Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Камера сгорания двигателя

Камера сгорания двигателя

Материал из ТеплоВики — энциклопедия отоплении

Камера сгорания двигателя — объём, образованный совокупностью деталей двигателя в котором происходит сжигание горючей смеси. Конструкция камеры сгорания определяется условиями работы и назначением механизма; как правило используются жаропрочные материалы. В зависимости от температуры, развиваемой в камере сгорания непрерывного действия, в качестве конструкционных материалов для их изготовления применяют:

  • до 500 °С — хромоникелевые стали;
  • до 900 °С — хромоникелевые стали с добавкой титана;
  • выше 950 °С — специальные материалы.

Камера сгорания — это замкнутое пространство, полость для сжигания газообразного, или жидкого топлива в двигателях внутреннего сгорания.
Камера сгорания газотурбинного двигателя — устройство, в котором в результате сгорания топлива повышается температура поступающего в него воздуха (газа).

Содержание

Класификация

По принципу действия

  • Непрерывного действия (для газотурбинных двигателей (ГТД), турбореактивных двигателей (ТРД), воздушно-реактивных двигателей (ВРД), жидкостных ракетных двигателей (ЖРД)).
  • Периодического действия (для поршневых двигателей внутреннего сгорания (ДВС));

Камеры сгорания непрерывного действия в свою очередь класифицируют:
По назначению

  • Основные;
  • Резервные;
  • Промежуточного подогрева;

По направлению потока воздуха и продуктов сгорания

  • прямоточные;
  • противоточные камеры сгорания (последние применяют редко из-за большого гидравлического сопротивления).

По компоновке

  • Встроенные;
  • Выносные;

По конструктивных особенностях корпуса и жаровой трубы

  • Кольцевые;
  • Трубчато-кольцевые;
  • Трубчатые;

Камеры сгорания периодического действия в свою очередь класифицируют:
По используемому топливу

По конструкции бензиновые камеры сгорания разделяют:

    • Боковая
    • Центральная
    • Полуклиновая
    • Клиновая
  • Дизельные.

По конструкции дизельные камеры сгорания разделяют:

    • Неразделенные (имеют только одно отделение, в котором происходит и смесеобразование, и сгорание топлива)
    • Разделенные (разделены на две части: основную и дополнительную, соединены между собой горловиной. При этом топливо впрыскивается в дополнительную камеру)

По способу смесеобразования

    • Обьемное (для неразделенных камер сгорания);
    • Пленочное;
    • Комбинированные.

Камера сгорания непрерывного действия

Камера сгорания непрерывного действия относятся к числу важнейших узлов авиационных и космических двигательных установок, специальных и транспортных газотурбинных установок, которые находят широкое применение в энергетике, химической промышленности, на ж.-д. транспорте, морских и речных судах.

Принцип работы

Камера сгорания является узлом газотурбинного двигателя (ГТД), в котором происходит приготовление и сжигание топливовоздушной смеси. Для приготовления топливовоздушной смеси в камеру сгорания подводится через форсунки топливо и поступает воздух из компрессора. В процессе запуска двигателя поджог топливовоздушной смеси производится электрической искрой (или пусковым устройством), а при дальнейшей работе процесс горения поддерживается непрерывно вследствие контакта образующейся топливовоздушной смеси с раскаленными продуктами сгорания. Образовавшийся в камере сгорания газ направляется в турбину компрессора.

Устойчивость и совершенство процессов в камере сгорания в значительной степени обеспечивают надежную и экономичную работу газотурбинного двигателя.

Требования, предъявляемые к камере сгорания непрерывного действия

  • Устойчивость процесса горения при всех возможных режимах и полетных условиях. Необходимо, чтобы сгорание топлива было непрерывным и не было срыва пламени или пульсационного горения, что может вызвать самовыключение двигателя. В процессе изменения режима работы двигателя и полетных условий изменяется соотношение топлива и воздуха, поступающих в камеру сгорания, т.е. изменяется качество смеси.
  • Обеспечение равномерного поля температуры газов перед турбиной. Обычно камеры сгорания имеют несколько форсунок для подвода топлива, поэтому имеется тенденция к получению зон различной температуры на выходе газов из камеры сгорания. Значительная неравномерность поля температур газов может приводить к разрушению турбинных лопаток.
  • Минимальная длина факела пламени, т.е. процесс сгорания, должен заканчиваться в пределах камеры сгорания. В противном случае пламя доходит до лопаток соплового аппарата, что может привести к их прогару.
  • Надежность в эксплуатации, большой срок службы, удобство контроля и технического обслуживания. Обеспечение длительной и надежной работы камеры сгорания достигается как рядом конструктивных мероприятий, так и строгим соблюдением правил летной и технической эксплуатации. Для максимального выполнения перечисленных требований каждому типу двигателя подбирается соответствующий тип камеры сгорания.

Камера сгорания периодического действия

Камера сгорания работающей на бензине

Конструкции камер сгорания автомобильных двигателей различны. У двигателей с верхним расположением клапанов применяют центральные камеры, а также камеры полуклинового и клинового типов. При нижнем расположении клапанов основной объем камеры сгорания смещен в сторону от оси цилиндра (Г-образная форма); такая конструкция камеры способствует усилению завихрения горючей смеси и улучшает смесеобразование. На современных двигателях широко применяют камеры сгорания полуклинового и клинового типов.

Клиновая камера сгорания — полученная из плоскоовальной наклоном клапанов для получения лучшей формы газовых каналов. Свеча зажигания в этом случае сдвинута в сторону выпускного клапана, движение заряда в камере направлено к свече. У клинообразной камеры сгорания большая часть ее объема сконцентрирована возле свечи, благодаря чему сначала должно сгорать наибольшее количество заряда, а в самой удаленной от свечи зоне камеры сгорания, где имеется опасность детонации, должно находиться сравнительно небольшое количество переохлажденной смеси в зазоре вытеснителя. Такая камера обеспечивает мягкое сгорание и низкие тепловые потери. Жесткость работы двигателя оценивается скоростью нарастания давления, т. е. повышением давления в цилиндре при повороте коленчатого вала на решающее значение имеет участок поворота, соответствующий интервалу между образованием искрового разряда (воспламенение смеси) и ВМТ. Мягким считается процесс сгорания, при котором скорость нарастания давления лежит в пределах 0,2 – 0,6 МПа на 1° угла поворота коленчатого вала. Уровень шума при работе двигателя зависит также от зазоров между поршнем и цилиндром и между валом и его подшипниками.

Широко применявшаяся ранее полуклиновая камера сгорания претерпевает в настоящее время изменения. Камера такой формы применяется у двигателей спортивных, гоночных автомобилей для достижения высокой удельной мощности. При использовании в головке цилиндра двух распределительных валов и большом угле развала клапанов можно разместить в головке цилиндра клапаны большого диаметра. При этом поверхность камеры сгорания по отношению к ее объему достаточно мала. Обеспечивается также хорошее втекание заряда через клапаны в цилиндр, поскольку ему не препятствуют стенки цилиндра или камеры сгорания. Впускной и выпускной каналы имеют небольшую длину и малую поверхность. Двигатели с такой камерой сгорания имеют довольно высокий КПД.

Камера сгорания дизельного топлива

У дизельных двигателях требования к форме камеры сгорания определяются процессом смесеобразования. Для создания рабочей смеси в них отводится очень малое время, так как почти сразу после начала впрыска топлива начинается сгорание, и остаток топлива подается уже в горящую среду. Каждая капля топлива должна войти в соприкосновение с воздухом как можно быстрее, чтобы выделение теплоты произошло в начале хода расширения.

Читать еще:  В какую сторону крутится двигатель юмз

Пленочное смесеобразование применяется в ряде конструкций камер сгорания, когда почти все топливо направляется в пристеночную зону. В центральную часть камеры сгорания попадает приблизительно 5–10% впрыскиваемого форсункой топлива. Остальная часть топлива распределяется на стенках камеры сгорания в виде тонкой пленки (10–15 мкм). Первоначально воспламеняется часть топлива, попавшая в центральную часть камеры сгорания, где обычно отсутствует движение заряда и устанавливается наиболее высокая температура. В дальнейшем, по мере испарения и смешения с воздухом, горение распространяется на основную часть топлива, направленную в пристеночный слой. При пленочном смесеобразовании требуется менее тонкое распыливание топлива. Применяют форсунки с одним сопловым отверстием. Давление впрыска топлива не превышает 17–20 МПа.

Пленочное смесеобразование по сравнению с объемным обеспечивает лучшие экономические показатели двигателя, упрощает конструкцию топливной аппаратуры.

Основным недостатком являются низкие пусковые свойства двигателя при низких температурах в связи с малым количеством топлива, участвующего в первоначальном сгорании. Этот недостаток устраняют путем подогрева воздуха на впуске или за счет увеличения количества топлива, участвующего в образовании начального очага сгорания.

Комбинированное смесеобразование получается при меньших диаметрах камеры сгорания, когда часть топлива достигает ее стенки и концентрируется в пристеночном слое. Другая часть капель топлива располагается во внутреннем объеме заряда. На поверхности камеры оседает примерно 50% топлива. При впуске в камере не создается вращательного движения заряда. Заряд приводится в движение при вытеснении его из надпоршневого пространства в камеру сгорания, и создается вихрь. Скорость движения заряда достигает 40–45 м/с.

Отличительной особенностью от пленочного смесеобразования является встречное движение струй топлива и заряда, вытесняемого из надпоршневого пространства, что способствует увеличению количества топлива, взвешенного в объеме камеры сгорания, и сближает процесс с объемным смесеобразованием. Форсунки применяют с распылителями, имеющими 3–5 сопловых отверстий

Камеры сгорания с обьемным смесеобразованием. В дизельных двигателях с такими камерами топливо впрыскивается непосредственно в камеру сгорания форсункой с рабочим давлением 15–30 МПа, имеющей многодырчатые распылители (5–7 отверстий) с малым диаметром сопловых каналов (0.15–0.32 мм). Столь высокие давления впрыска применяются ввиду того, что в данном случае распыливание топлива и перемешивание его с воздухом достигается главным образом за счет кинетической энергии, сообщаемой топливу при впрыске. Для равномерного распределения топлива в камере форсунки таких двигателей часто выполняют с несколькими отверстиями.

Требования ко всем камерам сгорания двигателя

Основные требованиями для всех камер сгорания непрерывного действия являются:

  • устойчивость процесса горения
  • высокая теплонапряжённость
  • максимальная полнота сгорания
  • минимальные тепловые потери
  • надёжная работа в течение установленного ресурса работы двигателя.

О камерах сгорания и типах смесеобразования

Большинство задач повышения качества смесеобразования в дизельных двигателях во многом решаются путем выбора формы камеры сгорания.
Различают неразделенные камеры сгорания (однополостные) (рис. 1а, б) и разделенные (рис. 1,в).

Неразделенные камеры сгорания представляют собой камеру, образованную днищем поршня, когда он находится в ВМТ, и плоскостью головки цилиндров. Неразделенные камеры сгорания применяют в основном в дизелях тракторов и грузовых автомобилей. Они позволяют повысить экономичность двигателя и его пусковые качества (особенно холодного двигателя).

Разделенные камеры сгорания имеют основную и вспомогательную полости, соединенные каналом 11. Вспомогательная камера может быть не только сферической, как показано на рис. 1, в, но и цилиндрической.
В первом случае она называется вихревой (дизели Д-50, СМД-114), во втором – предкамерой или, как ее чаще называют — форкамерной (КДМ-100).

Вихревая камера работает следующим образом. В головке цилиндров имеется шаровая полость – вихревая камера, соединенная каналом с основной камерой сгорания над поршнем. При движении поршня вверх во время сжатия воздух с большой скоростью входит в вихревую камеру по касательной к ее стенкам.
В результате этого поток воздуха закручивается со скоростью до 200 м/с. В этот раскаленный (700…900 К) воздушный вихрь форсунка впрыскивает топливо, которое воспламеняется и давление в камере резко возрастает.
Газы с недогоревшим топливом по каналу выбрасываются в основную камеру, где происходит догорание оставшегося топлива. Объем вихревой камеры составляет 40…60% общего объема камеры сгорания, т. е. примерно половину объема.

Предкамерные (форкамерные) двигатели имеют камеру из двух частей. Топливо впрыскивается в цилиндрическую предкамеру (форкамеру), и часть его (до 60%) воспламеняется. Процесс горения топлива протекает так же, как и в вихревой камере.

Разделенные камеры сгорания менее чувствительны к составу топлива, работают в широком диапазоне частот вращения коленчатого вала, обеспечивают более качественное смесеобразование и менее жесткую работу путем сокращения периода задержки воспламенения.
Однако их основным недостатком является затруднительный пуск двигателя и увеличенный расход топлива по сравнению с неразделенными камерами сгорания.

Иногда выделяют полуразделенные камеры сгорания ( 22.07.21

Не знаешь какой двигатель установлен на твоей техниике? Посмотри сюда.

Ремонтопригодность форсунок Common Rail очень сильно зависит от компании-производителя форсунок и их состояния.Рынок инжекторов Common Rail делят между собой 4 компании. Это Bosch, Delphi, Denso, Siemens (с разновидностью Piezo). .

Что такое объем камеры сгорания двигателя

8.5. Камеры сгорания бензиновых двигателей

Если камера сгорания занимает объем над всей поверхностью днища поршня, то возникает слишком большая поверхность охлаждения. Поэтому стремятся создать компактную камеру сгорания в зоне свечи зажигания, а над днищем поршня — образовать зазор между ним и поверхностью головки цилиндра (уже упоминавшуюся выше зону вытеснителя). Этот зазор выполняет две функции — обеспечивает компактность и малую поверхность камеры сгорания, а к концу хода сжатия способствует созданию интенсивного движения (турбулизации) заряда в ней.

Г. Р. Рикардо определил важность турбулизации заряда уже на начальном этапе развития двигателей внутреннего сгорания. Камера сгорания «Рикардо», примененная в двигателях с боковыми клапанами, значительно улучшила их параметры. Компактная, расположенная над клапанами, она имела небольшую поверхность отвода теплоты к охлаждающей жидкости, а турбулентность, создаваемая вытеснителем, ускоряла сгорание. Завихривание горячего газа около стенок камеры сгорания, хотя и увеличивает отдачу теплоты в них, но при этом позволяет повысить степень сжатия, что с избытком компенсирует некоторый рост тепловых потерь в стенки.

В настоящее время двигатели внутреннего сгорания выполняются с клапанами, расположенными в головке цилиндров, и распределительными валами, размещенными в блоке цилиндров (схема OHV) или в его головке (схема ОНС), Камера сгорания при этом образована над днищем поршня. Для упрощения механизма газораспределения клапаны чаще всего располагают на продольной оси двигателя и камера сгорания под ними обычно выполнена ваннообразной. Для облегчения доступа к свече зажигания иногда она расположена сбоку камеры сгорания, а на противоположной свече стороне между поршнем и головкой блока цилиндров образован вытеснитель. Заряд, вытесняемый из него в конце сжатия, направлен к свече зажигания и обогащает смесь вблизи нее. Такие ваннообразные (плоскоовальные) камеры сгорания с небольшими изменениями применяют практически у всех современных двигателей.

Читать еще:  Что передает крутящий момент от двигателя

Так называемая клиновая камера сгорания, полученная из плоскоовальной наклоном клапанов для получения лучшей формы газовых каналов, показана на рис. 57. Свеча зажигания в этом случае сдвинута в сторону выпускного клапана, движение заряда в камере направлено к свече. У клинообразной камеры сгорания большая часть ее объема сконцентрирована возле свечи, благодаря чему сначала должно сгорать наибольшее количество заряда, а в самой удаленной от свечи зоне камеры сгорания, где имеется опасность детонации, должно находиться сравнительно небольшое количество переохлажденной смеси в зазоре вытеснителя. Такая камера обеспечивает мягкое сгорание и низкие тепловые потери. Жесткость работы двигателя оценивается скоростью нарастания давления, т. е. повышением давления в цилиндре при повороте коленчатого вала на 1°. Решающее значение имеет участок поворота, соответствующий интервалу между образованием искрового разряда (воспламенение смеси) и ВМТ. Мягким считается процесс сгорания, при котором скорость нарастания давления лежит в пределах 0,2-0,6 МПа на 1° угла поворота коленчатого вала. Уровень шума при работе двигателя зависит также от зазоров между поршнем и цилиндром и между валом и его подшипниками.


Рис. 57. Бензиновый двигатель с клиновой камерой сгорания

Широко применявшаяся ранее полусферическая камера сгорания также претерпевает в настоящее время изменения. Камера такой формы применяется у двигателей спортивных, гоночных автомобилей для достижения высокой удельной мощности. При использовании в головке цилиндра двух распределительных валов и большом угле развала клапанов можно разместить в головке цилиндра клапаны большого диаметра. При этом поверхность камеры сгорания по отношению к ее объему достаточно мала. Обеспечивается также хорошее втекание заряда через клапаны в цилиндр, поскольку ему не препятствуют стенки цилиндра или камеры сгорания. Впускной и выпускной каналы имеют небольшую длину и малую поверхность. Двигатели с такой камерой сгорания имеют довольно высокий КПД. На рис. 58 приведен пример классического исполнения полусферической камеры сгорания.


Рис. 58. Полусферическая камера сгорания

У современных гоночных автомобилей эта камера сгорания значительно изменена. Для уменьшения сил инерции в клапанном механизме применяют четыре клапана в одном цилиндре, что приводит к образованию камеры сгорания так называемой шатровой формы. В ней можно разместить одну свечу зажигания непосредственно на оси цилиндра. Для получения в таких камерах высоких степеней сжатия днище поршня имеет выпуклую форму, и в нем делаются выемки для клапанов. В связи с этим поршень становится достаточно массивным, что при четырехклапанном варианте вызвало переход к шатровой камере сгорания с малым углом — около 20° между рядами клапанов. Использование такой камеры сгорания обеспечивает большое проходное сечение седел клапанов, малую массу деталей механизма газораспределения, пригодного для высоких частот вращения — до 12 000 мин -1 , малую поверхность камеры сгорания без больших выемок под клапаны и малую массу поршня. Если при такой конструкции клапан не закроется, то поршень ударит по нему, но не изогнет и, следовательно, не вызовет серьезного повреждения дорогостоящей головки цилиндра.

Для двигателей гоночных автомобилей важным является быстрый процесс сгорания, также обеспечиваемый сильной турбулизацией заряда. При этом ось вращения заряда должна быть параллельна оси коленчатого вала, а ось впускной трубы — максимально возможно приближена к оси впускного клапана. На рис. 59 изображена подобная камера сгорания.


Рис. 59. Бензиновый двигатель ‘Феррари’ с камерой сгорания шатровой формы и малым углом между клапанами

Если применяется полусферическая камера сгорания в двухклапанном исполнении, то оси клапанов не должны пересекаться с осью цилиндра. Чаще всего клапаны слегка отклонены от оси цилиндра, расположены в сферической части камеры и их углубление в поршень в этом случае невелико. Под выпускным клапаном в днище поршня делается небольшая выемка и зазор между поршнем и головкой обеспечивает завихривание заряда, необходимое для мягкой работы двигателя. Классическая же полусферическая камера сгорания характеризуется жесткой работой двигателя.

Для сжигания сильно обедненных смесей было разработано несколько новых видов камер сгорания. Большей частью они характеризуются стремлением достичь в объеме камеры послойного распределения заряда с образованием вблизи свечи зажигания богатой смеси. Часто эти камеры имеют форму тел вращения и располагаются в днище поршня. Пример подобной камеры приведен на рис. 60. Тангенциальное расположение впускного канала относительно цилиндра обеспечивает вращение заряда вокруг оси цилиндра, усиливающегося еще больше в ВМТ после вытеснения заряда с периферии цилиндра в камеру, диаметр которой меньше диаметра цилиндра.


Рис. 60. Бензиновый двигатель с цилиндрической камерой сгорания в днище поршня

Свеча зажигания располагается в зоне камеры, где смесь обогащена. Головка цилиндра выполнена плоской, и выход потока из клапанной щели не тормозится ни стенкой цилиндра, ни стенкой камеры сгорания. Сразу же после открывания клапана его сечение открыто для прохода газового потока, за исключением зоны вблизи стенки цилиндра, однако это не имеет принципиального значения, так как поворот впускного канала не направлен в эту сторону.

Поршень с расположенной в днище камерой сгорания имеет большую массу и его температура выше, чем температура стенки камеры сгорания, размещенной в головке цилиндра. Последнее вызывает ухудшение теплоотдачи от газа к головке цилиндра и уменьшение потерь теплоты в систему охлаждения.

Размер клапана в головке цилиндра обусловлен диаметром цилиндра. Тарелка клапана не должна выступать за окружность цилиндра, так как при этом растет площадь охлаждения и ухудшается очистка цилиндра. Большие размеры клапана, кроме того, непрактичны, так как значительная часть его периметра заслоняется стенкой камеры сгорания.

Увеличения диаметра впускного клапана можно достичь за счет уменьшения диаметра выпускного клапана, который может быть на 15 % меньше, чем впускной. В момент открытия выпускного клапана давление в цилиндре достаточно высокое, и хорошая очистка цилиндра может быть обеспечена и при уменьшенном сечении клапана. Кроме того, у выпускного клапана меньшего размера также меньше и деформация седла, и он быстрее охлаждается.

Клапаны наибольших размеров можно получить в полусферической камере сгорания, у которой диаметр впускного клапана может достичь 0,64, а выпускного — 0,54 диаметра цилиндра. При меньшем развале осей клапанов, а также при наличии седел клапанов у алюминиевых го-ловок диаметры клапанов на 10 % меньше приведенных выше величии.

Читать еще:  Двигатели с частотой 10000 оборотов мин

Направления деятельности

Первое направление исследований — совершенствование известных и разработка новых физических моделей турбулентного горения в высокоскоростных камерах сгорания, ориентированных на расчеты в рамках подходов RANS и LES, и их высокоэффективная (по быстродействию и затратам оперативной памяти) реализация в компьютерных программах.

Важным направлением развития авиационной техники является создание высокоскоростных ВРД, которые смогли бы обеспечить длительный полет в атмосфере. Ключевым элементом транспортных систем, предназначенных для полета в атмосфере с большими скоростями, является высокоскоростной ПВРД — двигатель, в котором поток на входе в камеру сгорания после торможения в воздухозаборном устройстве остается сверхзвуковым. Из-за высокой скорости потока в высокоскоростном ПВРД, сравнительно низкой температуры потока на входе в камеру сгорания и низкой эффективности турбулентного смешения топлива с воздухом на больших скоростях такие двигатели должны иметь большую длину. Это создает проблемы с охлаждением конструкции, с весом двигателя и пр. Как правило, рассматриваются интегральные компоновки, где в качестве элементов высокоскоростного ПВРД используется вся нижняя поверхность ЛА.

Сейчас наибольшее внимание в качестве ближайшей перспективы привлекает концепция двухрежимного ПВРД (ДПВРД, dual-mode ramjet), который должен работать в диапазоне скоростей полета M=4. 10, причем на более низких скоростях полета (M Е.С.Щетинков Л.А.Вулис

Эти идеи фактически были реализованы в моделях частично перемешанного реактора (Partially Stirred Reactor). В последние годы этот подход был развит В.А.Сабельниковым, и именно это направление моделирования турбулентного горения выбрано в качестве основного на ближайшие годы деятельности Лаборатории. При этом будут приняты во внимание новейшие теоретические разработки, в которых принимает участие В.А.Сабельников. Эти подходы реализуются в компьютерной программе zFlare, которая разработана коллективом Лаборатории в 2017 г. и предназначена для моделирования трехмерных турбулентных течений с неравновесным горением на многопроцессорных компьютерах в рамках подходов RANS и LES. В дальнейшем предполагается настройка используемых моделей турбулентности и горения на течения в высокоскоростных камерах сгорания. При этом будет использован богатый опыт исследования газовой динамики турбулентных течений вязкого газа, накопленный в ЦАГИ.

Второе направление исследований — создание на основе «огневого» аэродинамического эксперимента, специально проведенного в аэродинамической трубе АДТ Т-131 ЦАГИ, отечественной базы экспериментальных данных по течениям в камере сгорания двухрежимного прямоточного ВРД (ДПВРД), предназначенной для валидации физических моделей и программного обеспечения.

Для исследований двигателей высокоскоростных ЛА в ЦАГИ имеется уникальная аэродинамическая труба (АДТ) Т-131. Это комплекс, который на данный момент состоит из двух стендов. Стенд Т-131Б позволяет проводить испытания модулей высокоскоростных ПВРД при свободном обдуве потоком с числом Маха до М = 7. Стенд Т-131В позволяет испытывать модели камер сгорания высокоскоростных ПВРД и их элементов на присоединенном воздуховоде с числом Маха на входе в камеру до М = 3.5. Поток воздуха нагревается огневым подогревателем и обогащается кислородом до состава, близкого к составу воздуха. Это позволяет создавать поток с давлением торможения до 11 МПа и температурой торможения до 2350 К. Благодаря этому обеспечивается максимальное приближение эксперимента к реальным условиям высокоскоростного полета. В настоящий момент ведется строительство и оборудование третьего крупногабаритного стенда с диаметром рабочего сопла 1.2 м.

До сих пор на АДТ Т-131 ЦАГИ проводились преимущественно промышленные эксперименты, ограниченные измерениями распределений статического давления по стенкам камер сгорания, высокоскоростной видеорегистрацией реактивной струи, истекающей из экспериментальных модулей, тепловизионными исследованиями экспериментальных моделей. Этого недостаточно для валидации физических моделей и программного обеспечения. Поэтому в течение 2017 г. была спроектирована новая экспериментальная модель двухрежимной камеры сгорания (камеры со сверхзвуковым течением на входе, в которой в зависимости от параметров втекающего потока реализуется дозвуковой или сверхзвуковой режим горения). Новая модельная камера не предназначена для создания высокой тяги, она специально ориентирована на валидацию расчетно-теоретических исследований. Для чистоты эксперимента, для устранения взаимодействия многих посторонних эффектов, а также для удобства измерений выбраны предельно простая геометрия (симметричный канал постоянной боковой ширины с расширяющимся участком) и вдув топлива со стенок камеры, без дополнительных стабилизирующих устройств, усложняющих структуру течения. В качестве топлива предполагается использовать пропан с добавлением водорода. В камере будут сделаны оптические окна, которые обеспечат возможность шлирен-видеосъемки картины течения, а также других оптических измерений (планируются измерения хемилюминесценции возбужденных радикалов OH для визуализации зоны тепловыделения). Предусмотрена возможность широкого спектра измерений (датчики давления, термопары и пр.). Будут сопоставлены эксперименты с использованием термохимической конверсии топлива и без нее. В 2017 г. были выполнены предварительные расчетные исследования, которые показали возможность стабилизации горения как в дозвуковом, так и в сверхзвуковом режиме. Произведены закупки комплектующих и материалов для проведения экспериментальных исследований. Изготовление камеры запланировано на 1‑ю половину 2018 г., а эксперименты — на период со половины 2018 г. до конца 2019 г.

Третье направление исследований — разработка и детальное расчетно-теоретическое исследование модели двигательного устройства с резонаторной полостью, в котором сгорание топлива происходит во вращающейся волне детонации.

Важной проблемой, на решение которой сосредоточены усилия специалистов многих стран, является использование детонации для высокоскоростного сжигания топлива в энергоустановках различного назначения, в частности, в двигателях перспективных летательных аппаратов и ракет. Для ее решения предлагаются различные схемы, которые позволяют инициировать детонацию и локализировать ее в ограниченном объеме камеры сгорания. Этими вопросами в теоретическом и прикладном плане более сорока лет занимаются академик В.А.Левин и его ученики. В.А.Левин и В.В.Марков за исследования детонации удостоены Государственной премии РФ в области науки и техники за 2002 год. В.А.Левин является одним из авторов концепции импульсного детонационного двигателя с кольцевым соплом и внутренним резонатором —т.н двигателя Левина-Тарасова (ДЛТ).

В последние годы наиболее перспективной с точки зрения практики представляется вращающаяся детонация. В этой связи она привлекает особое внимание как экспериментаторов, так и теоретиков. В настоящем проекте предполагается разработать трехмерную модель реактивного двигателя с резонаторной полостью, в которой сгорание горючей смеси происходит в непрерывной вращающейся волне детонации (ДРВД — двигатель с резонатором и вращающейся детонацией), провести ее детальное численное исследование на суперкомпьютере МГУ «Ломоносов» и запатентовать изобретение двигательного устройства. В 2017 г. были сделаны первые успешные шаги в этом направлении. В частности, была разработана «виртуальная экспериментальная установка» для моделирования ДРВД и с ее помощью была показана возможность реализации вращающейся детонации в кольцевом зазоре.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector