Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы увеличения мощности электродвигателя

Способы увеличения мощности электродвигателя

Бывает, что мощности электродвигателя недостаточно для обеспечения запуска и работы какого-либо устройства. Как увеличить мощность электродвигателя? Прежде всего, следует знать причину: почему не хватает мощности — а она кроется в параметрах тока, протекающего по обмоткам агрегата. Следовательно, нужно увеличить его значение, либо включив двигатель в сеть большей частоты (если это устройство переменного тока), либо внеся некоторые конструктивные изменения (при включении в бытовую сеть). Ниже мы рассмотрим последний случай.

Как повысить мощность электродвигателя в домашних условиях

Итак, для проведения работ вам следует «вооружиться»:

  • набором проводов разного сечения;
  • тестером;
  • частотным преобразователем;
  • источником тока с изменяемой ЭДС.

Сначала необходимо подключить электродвигатель к имеющемуся у вас источнику тока и изменяемой ЭДС и увеличить ее значение. Напряжение в обмотках должно увеличиваться соответственно и поравняться со значением ЭДС (если не принимать во внимание потери в подводящих проводниках, но они незначительны).

Для расчета увеличения мощности двигателя определите значение увеличения напряжения и возведите эту цифру в квадрат. Например, если напряжение на обмотках выросло в два раза (со 110В до 220В), мощность двигателя увеличилась в четыре раза.

Иногда самый рациональный способ повысить мощность электродвигателя – перемотать обмотку. Во многих моделях это медный проводник. Вам следует взять провод из того же материала и той же длины, но большего сечения. Мощность двигателя (и ток в проводе) увеличатся во столько же раз, во сколько снизится сопротивление обмотки. Следите за тем, чтобы напряжение на обмотках оставалось неизменным.

Расчет в этом случае тоже достаточно прост. Разделите большую цифру сечения провода на меньшую. Если провод сечением 0.5 мм заменен проводом сечением 0.75 мм, показатель мощности вырастает в 1.5 раза.

Если вы включаете асинхронный трехфазный двигатель в однофазную бытовую сеть, на первую обмотку подается фаза, на второй фаза сдвигается конденсатором, на третьей сдвиг фаз отсутствует. Именно последняя обмотка создает момент вращения в противоположном направлении (тормозящий момент). Увеличить полезную мощность двигателя в этом случае можно путем отключения третьей обмотки. Это приведет к исчезновению тормозящего момента, генерируемого при работе всех обмоток, и, соответственно, повышению мощности. Данный метод удобен в том случае, когда одна обмотка у двигателя уже сгорела – двух оставшихся вам вполне хватит для подключения и обеспечения работы агрегата.

Еще лучшего результата вы достигнете, поменяв местами выводы третьей обмотки и создав таким образом момент вращения в правильном направлении. В этом случае двигатель «выдаст» более 50% мощности от номинала. Эту обмотку рекомендуется подключать через конденсатор с правильно подобранной емкостью.

У асинхронного двигателя переменного тока мощность можно увеличить, присоединив к нему частотный преобразователь, который повысит частоту переменного тока в обмотках. Значение мощности в этом случае фиксируется с помощью тестера, поставленного на режим ваттметра. Существует два вида преобразователей частоты, отличающиеся принципом работы и устройством:

  • Приборы с непосредственной связью (выпрямители). Они не подходят для мощного оборудования, но с небольшим двигателем, использующимся в быту, способны «справиться». С помощью такого устройства осуществляется подключение обмотки к сети. Выходное напряжение, образованное им, имеет частоту от 0 до 30 Гц. При этом управлять скоростью вращения привода можно только в ограниченном диапазоне.
  • Приборы с промежуточным звеном постоянного тока. Они производят двухступенчатое преобразование энергии – выпрямление входного напряжения, его фильтрацию и сглаживание и последующую трансформацию в напряжение с требуемой частотой и амплитудой при помощи инвертора. В процессе преобразования КПД оборудования может быть несколько снижен. Благодаря возможности обеспечивать плавную регулировку оборотов и выдавать на выходе напряжение с достаточно высокой частотой, преобразователи данного типа более востребованы и широко применяются в быту и на производстве.

Произведя необходимые расчеты и выбрав наиболее эффективный в вашем случае способ, вы сможете заставить двигатель работать с нужной вам мощностью. Не забывайте о мерах предосторожности.

Увеличение оборотов электродвигателя

Увеличение оборотов электродвигателя также ведет к повышению его мощности. При выборе способа увеличения оборотов учитывайте тип агрегата, особенности модели и область ее применения.

Для повышения частоты вращения коллекторного двигателя следует или уменьшить нагрузку на вал, или увеличить напряжение питания. Обратите внимание на следующие нюансы:

  • Мощность двигателя должна держаться в рамках номинала.
  • Работа коллекторного двигателя с последовательным возбуждением без нагрузки, если не снижено питание, чревата его выходом из строя, так как он может разогнаться до слишком большой скорости.
  • Увеличение оборотов с помощью шунтирования обмотки возбуждения часто приводит к сильному перегреву мотора.

Вышеуказанный способ подходит и для электродвигателей с электронным управлением обмотками (в них используется обратная связь), поскольку их свойства очень схожи с коллекторными моделями (главное различие – невозможность осуществления реверса путем переполюсовки). Все перечисленные ограничения должны соблюдаться при работе с двигателями данного типа.

В асинхронном двигателе, подключаемом непосредственно к сети, частоту вращения регулируют, изменяя напряжение питания. Этот способ не слишком эффективен, поскольку коэффициент полезного действия сильно меняется из-за нелинейного характера зависимости скорости от напряжения. К синхронному двигателю данный метод применять нельзя.

Трехфазный инвертор позволяет регулировать обороты электродвигателей обоих типов (синхронного и асинхронного). Прибор должен обеспечивать уменьшение напряжения при снижении частоты.

Зная, как сделать мощнее электродвигатель, вы сможете заставить оборудование, к которому он подключен, работать с гораздо большей эффективностью и КПД. Естественно, перед началом работ следует четко представлять себе номинальную мощность двигателя. Данные можно найти в паспорте или на табличке, прикрепленной к корпусу агрегата. Если они отсутствуют (или не читаемы), воспользуйтесь одним из способов определения мощности, описанных в предыдущих статьях.

Работая с электродвигателем, соблюдайте правила техники безопасности. Не допускайте его перегрева и следите, чтобы он эксплуатировался в подходящих условиях. При поломке агрегата или первых признаках неисправности проведите технический осмотр и устраните неполадки. Если проблема слишком серьезная, и вы не можете справиться с ней самостоятельно, обратитесь к специалисту. Срок службы двигателя зависит от множества факторов, но в ваших силах свести к минимуму возможность поломки и сделать так, чтобы устройство работало долго и эффективно.

Читать еще:  Возможно ли создание вечного двигателя почему

Онлайн помощник домашнего мастера

Мощность электродвигателя – методика определения и правила подбора двигателя по мощности (инструкция + фото)

  • Электродвигатели

Электродвигатель – незаменимое устройство, обеспечивающее функционирование всевозможных машин, конструкций и механизмов. Именно с его помощью происходит превращение энергии электрической в полезную энергию кинетическую. Электродвижок используется для поддержания работы различных насосных систем, машин, технических средств, вентиляционного оборудования, установок и других агрегатов.

Вследствие широкого спектра применения этого типа устройств, зачастую возникает вопрос, как правильно определить мощность электродвигателя. Это очень важный нюанс, поэтому для определения данного показателя разработано несколько методов, которые позволят произвести расчет ориентируясь на особенности и условия эксплуатации двигателя.

Краткое содержимое статьи:

Типы электродвигателей

Для начала желательно разобраться, какими же бывают модификации и модели движков. Именно от типа двигателя зависит величина мощности, которой он обладает, и другие показатели, характеризующие устройство.

Согласно общей классификации, электродвигатели бывают:

  • постоянного тока;
  • переменного тока.

Первый вид встречается редко, так как для его использования необходим источник постоянного электрического тока. Второй вариант применяется намного чаще, двигатель переменного тока востребован для обеспечения функционирования большей части современного оборудования.

Электродвижки переменного тока разделяются на синхронные и асинхронные. От модели двигателя во многом зависят основные технические характеристики устройства, например, показатель мощности у различных модификаций может варьировать от минимальных значений до 10 000 кВатт.

Выбор той или иной модели электродвигателя должен осуществляться исходя из оптимальных значений показателей для каждого конкретного случая.

Понятие мощности

Так для чего необходимо знать мощность двигателя? Что это за показатель, и почему на него нужно обращать внимание при выборе?

Электрическая мощность – показатель, характеризующий, насколько быстро передается или преобразуется кинетическая энергия. Представляет собой произведение напряжения сети на силу тока проводника. Единицей измерения считается 1 ватт.

Чтобы рассчитать показатель, в случае, когда по шильдикам (специальное изображение на двигателе, содержащее в себе данные обо всех основных характеристиках устройства) можно получить информацию лишь о номинальной максимальной мощности, необходимо:

  • найти данные о коэффициенте полезного действия двигателя (КПД) и коэффициенте его мощности;
  • принять к сведению взаимодействие динамических характеристик вала электродвигателя и КПД.

Обладая этими сведениями, можно с легкостью посчитать затраченную мощность, которая будет равна отношению номинальной мощности к КПД.

Обратите внимание, что энергия, которая потребляется электроприборами, включает в себя два основных типа мощностей двигателя: активную и реактивную. Активная компонента расходуется на полезную работу и образование тепла. Реактивная мощность говорит о способности деталей электродвигателя сохранять получаемую энергию.

Чтобы осуществить расчет, необходим достаточно большой набор инструментов: электрическая сеть, выступающая источником тока, линейка или специальный прибор – штангенциркуль, амперметр (прибор, позволяющий определить силу тока), динамометр, табличка, содержащая сведения о зависимости константы от числа полюсов, тахометр.

Варианты расчета показателя

Существует несколько способов и формул расчета мощности электродвигателя. Приготовив все необходимые инструменты, можно переходить к определению значения показателя одним из следующих методов:

По току электросети. Для этого электродвижок включается в сеть с фиксированным напряжением. Поочередно включая в каждую из обивок прибор амперметр, необходимо измерить работающий ток электродвигателя в единицах измерения – Амперах. Считаем, какое количество замеров было произведено, определяем сумму показателей, находим среднее значение. Полученное число перемножаем со значением напряжения в электросети, результат – мощность движка, выраженная в Ваттах.

По размерам. Для этого метода необходимо измерить длину и диаметр определенной детали – сердечника статора электродвижка и найти сведения о частоте оборачиваемости вала.

После получения сведений осуществляется приблизительный расчет по следующей формуле: Число Пи(3,14)*D*n/(120*f). На основании произведенного расчета, и найдя в справочнике постоянное число (константу), определяем мощность: P=C*D^2*I*n*10^(-6).

По тяговой силе. Для этого, с помощью тахометра необходимо измерить скорость вращения вала, его радиус (это проделывается штангенциркулем или линейкой), а также тяговое усилие электродвижка динамометром. Все полученные значения необходимо подставить в следующую формулу: P=M*w=F*2*3,14*n*r.

Для того, чтобы правильно рассчитать величину показателя тем или иным способом, можно изучить подробную инструкцию на видео или фото определения мощности электродвигателя различными методами. Это поможет вам не запутаться в осуществляемых действиях, сделать все четко и безошибочно.

Таким образом, помните, что мощность электродвигателя является основным показателем его работы, именно от неё зависит область применения устройства и выполняемые им задачи. Поэтому к расчету данного показателя необходимо подойти очень внимательно, осознавая серьезность осуществляемых действий.

Что такое номинальная мощность двигателя переменного тока

Каких-либо особых условий в плане энергосбережения, отличающих временное или постоянное загородное жилье от многоквартирного городского нет. Из бытовых приборов многие дачники и жители небольших деревень запасаются электрохлебопечками и электроприборами для очистки воды. В таких домах, как правило, существенно больше используются лампы для освещения – не только внутри дома, но и во дворе, а также на приусадебном участке (см. раздел «Энергоэффективность в комнате»). Часто используется электрический рабочий инструмент: насосы, триммеры, электрорубанки, электропилы, шредеры и т.п. В них основным рабочим элементом является электродвигатель. И вопрос энергоэффективности во многом упирается в вопрос энергоэффективности работы двигателя. Грамотно выбрать рабочий инструмент с энергоэффективным двигателем можно, обращая внимание на некоторые моменты.

В процессе эксплуатации двигателя значительные потери энергии наблюдаются в переходных режимах и в первую очередь при его пуске.

Потери энергии в переходных режимах могут быть заметно снижены за счет применения двигателей с меньшими значениями моментов инерции ротора, что достигается уменьшением диаметра ротора при одновременном увеличении его длины, так как мощность двигателя при этом должна оставаться неизменной.

Читать еще:  Двигатель 40620d технические характеристики и описание

Эффективным средством снижения потерь при пуске двигателей является пуск при постепенном повышении напряжения, подводимого к обмотке статора. Энергия, расходуемая при торможении двигателя, равна кинетической энергии, запасенной в движущихся частях электропривода при его пуске. Энергосберегающий эффект при торможении зависит от способа торможения. Наибольший энергосберегающий эффект происходит при генераторном рекуперативном торможении с отдачей энергии в сеть. При динамическом торможении двигатель отключается от сети, запасенная энергия рассеивается в двигателе и расхода энергии из сети не происходит.

Наибольшие потери энергии наблюдаются при торможении противовключением, когда расход электроэнергии равен трехкратному значению энергии, рассеиваемой в двигателе при динамическом торможении. При установившемся режиме работы двигателя с номинальной нагрузкой потери энергии определяются номинальным значением КПД. Но если электропривод работает с переменной нагрузкой, то в периоды спада нагрузки КПД двигателя понижается, что ведет к росту потерь. Эффективным средством энергосбережения в этом случае является снижение напряжения, подводимого к двигателю в периоды его работы с недогрузкой. Этот способ энергосбережения возможно реализовать при работе двигателя в системе срегулируемым преобразователем при наличии в нем обратной связи по току нагрузки. Сигнал обратной связи по току корректирует сигнал управления преобразователем, вызывая уменьшение напряжения, подводимого к двигателю в периоды снижения нагрузки.

Если же приводным является асинхронный двигатель, работающий при соединении обмоток статора «треугольником», то снижение подводимого к фазным обмоткам напряжения можно легко реализовать путем переключения этих обмоток на соединение «звездой», так как в этом случае фазное напряжение понижается в 1,73 раза. Этот метод целесообразен еще и потому, что при таком переключении повышается коэффициент мощности двигателя, что также способствует энергосбережению.

Выбор двигателя завышенной номинальной мощности ведет к снижению его технико-экономических показателей (КПД и коэффициента мощности), вызванных недогрузкой двигателя. Такое решение при выборе двигателя ведет как к росту капитальных вложений (с ростом мощности увеличивается стоимость двигателя), так и эксплуатационных расходов, поскольку с уменьшением КПД и коэффициента мощности растут потери, а, следовательно, растет непроизводительный расход электроэнергии. Применение двигателей заниженной номинальной мощности вызывает их перегрузку при эксплуатации. Вследствие этого растет температура перегрева обмоток, что способствует росту потерь и вызывает сокращение срока службы двигателя. В конечном счете возникают аварии и непредвиденные остановки электропривода и, следовательно, растут эксплуатационные расходы. В наибольшей степени это относится к двигателям постоянного тока из-за наличия у них щеточно-коллекторного узла, чувствительного к перегрузке.

Большое значение имеет рациональный выбор пускорегулирующей аппаратуры. С одной стороны, желательно, чтобы процессы пуска, торможения реверса и регулирования частоты вращения не сопровождались значительными потерями электроэнергии, так как это ведет к удорожанию эксплуатации электропривода. Но, с другой стороны, желательно, чтобы стоимость пускорегулирующих устройств не была бы чрезвычайно высокой, что привело бы к росту капитальных вложений. Обычно эти требования находятся в противоречии. Например, применение тиристорных пускорегулирующих устройств обеспечивает наиболее экономичное протекание процессов пуска и регулирования двигателя, но стоимость этих устройств пока еще остается достаточно высокой. Поэтому при решении вопроса целесообразности применения тиристорных устройств следует обратиться к графику работы проектируемого электропривода. Если электропривод не подвержен значительным регулировкам частоты вращения, частым пускам, реверсам и т.п., то повышенные затраты на тиристорное либо другое дорогостоящее оборудование могут оказаться неоправданными, а расходы, связанные с потерями энергии, — незначительными. И наоборот, при интенсивной эксплуатации электропривода в переходных режимах применение электронных пускорегулирующих устройств становится целесообразным. К тому же следует иметь в виду, что эти устройства практически не нуждаются в уходе и их технико-экономические показатели, включая надежность, достаточно высоки. Необходимо, чтобы решение по применению дорогостоящих устройств электропривода подтверждалось технико-экономическими расчетами.

Решению проблемы энергосбережения способствует применение синхронных двигателей, создающих в питающей сети реактивные токи, опережающие по фазе напряжение. В итоге сеть разгружается от реактивной (индуктивной) составляющей тока, повышается коэффициент мощности на данном участке сети, что ведет к уменьшению тока в этой сети и, как следствие, к энергосбережению. Эти же цели преследует включение в сеть синхронных компенсаторов. Примером целесообразного применения синхронных двигателей является электропривод компрессорных установок, снабжающих предприятие сжатым воздухом. Для этого электропривода характерен пуск при небольшой нагрузке на валу, продолжительный режим работы при стабильной нагрузке, отсутствие торможений и реверсов. Такой режим работы вполне соответствует свойствам синхронных двигателей.

Используя в синхронном двигателе режим перевозбуждения, можно достичь значительного энергосбережения в масштабе всего предприятия. С аналогичной целью применяют силовые конденсаторные установки («косинусные» конденсаторы). Создавая в сети ток, опережающий по фазе напряжение, эти установки частично компенсируют индуктивные (отстающие по фазе) токи, что ведет к повышению коэффициента мощности сети, а следовательно, к энергосбережению.

Насосы

Среди основных причин неэффективной эксплуатации насосного оборудования можно выделить две основные:

1. Переразмеривание насосов, т.е. установка насосов с параметрами подачи и напора большими, чем требуется для обеспечения работы насосной системы.

2. Регулирование режима работы насоса при помощи задвижек. Потребители довольно часто выбирают насос с запасом по напору, полагая, что это гарантирует работу насоса при любых условиях. В этом случае рабочая точка смещается в правую зону и выходит за пределы рабочего диапазона, что приводит к увеличению потребляемой мощности, падению КПД перегрузке электродвигателя, а также ряду проблем механического характера, что значительно повышает риск поломки агрегата.

Меры по снижению энергопотребления и их потенциальный размер

Тиристорные устройства безударного пуска по схеме регулятора напряжения

Назначение

Устройства, выполненные по принципу тиристорного регулятора напряжения (ТРН), обеспечивают ограничение скорости нарастания и значения пускового тока электродвигателя изменением углов отпирания тиристоров через систему импульсно-фазового управления (СИФУ). В течение заданного времени пуска электродвигателя происходит плавное нарастание напряжения на обмотках статора от нуля до номинального значения. Пусковой ток увеличивается плавно с заданным токоограничением, не создавая ударных электромагнитных моментов, отрицательно сказывающихся на электродвигателе и механизме.

Читать еще:  Шипение под капотом при работе двигателя

Устройства по схеме ТРН предназначены для безударного плавного пуска высоковольтных асинхронных и синхронных электродвигателей механизмов с «вентиляторной» (квадратично зависимой от скорости) характеристикой нагрузочного момента (центробежные компрессоры, насосы, вентиляторы, дымососы, эксгаустеры и другие аналогичные механизмы). Устройства имеют цифровую систему управления, обеспечивающую удобное программирование настройки параметров. В устройствах предусмотрена связь по высокопроизводительному интерфейсу RS-485 для возможности дистанционного управления от АСУ ТП. Использование удобного пользовательского интерфейса обеспечивает максимально улучшенные сервисно-эксплуатационные характеристики устройства.

Силовые высоковольтные тиристорные блоки (ВТБ) подключаются к внешним устройствам через линейный QSл и шинный QSш разъединители с заземляющими ножами. Это позволяет после запуска электродвигателя проводить необходимые работы на тиристорных блоках.

Для защиты от перенапряжений на входе устройства и параллельно тиристорным блокам установлены ограничители перенапряжений. В устройствах предусмотрены регулируемые уставки токоограничения со шкалой от 1,0 до 4,0 Iном для обеспечения возможности запуска от одного устройства до нескольких двигателей разной мощности, а также регулируемые уставки времени разгона в пределах до 60 с. Допустимые колебания напряжения вспомогательных цепей: от +10% до -40% от номинального значения, частоты 2% от номинального значения; напряжений силовых цепей 6 кВ и 10 кВ: должны соответствовать ГОСТ 13109.

Общий принцип работы СБП

При наличии сигнала «Готовность» системы управления разрешается включение головного высоковольтного выключателя ГВ, подающего силовое напряжение на устройство, и, при исправности тиристоров силовых блоков, выдается команда «Разрешение включения».

При подаче сигнала «Пуск» система управления автоматически изменяет угол управления тиристорами силовых блоков, за счет чего ток двигателя плавно нарастает до значения, необходимого для трогания двигателя и связанного с ним механизма. Это значение пускового тока стабилизируется, и двигатель разгоняется с фиксированным значением пускового тока. В зависимости от скорости для большинства механизмов этот ток составляет (1,5…4) Iном. Для механизмов с «вентиляторной» нагрузкой пусковой ток может иметь линейно-нарастающую зависимость от времени пуска.

При увеличении скорости двигателя до значения близкого к номинальному двигатель выходит на свою рабочую характеристику, и пусковой ток уменьшается до величины, определяемой фактической нагрузкой двигателя. Система управления при этом полностью открывает тиристоры силовых блоков, и на двигатель подается полное напряжение питающей сети.
После окончания отсчета времени или по спаду тока устройство выдает команду «Окончание разгона», разрешающую включение рабочего выключателя, который перехватывает ток нагрузки на себя. Получив команду «Контроль шунтирования», устройство снимает импульсы управления с тиристоров, запирая тиристоры силовых блоков, а также разрывает их цепи управления. Далее выдается команда «Окончание пуска», и происходит отключение пусковой и головной ячеек. Процесс пуска заканчивается. Повторный запуск возможен при повторной подаче команды «Пуск».

Изоляция.

Защиты устройств:

  • максимально-токовая;
  • время-токовая;
  • от превышения заданного времени пуска двигателя;
  • от обрыва фазы главных цепей и неполнофазного пуска;
  • от неисправности тиристоров;
  • от неисправности устройств формирования импульсов управления тиристорами.

Функции устройств:

  • проверка исправности тиристоров перед началом пуска двигателя;
  • плавное нарастание тока двигателя до величины начального токоограничения, обеспечивающего трогание двигателя с места;
  • формирование заданного токоограничения по времени для обеспечения разгона электродвигателя;
  • фиксация окончания разгона и выдачу сигнала на включение высоковольтного выключателя, подключающего двигатель напрямую к сети по окончании разгона;
  • контроль времени разгона двигателя и выдачу сигнала на прекращение пуска при превышении заданного времени разгона.

Режимы пуска электродвигателя:

  • дистанционный: через контроллер высшего уровня с пульта оператора в системе автоматизированного управления пуском или непосредственно с панели управления самого шкафа.
  • регулируемый (с использованием устройства) или прямой от сети (без использования устройства).

Устройства обеспечивают:

  • плавный пуск двигателей с ограничением пускового тока в процессе пуска на уровне до 4,0 Iном;
  • установку уставок токоограничения для обеспечения возможности пуска с помощью одного устройства нескольких двигателей разной мощности;
  • регулируемые уставки времени разгона (до 60 с).

Примечание:

Примечание:

Номинальное напряжение питания вспомогательных цепей СБП:

  • 3х100 В (-15…+10)%, 50 Гц от трансформатора напряжения секции шин с которой запускается электродвигатель;
  • потребляемая мощность не более 5 ВА;
  • 220 В (-15. +10)%, 50 Гц переменного тока для питания цепей управления и сигнализации, потребляемая мощность не более 800 ВА;
  • освещение (параметры сети по требованию заказчика);
  • 220 В (-15. +10)% постоянного тока для питания цепей блокировок.

Условия работы:

  • диапазон рабочих температур от плюс 1 до плюс 40 град. С, без конденсации влаги (максимальная относительная влажность воздуха 80 % при температуре 25 град. С);
  • высота над уровнем моря не более 1000 м;
  • место установки – в закрытых помещениях, при отсутствии непосредственного воздействия солнечной радиации;
  • окружающая среда не взрывоопасная, не содержащая газов, испарений, химических отложений и токопроводящей пыли в концентрациях, снижающих параметры устройств в недопустимых пределах;
  • Рабочее положение шкафов в пространстве — вертикальное. Допускается отклонение от вертикального положения не более 5 o в любую сторону.

Шкаф имеет приспособления для подъема – рым-болты. Шкафы одного типоисполнения обеспечивают взаимозаменяемость выкатных элементов и запасных частей. Допускается подрегулировка сочленяемых элементов по месту.

Входы и выходы шкафа для подключения внешних силовых цепей допускают подсоединение как медных, так и алюминиевых силовых кабелей.

Устройства имеют шкафное исполнение. Шкафы являются напольными и имеют конструкцию, обеспечивающую свободный доступ ко всем элементам, степень защиты IP20, IP32, IP54 по ГОСТ14254-96.

(8352) 39-00-10, 39-00-12

Каталог «Преобразовательная техника» 2.9 Mb

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector