Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Номинальное напряжение — ротор

Номинальное напряжение — напряжение, на которое машина рассчитана заводом-изготовителем для работы в номинальном режиме с номинальной мощностью. Номинальным напряжением ротора асинхронного двигателя с трехфазной обмоткой называют напряжение на выводах разомкнутой обмотки ротора ( напряжение на контактных кольцах) при неподвижном роторе и включенной на номинальное напряжение обмотке статора. Номинальным напряжением двухфазной обмотки ротора называют наибольшее из напряжений между контактными кольцами. Номинальным напряжением возбудительной системы машины с независимым возбуждением называют номинальное напряжение того независимого источника, от которого получается возбуждение. [16]

Соединение ОС двигателя с фазным ротором может быть проверено следующим образом. В ротор подают трехфазное симметричное напряжение, не превышающее номинальное напряжение ротора , и измеряют напряжение статора. [17]

Реле ускорения настроены таким образом, что при токе, равном пиковому, они притягивают свои якоря, а при токе, равном току переключения, их отпускают. Реле противовключения выбирается так, чтобы при напряжении, большем номинального напряжения ротора , оно притягивало свой якорь, а при напряжении, равном номинальному, отпускало. Это обеспечивает форсированное включение реле РП. После включения реле РП контакты РБ размыкаются и сопротивление У. [18]

Рекомендуется применять на них релейную форсировку возбуждения, обеспечивающую кратность не ниже 1 3 номинального напряжения ротора . [19]

Обмотку статора размыкают, а к контактным кольцам ротора подводят напряжение трехфазного тока, не превышающее номинального напряжения ротора , которое указано на щитке. При таком питании двигатель с неподвижным ротором подобен трансформатору, первичной обмоткой которого является обмотка ротора, а вторичной — обмотка статора. Включив ток в — обмотку ротора, измеряют напряжения на зажимах статора. [21]

Обмотку статора размыкают, а к контактным кольцам ротора подводят напряжение трехфазного тока, не превышающее номинального напряжения ротора , которое указано на щитке. При таком питании двигатель с неподвижным ротором подобен трансформатору, первичной обмоткой которого является обмотка ротора, а вторичной — обмотка статора. Включив ток в обмотку ротора, измеряют напряжения на зажимах статора. [23]

Под номинальным режимом работы электродвигателя понимается режим, который был предусмотрен для электродвигателя предприятием-изготовителем. Для этого режима в каталогах и паспорте двигателя указываются: номинальная полезная механическая мощность на валу ( Вт, кВт или МВт); номинальное напряжение ( В, кВ, в том числе номинальное напряжение системы возбуждения, номинальное напряжение ротора АД с контактными кольцами); номинальный ток ( А, кА, в том числе ток возбуждения, ток ротора); номинальная частота вращения ( мин 1) или номинальная угловая скорость ( рад / с); номинальный КПД ( %); номинальный коэффициент мощности. [24]

Современные АРВ являются сложными устройствами, поэтому на резервных возбудителях, используемых только при неисправностях основных систем возбуждения генераторов станции, их можно не устанавливать, что значительно упрощает коммутацию вторичных цепей при переводе машин с рабочего на резервное возбуждение и обратно. Однако и на этих возбудителях ( обычно агрегатах, состоящих из машины постоянного тока и приводного асинхронного двигателя) необходимо применять простейшие релейные устройства, действующие при значительных ( опасных по возможности нарушения устойчивости) снижениях напряжения в сети и обеспечивающих форсировку возбуждения генераторов кратностью не ниже 1 3 номинального напряжения ротора . [25]

Современные АРВ являются сложными устройствами, поэтому на резервных возбудителях, используемых только при неисправностях основных систем возбуждения генераторов станции, их можно не устанавливать, что также значительно упрощает коммутацию вторичных цепей при переводе машин с рабочего на резервное возбуждение и обратно. Однако и на этих возбудителях ( обычно агрегатах, состоящих из машины постоянного тока и приводного асинхронного двигателя) рекомендуется применять простейшие релейные устройства, действующие лишь при значительных ( опасных по возможности нарушения устойчивости) снижениях напряжения в сети и обеспечивающих форсировку возбуждения генераторов кратностью не ниже 1 3 номинального напряжения ротора . [26]

Если в ремонтной мастерской нет потенциал-регулятора, то для этих пелей может быть использован переделанный двигатель с фазным ротором соответствующей мощности и напряжения. Номинальное межфазное напряжение ротора должно соответствовать номинальному напряжению сети. Если номинальное напряжение обмоток статора больше номинального напряжения ротора , то регулировка напряжения от нуля невозможна. [27]

Следует заметить, что в особых случаях, вызываемых необходимостью повышения устойчивости энергосистем, синхронные компенсаторы могут выполняться с камерой контактных колец и автономным охлаждением камеры. Здесь применяется реверсивная тиристопная система возбуждения с кратностью форсирования 4 и выше. Выпрямительный трансформатор, как и синхронный компенсатор, получает питание от энергосистемы. Если потолочное напряжение не превышает 2.5 номинального напряжения ротора , то используется реверсивная бесщеточная система возбуждения. [28]

Читать еще:  Влияние октанового числа бензина на работу двигателя

Регулируемый электропривод по схеме АВК представлен на рис. 2.2. В этом электроприводе регулирование частоты вращения электродвигателя осуществляется изменением ЭДС, вводимой в обмотку ротора АД с фазным ротором. Энергия скольжения ротора рекуперируется в питающую электрическую сеть через преобразователь АВК. Электропривод по схеме АВК имеет некоторые особенности, определяющие целесообразность использования его в турбомашинах: мощность преобразователей АВК существенно зависит от глубины регулирования электропривода по скорости. Изменяя значения выпрямленного напряжения от нуля до номинального напряжения ротора , можно регулировать частоту вращения электродвигателя в полном диапазоне от номинального значения до нуля. Сравнительно высокие значения роторного напряжения требуют в этом случае применения сложных и громоздких преобразователей АВК. Ограниченный диапазон регулирования ( до 30 — 50 % номинального значения) позволяет использовать менее мощные и, следовательно, более простые и дешевые преобразователи. [29]

Параметры асинхронного двигателя

Для того чтобы определить возможности и способ применения асинхронного двигателя, необходимо знать его характеристики. Полный список параметров можно найти в справочнике, каталоге или обратиться на завод изготовитель. Наиболее важные данные приводятся в паспорте двигателя. Паспорт, часто его называют «шильдик», двигателя представляет собой небольшую металлическую табличку, прикрепленную к корпусу двигателя.

Номинальные параметры двигателя это параметры, которые двигатель сможет выдерживать в течении всего срока эксплуатации. К номинальным (паспортным) данным двигателя относятся:

  • Мощность на валу или механическая Рн;
  • Напряжение обмотки статора Uн;
  • Ток статора Iн;
  • Частота напряжения сети fн;
  • Частота или скорость вращения ротора nн, об/мин;
  • Номинальный КПД ηн;
  • Коэффициент мощности cos φн;

В паспорте АД обычно приводят два значения напряжения, например 380/220 В. Меньшее значение напряжения (220 В) это фазное напряжение обмотки статора. Большее значение напряжения относится к соединению обмотки статора в звезду, меньшее в треугольник. Соответственно указывают два значения тока статора. В каталогах приводят также:

  • Кратность пускового тока Iп/Iн;
  • Кратность пускового момента μп= Мп/Мн;
  • Кратность максимального момента μм = Mм/Мн;

Кратность максимального момента называется перегрузочной способностью двигателя. Для АД с фазным ротором указывают на паспорте также напряжение между контактными кольцами при разомкнутой обмотке ротора U2н и номинальный ток в обмотке ротора I2н. Величина, характеризующая степень отставания скорости вращения ротора АД n от синхронной скорости n1 называется скольжением.

Скольжение иногда выражают в процентах:

Скорость вращения ротора, об/мин:

Номинальной скорости вращения двигателя nн соответствует номинальное скольжение Sн, которое составляет несколько процентов. Следовательно, скорость вращения ротора в номинальном режиме весьма близка к синхронной. Приведем для примера соотношения синхронной и номинальных скоростей серийных двигателей n1/n : 3000/2970, 1500/1460, 1000/970 и т.д. Частота электродвижущей силы ЭДС, наведенной в роторе, и тока ротора, Гц:

Если обмотки статора и ротора имеют соответственно числа витков W1, и W2 и обмоточные коэффициенты K1, и K2, то для ЭДС получим следующие соотношения:

для ЭДС, наведенной в обмотке статора, В:

для ЭДС, наведенной в обмотке ротора в момент пуска, В:

для ЭДС, наведенной в обмотке ротора при его вращении, В:

Как видно из последнего соотношения, чем выше скорость вращения ротора (т.е. чем меньше скольжение), тем меньше ЭДС, наводимая в его обмотке. И напротив, наибольшая ЭДС наводится в роторе в момент пуска, когда ротор еще неподвижен, а скольжение равно 1. Этому режиму соответствует пусковой ток, который превышает номинальный ток серийных АД в 5-7 раз.

Двигатель, подключенный к сети, потребляет из нее активную и реактивную мощности. Активная мощность идет на создание полезной механической мощности на валу и покрытие потерь в двигателе: на нагрев обмоток, потери в стали, механические потери.

Активная мощность двигателя, Вт:

Механическая мощность на валу двигателя, Вт:

Где М — вращающий момент двигателя.

Реактивная мощность двигателя идет на намагничивание машины или создание вращающегося магнитного поля, вар:

Что такое номинальное напряжение асинхронного двигателя

Расчет тока электродвигателя

Расчет номинального тока трехфазного асинхронного электродвигателя

Для корректного выбора системы электрификации подъемно – транспортного механизма будь то троллейный шинопровод или кабельный подвод, необходимо знать номинальный ток электрической установки.

Ниже приведена форма расчета трехфазного асинхронного электродвигателя переменного тока:

Iн=Pн/√3*Uн*cosφн*ηн или Pн/1,73*Uн*cosφн*ηн,

где Рн — номинальная мощность электродвигателя (Вт),

Читать еще:  Глохнет двигатель на холостых хендай акцент

Uн — номинальное напряжение электродвигателя (В),

ηн — номинальный коэффициент полезного действия двигателя,

cos φн — номинальный коэффициент мощности двигателя.

Номинальные данные электродвигателя указываются на заводской шильде или в иной технической документации, прилагаемой к электродвигателю.

Для удобства приведем пример расчета:

Необходимо определить номинальный ток трехфазного асинхронного электродвигателя переменного тока,
если Рн = 25 кВт, номинальное напряжение Uн = 380 В, номинальный коэффициент
полезного действия ηн = 0,9, номинальный коэффициент мощности cos
φн = 0,8.

Номинальное напряжение трехфазной сети 380 В — соединение обмоток двигателя по схеме «звезда».
Номинальное напряжение трехфазной сети 220 В — соединение обмоток двигателя по схеме «треугольник».

Переводим номинальную мощность из кВт в Ватты:
Pн = 25 кВт = 1000*25 = 25000 Вт

Далее:
Iн = 25000/√3*380 * 0,8 * 0,9 = 25000/1,73*380*0,8*0,9 = 52,8 А.

Поделиться ссылкой:

  • Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
  • Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
  • Рекомендуем
  • Комментарии

IP65 степень герметичности оборудования

IP-рейтинг (Ingress Protection Rating, входная защита) — система классификации степеней защиты оболочки электрооборудования от проникновения твёрдых предметов и воды в соответствии с международным стандартом IEC 60529 (DIN 40050, ГОСТ 14254-96). К примеру, радиоуправление для крана F21-E1B имеет класс герметизации IP-65. Первая цифра означ.

МЕДЬ и МЕДНЫЙ ПРОКАТ

Марки меди и их химический состав определен в ГОСТ 859-2001. Сокращенная информация о марках меди приведена ниже (указано минимальное содержание меди и предельное содержание только двух примесей – кислорода и фосфора): Марка Медь О2 P Способ получения, основные примеси М00к 99.98 0.01 — Медные катоды:продукт электролитического рафинир.

Перевод крана на управление с пола

Перевод крана на управление с пола. При осуществлении перевода мостовых или козловых кранов, на дистанционное управление с пола могут быть применены кабельные пульты управления либо беспородные пульты управления грузоподъемными кранами. Полный перечень операций и систем контроля крановой кабины, должны соответствовать функционалу пульта, согласно РД 24.09.

Троллейный шинопровод HFP

Троллейный шинопровод HFP Описание — Контактно – защищенный троллейный шинопровод HFP H предназначен для внутренней и внешней установки. — Шинопроводы состоят из жесткого ПВХ корпуса и медных токопроводящих жил. Конструкция корпуса шинопровода и токосъемника исключают возможность перепутывания фаз. — Токосъемники выполнены в виде скользящей, холо.

Электрические машины высокого напряжения 3-10 кВ, конструкция, принцип работы, назначение

Электрические двигатели на высокое номинальное напряжение выпускаются мощностью от нескольких сот до нескольких тысяч киловатт. Более распространены асинхронные двигатели с короткозамкнутыми или фазными роторами. Синхронные двигатели встречаются значительно реже. Распространены также синхронные генераторы средней мощности с приводом от дизельных двигателей. Двигатели и генераторы высокого напряжения выпускаются отдельными отрезками серий с относительно небольшим числом типоразмеров в каждом.

Каких либо принципиальных особенностей конструкции, связанных с высоким номинальным напряжением, электрические машины высокого напряжения не имеют. Их конструктивные отличия от этектрических машин на низкое напряжение вызваны в основном большои мощностью.

Обмотка статора и конструкция ее изоляции электрических машинах с высоким напряжением резко отличайся от обмотки и ее изоляции двигателей низкого напряжения. Машины высокого напряжения выпускаются на

пряжение 3 или 6 кВ, значительно реже на напряжение 10 кВ и выше. Высокое напряжение предъявляет целый ряд требований к качеству и конструкции изоляции обмотки, строгому соблюдению изоляционных расстояний между лобовыми частями соседних катушек и между лобовыми частями обмотки и металлическими деталями корпуса, торцевых щитов и т. п.

На рис. 1 показан разрез асинхронного двигателя с фазным ротором мощностью 600 кВт, синхронной частотой вращения 1000 об/мин на напряжение 6000 В. Двигатель имеет защищенное исполнение (IР23) и предназначен для работы в закрытых помещениях при температуре не свыше 40°С; корпус двигателя 9 и подшипниковые щиты 11 литые из чугуна. Сердечник статора 7, шихтованный из листов электротехнической стали толщиной 0,5 мм, закреплен на продольных ребрах 6 корпуса с помощью двух нажимных шайб 5, которые удерживают его листы в запрессованном состоянии. Положение шайб фиксируется упорными шпонками. Сердечник состоит из отдельных пакетов, разделенных между собой радиальными вентиляционными каналами, шириной каждый 10 мм. Пазы статора открытые. Обмотка катушечная петлевая. Лобовые части обмотки 4 закреплены к бандажным кольцам 10.

Сердечник ротора 22 выполнен из листовой стали той же марки, что и статор, и насажен непосредственно на вал 24 ротора. Сердечник крепится на валу с помощью шпонки. В запрессованном состоянии листы сердечника ротора удерживают нажимные шайбы 19, которые фиксируются буртиком вала и кольцевой шпонк

Читать еще:  Внешняя скоростная характеристика двигателя ваз 1111

ой 18. В сердечнике ротора помимо радиальных каналов имеются также осевые вентиляционные каналы, по которым охлаждающий воздух, направляемый диффузорами 12, проходит к радиальным каналам ротора и статора. Напор воздуха создают вентиляционные лопатки 2, впаянные в места соединений головок стержней обмотки тора. Охлаждающий воздух засасывается внутрь корпуса через отверстия в подшипниковых щитах, закрытые решетками 17 от попадания посторонних предметов. Нагретый воздух выбрасывается из корпуса через защитную решетку 20, установленную на корпусе двигателя.

Двигатель имеет со стороны рабочего конца вала роликовый подшипник качения и с противоположной стороны шариковый подшипник качения 14. Обмотка ротора стержневая волновая. Пазы полузакрытые с узкой прорезью. Бандажи 3 на лобовых частях обмотки прижимают их к обмоткодержателям 23. Токоподвод 13 от обмотки ротора к контактным кольцам 15 проходит по внутреннему отверстию в валу. Контактные кольца закрыты кожухом 16. Коробка выводов 21 штампованная из листовой стали.

На рис. 2 изображен разрез асинхронного тихоходного двигателя с фазным ротором мощностью 1300 кВт при синхронной частоте вращения 150 об/мин на номинальное напряжение 6000 В. Это двигатель серии АП, изготовленный в 1958 г. В настоящее время двигатели этой серии не выпускают, однако многие из них находятся в эксплуатации, поэтому часто возникает необходимость их капитального ремонта с полной заменой обмоток статора и ротора.

Корпус 10 двигателя (сварной из листовой стали) закреплен болтами на фундаментной плите 21. Шихтованный сердечник статора 8 закреплен на продольных ребрах 9 корпуса. Нажимные шайбы стягиваются шпильками 6. Давление от нажимных шайб передается на листы сердечника с помощью нажимных пальцев 7. Пазы статора открытые. Обмотка петлевая, катушечная. Лобовые части обмотки 12 крепятся к бандажным кольцам 4, установленным на кронштейнах 5, ввернутых в нажимные шайбы. Шихтованный сердечник ротора 3 закреплен на втулке ротора 2. Втулка сварная, насажена на вал / и закреплена с помощью шпонок. Обмотка ротора стержневая волновая. Пазы полузакрытые с узкой прорезью. Лобовые части обмотки ротора 14 удерживаются от отгиба под действием центробежных сил бандажами 13, которые прижимают их к обмоткам держателям 15. Обмотки держателя конструктивно объединены с нажимными шайбами сердечника ротора.

Токоподвод 16 от выводных концов обмотки ротора к контактным кольцам закреплен на втулке и на валу. Контактные кольца 17 намотаны на изолированной втулке, насаженной на вал, и расложены между сердечником ротора и подшипником.

Подшипники скольжения двигателя установлены на выносных подшипниковых стойках 18.

Смазка подшипников осуществляется подачей масла под давлеНием по маслопроводу 19.

Подшипниковая стойка со стороны, противоположной приводу изолирована от фундаментной плиты и внешних маслопроводов Эта изоляция 20 предназначена для предотвращения возможности возникновения так называемых подшипниковых токов. Подшипниковые токи могут возникнуть изза разности потенциалов на концах вала двигателя, вызванной некоторой несимметрией положения ротора в магнитном поле машины. Если не изолировать одну из подшипниковых стоек, подшипниковые токи замыкаются через подшипники, стойки и фундаментную плиту. Пробивая масляную пленкуобмотки статоров асинхронных двигателей общепромышленного назначения на номинальное напряжение 220/380 и 380/660 В. Наиболее употребительными в классе электрических машин напряжением 3 кВ и выше в диапазоне мощностей от 150—250 кВт д0 4000—6000 кВт являются машины на номинальное напряжение 6300 В ±5%; широкое применение также имеют машины мощностью 2000—20 000 кВт на номинальное напряжение 10 500 Вч5%.

Рис. 2. Асинхронный двигатель с фазным ротором мощностью 1300 лс= 150 об/мин

Чем выше напряжение, тем больше объем (толщина) изоляции, накладываемой по периметру всей катушки (корпусная изоляция),в местах трения шейки вала и вкладышей подшипников, подшипниковые токи вызывают усиленный износ шейки вала и вкладышей. Изоляция подшипниковой стойки со стороны, противоположной рабочему концу вала, размыкает возможный путь подшипниковых токов.

Рассмотренный двигатель имеет большие габаритные размеры: наружный диаметр сердечника статора составляет 2900 мм. Чтобы снизить общую высоту двигателя и подшипниковых стоек, часть его корпуса размещена ниже уровня фундаментной плиты в углубление, выполненное в фундаменте. При этом высота оси вращения двигателя снижена до 600 мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector