера видно, что таким способом нельзя достичь большой разности степеней сжатия и расширения. Если бы впускной клапан закрывался на половине хода поршня, то фактический рабочий объем двигателя (поступающее количество воздуха) снизился бы наполовину. Двигатель с объемом 2000 см 3 имел бы мощность, равную двигателю с объемом 1000 см 3 , но его масса, размеры и стоимость остались бы неизменными. Уменьшилось бы только среднее потребление топлива автомобилем, на котором он установлен.

Турбомотор мощнее атмосферника того же объема, а расход ниже на 30%: да/нет?

Эксперты «За рулем» подготовили новую порцию ответов на непраздные вопросы о двигателях.

Что считается рабочим объемом двигателя? Например, 2 литра — это значит, что в цилиндры помещаются 2 литра рабочей смеси?

Рабочий объем цилиндра — это пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Какая бы ни была сложная форма у днища поршня, на рабочий объем она никак не повлияет. Еще существует объем камеры сгорания. Это всё то пространство между головкой блока цилиндров и поршнем, которое остается в момент, когда поршень находится в верхнем положении — верхней мертвой точке.

Рабочей смеси в цилиндр может поместиться как меньше, так и больше, чем рабочий объем, — всё зависит от степени и фаз открытия клапанов, оборотов, конструкции впуска и так далее. Даже чисто геометрически — когда поршень придет в нижнюю мертвую точку в конце такта впуска, смесь имеет возможность заполнить как рабочий объем цилиндра, так и объем камеры сгорания.

Рабочий объем — это постоянная величина?

Рабочий объем определяется геометрией базовых деталей — коленвала и блока цилиндров. А вот степень сжатия конструкторы мечтают менять «на ходу». Можно — хоть и сложно — менять физическую степень сжатия, то есть соотношение рабочего объема к общему объему цилиндра и камеры сгорания. Для этого в серийном моторе Nissan VC-Turbo отодвигают блок цилиндров от нижней части с коленвалом. А можно играть фактической степенью сжатия, запуская в цилиндр меньше смеси — например, за счет регулирования фаз газораспределения. При этой схеме поршень начнет сжимать смесь в цилиндре только после того, как клапаны будут закрыты.

Как рабочий объем связан с крутящим моментом, мощностью и коэффициентом полезного ­действия (КПД)?

С ростом суммарного рабочего объема всех цилиндров увеличиваются мощность и крутящий момент двигателя. КПД многоцилиндрового двигателя несколько выше, чем одноцилиндрового — поскольку средние цилиндры изолированы от бесполезной передачи тепла в атмосферу крайними, меньше потери энергии.

Рабочий объем одного цилиндра у дизельного двигателя может быть очень большим. Например, у судовых двигателей диаметр поршня может достигать метра, а ход — 2,5 м. В такой цилиндр может забраться человек. А вот у двигателей, работающих на легком топливе, диаметр цилиндра редко превышает 100 мм. При большем диаметре велика вероятность детонации. Ход поршня обычно ненамного отличается от диаметра цилиндра.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КПД — это безразмерная величина, говорящая о степени совершенства технического устройства по части передачи энергии или ее преобразования из одной формы в другую. Обычно ее указывают в процентах. КПД паровоза — примерно 8%, двигателей внутреннего сгорания — 30–40%, тепловых электростанций — до 60%, электрических генераторов — 95%. А вот КПД любого электрического нагревателя всегда 100%. Конечная форма превращения энергии — в тепло! Что бы там ни говорили в телерекламе с уважаемым знатоком…

Верно ли, что при равных объемах атмосферного и турбированного моторов у последнего выше мощность и ниже расход на 30%?

Что касается разницы в мощности — да, примерно так. А вот расход топлива для автомобилей одного класса и поколения, с двигателями с наддувом и без него, обычно отличается процентов на 15–20.

Применение турбонаддува — очень эффективный способ создания компактных и мощных моторов. Но на гражданских автомобилях редко можно увидеть, что размер моторного отсека за счет установки наддувного мотора удалось намного сократить. То же самое и с массой силового агрегата. Ведь к весу поршневого двигателя добавляется турбокомпрессор с обслуживающими его системами и интеркулер. И только в автоспорте, где форсировка достигается высокими давлениями наддува, такие моторы намного легче и компактнее. Но ресурс их невелик.

Может ли большой рабочий объем сочетаться с малым ­размером двигателя?

Всё зависит от конструкции. Наиболее компактными получаются V‑образные моторы при малом угле развала цилиндров. Вспомним фольксвагеновские VR6, где шесть цилиндров V‑образного мотора с углом развала всего 15 градусов накрывает одна головка блока цилиндров. Компактными, но с большим рабочим объемом получаются и W‑образные двигатели. Звездообразные моторы, применявшиеся в авиации, были очень короткими — почти как одноцилиндровые.

ВЫКАЗАТЬ ЗНАКОМСТВО И УМЕНИЕ

Из обязательного постановления о порядке езды по городу С.-Петербургу на авто­мобилях от 25 июня 1910 г.):

…При проверке теоретических познаний испытуемое лицо должно выказать знакомство с работой двигателя, знание частей автомобиля и особенно частей, важных для безо­пасности езды.

…При проверке практических познаний испытуемое лицо должно выказать умение проверять тормоза и приборы управления автомобилем, привести в действие и остановить мотор.

…Автомобили в отношении управления разделяются на два класса: а — автомобили с двигателями внутреннего сгорания; б — автомобили с электрическими двигателями.

  • Полная история самых больших моторов — тут.
  • Хотите пройти техосмотр без проблем? Тогда вам нужна качественная аптечка «За рулем» с оптимальным составом и лучший огнетушитель по результатам наших тестов. Идеальным дополнением станет набор автомобилиста в удобной сумке.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector