Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Статор асинхронного двигателя: устройство и принцип работы

Статор асинхронного двигателя: устройство и принцип работы

Если у электромотора скорость вращения ротора не соответствует частоте вращения электромагнитного поля, которое создают обмотки статора, то такой электродвигатель называется асинхронным или индукционным. Этот тип двигателя был разработан в 1889 году русским инженером М.О.Доливо-Добровольским. Его применяют и сейчас.

  • Станки и транспортеры;
  • подъемно-транспортная техника и устройства автоматики;
  • приводы вентиляторного и насосного оборудования — вот далеко не полный перечень областей применения асинхронных двигателей.

80 % всех производимых промышленностью электромоторов являются асинхронными, благодаря многочисленным преимуществам такого типа привода. Он:

  • надежен;
  • недорог в изготовлении;
  • прост в обслуживании;
  • не требует больших затрат на эксплуатацию;
  • не нуждается в преобразователях при включении в сеть.

Тем не менее, выбирая электромотор, следует помнить о таких его недостатках, как:

  • ограничение количества оборотов частотой сети (при частоте 3-фазной сети 50 Гц, он дает примерно 3000 об/минуту);
  • сложность регулировки скорости вращения рабочего вала;
  • зависимость вращающего момента от напряжения в сети;
  • высокая величина пускового тока;
  • слабость усилия при включении.

Принцип работы подобного двигателя довольно прост: неподвижная часть, называемая статором, формирует вращающееся магнитное поле. Это поле взаимодействует с электромагнитным полем подвижной части, называемой ротором, принуждая ротор вращаться. При неизменной конструкции статора двигатели могут иметь или фазный, или короткозамкнутый ротор.

Устройство статора

  1. Корпус. Должен изготавливаться из немагнитного материала – чугуна или алюминия. Если размеры двигателя велики, при изготовлении корпуса применяют сварку. Двигателям этого типа свойственно воздушное охлаждение. Для повышения теплоотдачи на поверхности корпуса располагаются ребра. Подшипниковые щиты, кожух вентилятора и клеммную коробку тоже устанавливают снаружи. Лапы или фланцы на корпусе двигателя служат для его крепления.
  2. Сердечник. Его набирают из пластин, изготовленных из электротехнической стали толщиной порядка 0,5 мм. Благодаря этому уменьшаются вихревые токи. Собранные в пакеты пластины сердечника скрепляются скобами или швами и покрываются несколькими слоями изоляционного лака. Сердечник закрепляют в станине с помощью стопорных болтов.
  3. Обмотки статора. Сдвинутые относительно друг друга на 120 градусов обмотки (обычно 3 штуки), вкладываются в пазы на внутренней стороне сердечника. Их изготавливают в основном из изолированного медного, а временами и алюминиевого провода круглого или квадратного сечения. Электромотор подключают к трехфазной сети через клеммную коробку, на которую выводятся концы обмоток.

Есть два способа соединения обмоток в статорах:

  • звездой, когда концы всех обмоток соединяются в одной точке для подключения двигателя в сеть 380В;
  • треугольником, когда обмотки соединяются последовательно в замкнутый контур для подключения двигателя в сеть 220В.

Следует иметь в виду, что на корпусе каждого конкретного двигателя закреплена табличка, на которой указываются его рабочие напряжения. Треугольником подключают наименьшее из указанных напряжений, а звездой – наибольшее. При нарушении этого правила обмотки статора довольно быстро перегорят, и мотор придется ремонтировать.

Итак, зная устройство и принцип работы статора асинхронного двигателя и принимая во внимание все, изложенное выше, вы сможете сделать правильный выбор при приобретении электромотора.

Асинхронные электродвигатели

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Статор асинхронного двигателя (рис. 187) состоит из сердечника 2, обмотки 3 и корпуса (станины) 1. Сердечник статора является частью магнитопровода и собран из отдельных стальных пластин 4 толщиной 0,35-0,5 мм. Чтобы снизить до минимума потери энергии на вихревые токи, пластины изолируют друг от друга (чаще всего тонким слоем специального лака). В пазах стального статора укладывают провода, образующие трехфазную обмотку статора. Каждая фазная обмотка состоит из одной или нескольких катушек и рассчитана на определенное номинальное фазное напряжение. На двигателе указывается два номинальных напряжения (например, 380 и 220 В), отличающихся в ]/3 раз.

При большем напряжении сети фазные обмотки статора соединяют звездой, а при меньшем напряжении — треугольником. В том и другом случае к каждой фазной обмотке подводится одинаковое напряжение, являющееся номинальным фазным напряжением двигателя. Начала обмоток статора обозначают CI, С2, СЗ, а концы — С4, С5, С6.

Расположение выводов обмоток на щитке (рис. 188) удобно для соединения обмоток звездой или треугольником. Сердечник статора с обмоткой расположен (обычно запрессован) внутри корпуса, который отливают из чугуна или алюминиевого сплава. С боков сердечник статора закрывается крышками, в которых имеются подшипники.

Рис. 187. Статор асинхронного двигателя

Ротор двигателя представляет собой цилиндр, набранный из листовой электротехнической стали. Обмотка ротора состоит из нескольких медных стержней, соединенных на концах медными кольцами, и называется «беличьим колесом» (рис. 189, а). В новых асинхронных электродвигателях короткозамкнутая обмотка образуется путем заливки пазов ротора алюминием (рис. 189, б).

При прохождении по обмоткам статора трехфазного переменного тока создается магнитное поле, вращающееся с частотой пг = 60/7/7, где 1 — частота подводимого к двигателю тока; р — число пар полюсов, которое зависит от числа катушек.

Если имеются три катушки, то вращающийся магнитный поток имеет два полюса (/7=1) и п1 = —р° = 3000 об/мин. Если число катушек увеличить в 2 раза, то р = 2, а = 1500 об/мин.

Магнитные линии поля статора пересекают обмотку ротора и в ней возникает ток, создающий свое магнитное поле. В результате взаимодействия магнитных полей ротор начинает вращаться в направлении магнитного поля статора с частотой п.

Ротор и поле статора вращаются с различными частотами. В противном случае не было бы пересечения ротора силовыми линиями магнитного поля статора. Отношение разности частот вращающегося поля статора пх и ротора п к частоте магнитного поля статора называют скольжением (отставанием): 5 = (пг — п)/пи или 5 = (пг — п)/^X х100%. При пуске двигателя п = 0, а 5 = 1, или 100%.

Во время холостого хода двигатель имеет минимальное скольжение (1-2%). С увеличением нагрузки уменьшается частота вращения ротора и увеличивается скольжение при номинальной нагрузке, достигая 5-6%.

Электромагнитная связь обмоток ротора и статора аналогична электромагнитной связи обмоток трансформатора. Поэтому с увеличением скольжения, когда линии магнитного поля статора чаще пересекают ротор, увеличивается ток в обмотках ротора и статора.

Частота тока в обмотке ротора зависит от скольжения: 12 = 1і5. При пуске 5=1 и 12 = 1і = 50 Гц. С возрастанием частоты враще-

Рис. 188. Расположение выводов обмоток на щитке (а) н соединение обмоток звездой (б) и треугольником (в)

Рис. 189. Короткозамкнутая обмотка ротора (а) и короткозамкнутая обмотка ротора, выполненная в виде алюминиевой отливки (б):

1 — короткозамыкающие кольца; 2 — листы магиитопривода; «3 — вентиляционные лопатки; 4 — стержни ния ротора п уменьшается скольжение 5 и частота 12. При холостом ходе двигателя 12 = 1ч-4 Гц.

Читать еще:  Шаговый двигатель cd rom схема управления

Благодаря простоте устройства, дешевизне и большой надежности в работе короткозамкнутые асинхронные двигатели получили широкое распространение. К недостаткам короткозамкнутых асинхронных двигателей относятся: значительное потребление тока в момент пуска; слабый пусковой вращающий момент; потребление реактивного тока из-за индуктивности обмоток статора, вызывающее снижение cos ф.

При пуске двигателя магнитное поле статора с максимальной частотой пересекает неподвижный ротор и в нем наводится наибольшая э. д. с. В результате этого ток в обмотках ротора и статора больше номинального в 5-8 раз. Пусковые токи не успевают нагреть машину до высокой температуры, но вызывают снижение напряжения в сети, что отрицательно влияет на работу других потребителей, включенных в эту же сеть.

Вращающий момент М асинхронного двигателя образуется в результате взаимодействия магнитного потока Ф статора с активной составляющей тока ротора 1а2 = 12cos ф2. Следовательно, М = — СФ/2созф2, где С — коэффициент, зависящий от конструкции двигателя; ф2 — разность фаз э. д. с. ?2 и тока 12 ротора.

При пуске в короткозамкнутом роторе асинхронного двигателя возникает ток наибольшей частоты 12. Поэтому индуктивное сопротивление ротора Xl2 — 2ji/2L2 значительно больше активного 1у Активная составляющая тока ротора 12cosip2= 12г2/]/г| + х[2 и вращающий момент не достигают максимального значения. С увеличением скорости частота 12 тока в роторе и его индуктивное сопротивление начнут уменьшаться, что в свою очередь вызовет увеличение активной составляющей тока ротора и вращающего момента двигателя. Вращающий момент асинхронного двигателя достигает наи большего значения при равенстве активного и индуктивного сопротивлений ротора, т. е. при г2 = ХЬ2.

При дальнейшем увеличении частоты вращения это равенство нарушается, т. е.

* В числителе указывается потребляемый ток при соединении обмоток звездой, в знаменателе — при соединении обмоток треугольником.

ного тока без пусковых приспособлений. При значительных мощностях (более 5 кВт) пусковой ток ограничивают.

Существуют два способа пуска в ход короткозамкнутых асинхронных электродвигателей. Непосредственный (прямой) пуск применяют в случае, если мощность двигателя значительно меньше мощности сети. Пуск переключением обмоток со звезды на треугольник можно использовать в том случае, если обмотки статора двигателя постоянно должны быть соединены треугольником. Для того чтобы снизить пусковой ток, на период пуска обмотки статора соединяют звездой (рис. 191, а). Благодаря этому напряжение на каждой обмотке снизится в УЗ раз, а линейный ток уменьшится в 3 раза. Когда двигатель разовьет скорость, переключают рубильник Р2 и обмотки соединяют треугольником.

Для снижения пускового тока последовательно с обмоткой статора можно включать элементы с активным или индуктивным сопротивлением (рис. 191, б и в). После пуска эти элементы шунтируются.

Однофазный асинхронный двигатель. Обмотка статора однофазного асинхронного двигателя состоит из одной катушки. Ток, проходящий по этой катушке, создает пульсирующий магнитный поток, который можно разложить на два вращающихся магнитных потока Фх и Ф2, имеющих одинаковую величину, но разное направление вращения.

Первый магнитный поток вращается (относительно неподвижного ротора) с частотой пг по движению часовой стрелки, а второй — с такой же частотой — в противоположном направлении. При пуске моменты 1И, и М2, создаваемые каждым вращающимся потоком, равны, но направлены в противоположные стороны. В результате пусковой вращающий момент М = Мх — М2 = 0. Если ротору сообщить первоначальное движение, например по движению часовой стрелки, то вращающийся в этом же направлении магнитный поток Фх будет

Рис. 191. Схемы пуска асинхронного двигателя:

а — переключением обмоток статора со звезды на треугольник; б, в — с короткозамкнутым роторам с помощью соответственно активных и индуктивных элементов действовать на ротор, как и в трехфазном короткозамкнутом двигателе. Магнитный поток Ф2, вращающийся относительно ротора в противоположном направлении, будет индуцировать в роторе токи большей частоты. Индуктивное сопротивление ротора для этой частоты возрастет и еще больше будет отличаться от активного сопротивления. В результате этого вращающий момент М2 уменьшится. Результирующий вращающий момент М = М1 — М2 будет направлен в сторону первоначального движения ротора.

Пусковой вращающий момент в однофазном асинхронном двигателе (рис. 192) может быть получен за счет дополнительной пусковой обмотки ПО, которую укладывают в пазах статора под углом 90° к главной обмотке ГО. Ток 1Х главной обмотки отстает по фазе от напряжения и на угол ер!. Последовательно с пусковой обмоткой включен конденсатор С, и ток 12 опережает по фазе напряжение на угол

Что такое обмотка в асинхронном двигателе

Обмотка статора электродвигателя выполняется несколько сложнее, чем было показано на рис. 10-1.

Рис. 10-4. Секция обмотки статора.

Рис. 10-5. Соединение двух секций.

Рис. 10-6. Обозначение секций.

Каждая фаза трехфазной обмотки состоит из отдельных секций, подобных секциям якоря машины постоянного тока (см. рис. 4-9).

На рис. 10-4 показана секция, состоящая из четырех, витков, которой на статоре будут заняты два паза.

Эти же четыре витка можно разбить на две секции, как показано на рис. 10-5. Их соединяют последовательно для того, чтобы э. д. с. секций складывались. Все провода секций изолируются вместе и в дальнейшем каждая секция будет изображаться одновитковой независимо от числа ее витков (рис. 10-6).

Активные стороны секций могут помещаться в пазах в один слой (рис. 10-1) или, чаще, в два слоя, как в якоре машины постоянного тока (рис. 4-8, 4-10).

Рис. 10-7. Развертка двухслойной обмотки.

Покажем, как подсчитывается число пазов статора для трехфазной обмотки электродвигателя. Если число полюсов машины число фаз то от каждой фазы на каждый полюс должно приходиться некоторое число пазов , которым задаются при расчете машины. Тогда все число пазов статора равно:

Пусть задано, что Все число пазов Если обмотка двухслойная, то число секций тоже равно 12. Такая обмотка показана на рис. 10-7. На каждую фазу приходится секции, сгруппированные в две катушки, расположенные в сфере действия разноименных полюсов, т. е. на двух полюсных делениях т. Полюсное деление всегда равно 180° эл.

Разбивка пазов по фазам производится следующим образом. Так как то произвольно можно считать, что на первом полюсном делении фазе А принадлежат пазы 1, 2. На втором полюсном делении фазе А принадлежат пазы

Рис. 10-8. Статор асинхронного двигателя без обмотки.

Читать еще:  Что такое компенсация реактивной мощности двигателей

Рис. 10-9. Стальной лист сердечника статора.

Рис. 10-10. Трехфазный асинхронный короткозамкнутый двигатель.

7, 8, так как зубцов. Фаза В сдвинута в пространстве на 120° или на , т. е. на зубца, и занимает пазы 5, 6 и 11, 12. Разметка ведется по верхнему слою активных сторон. Очевидно, фаза С расположена в остальных пазах — 8, 9 и 3, 4. Для того чтобы э. д. с. фазы складывались, секции соединяют в катушки последовательно — конец первой с началом второй, а щтушки встречно — конец первой с юнцом, второй. (рис. 10-7), например:

Для присоединения обмотки к трехфазной сети ее соединяют в звезду или в треугольник.

Статор асинхронного электродвигателя без обмотки показан на рис. 10-8. Он имеет внешний чугунный, алюминиевый или стальной корпус 1 с запресованным в него сердечником 2, собранным из штампованных стальных, листов (рис. 10-9). Листы изолированы друг от друга специальным лаком.

У двигателей закрытого типа внешняя ребристая поверхность статора обдувается вентилятором для лучшего охлаждения. Двигатель в собранном виде показан на рис. 10-10.

§76. Асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором (рис. 249 и 250) состоит из следующих основных частей: статор с трехфазной обмоткой, ротор с короткозамкнутой обмоткой и остов. Обмотка ротора выполнена бесконтактной (она не соединена ни с какой внешней цепью), что определяет высокую надежность такого двигателя.

Магнитная система. Асинхронная машина в отличие от машины постоянного тока не имеет явно выраженных полюсов. Такую магнитную систему называют неявнополюсной. Число полюсов в машине определяется числом катушек в обмотке статора и схемой их соединения. В четырехполюсной машине (рис. 251) магнитная система состоит из четырех одинаковых ветвей, по каждой из которых проходит половина магнитного потока Фп одного полюса, в двухполюсной машине таких ветвей две, в шестиполюсной — шесть и т. д. Так как через все элементы магнитной системы проходит переменный магнитный поток, то не только ротор 1, но

Рис. 249. Асинхронный двигатель с короткозамкнутым ротором: 1 — остов; 2 — статор; 3 — ротор; 4 — стержни обмотки ротора; 5 — подшипниковый щит; 6 — вентиляционные лопатки ротора; 7 — вентилятор; 8 — коробка выводов

Рис. 250. Электрическая схема асинхронного двигателя с короткозамкнутым ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор

Рис.251. Магнитное поле четырехполюсной асинхронной машины

Рис. 252. Листы ротора (а) и статора (б)

Рис. 253. Пакет собранного статора (а) и статор с обмоткой (б)

и статор 2 выполняют из листов электротехнической стали (рис. 252), изолированных один от другого изоляционной лаковой пленкой, окалиной и пр. В результате этого уменьшается вредное действие вихревых токов, возникающих в стали статора и ротора при вращении магнитного поля. Листы статора и ротора имеют пазы открытой, полузакрытой или закрытой формы, в которых располагаются проводники соответствующих обмоток. В статоре чаще всего применяют полузакрытые пазы прямоугольной или овальной формы, в машинах большой мощности — открытые пазы прямоугольной формы.

Сердечник статора 1 (рис. 253, а) запрессовывают в литой остов 3 и укрепляют стопорными винтами. Сердечник ротора напрессовывают на вал ротора, который вращается в шариковых подшипниках, установленных в двух подшипниковых щитах. Воздушный зазор между статором и ротором имеет минимальный размер, допускаемый с точки зрения точности сборки и механической жесткости конструкции. В двигателях малой и средней мощности воздушный зазор обычно составляет несколько десятых миллиметра. Такой зазор обеспечивает уменьшение магнитного сопротивления магнитной цепи машины, а следовательно, и уменьшение намагничивающего тока, требуемого для создания в двигателе магнитного потока. Снижение намагничивающего тока позволяет повысить коэффициент мощности двигателя.

Обмотка статора. Она выполнена в виде ряда катушек из проволоки круглого или прямоугольного сечения. Проводники, находящиеся в пазах, соединяются, образуя ряд катушек 2 (рис. 253,б). Катушки разбивают на одинаковые группы по числу фаз, которые располагают симметрично вдоль окружности статора (рис. 254, а) или ротора. В каждой такой группе все катушки электрически соединяются, образуя одну фазу обмотки, т. е. отдельную электрическую цепь. При больших значениях фазного тока или при необходимости переключения отдельных катушек фазы могут иметь несколько параллельных ветвей. Простейшим элементом обмотки является виток (рис. 254,б), состоящий из двух проводников 1 и 2, размещенных в пазах, находящихся друг от друга на неко-

Рис. 254. Расположение катушек трехфазной обмотки на статоре асинхронного двигателя (а) и виток из двух проводников (б)

тором расстоянии у. Это расстояние приблизительно равно одному полюсному делению т, под которым понимают длину дуги, соответствующую одному полюсу.

Обычно витки, образованные проводниками, лежащими в одних и тех же пазах, объединяют в одну или две катушки. Иногда их называют секциями. Их укладывают таким образом, что в каждом пазу размещается одна сторона катушки или две стороны — одна над другой. В соответствии с этим различают одно- и двухслойные обмотки. Основным параметром, определяющим распределение обмотки по пазам, является число пазов q на полюс и фазу.

В обмотке статора двухполюсного двигателя (см. рис. 254, а) каждая фаза (А-Х; B-Y; C-Z) состоит из трех катушек, стороны которых расположены в трех смежных пазах, т. е. q = 3. Обычно q > 1, такая обмотка называется распределенной.

Наибольшее распространение получили двухслойные распределенные обмотки. Их секции 1 (рис. 255, а) укладывают в пазы 2 статора в два слоя. Проводники обмотки статора укрепляют в пазах текстолитовыми клиньями 5 (рис. 255,б), которые закладывают у головок зубцов.

Стенки паза покрывают листовым изоляционным материалом 4 (электрокартоном, лакотканью и пр.). Проводники, лежащие в пазах, соединяют друг с другом соответствующим образом с торцовых сторон машины. Соединяющие их провода называют лобовыми частями. Так как лобовые части не принимают участия в индуцировании э. д. с, их выполняют как можно короче.

Отдельные катушки обмотки статора могут соединяться «звездой» или «треугольником». Начала и концы обмоток каждой фазы выводят к шести зажимам двигателя.

Обмотка ротора. Обмотка ротора выполнена в виде беличьей клетки (рис. 256,а). Она сделана из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (рис. 256,б). Стержни этой обмотки вставляют в пазы ротора без какой-либо изоляции, так как напряжение в короткозамкну-

Рис. 255. Двухслойная обмотка статора асинхронного двигателя: 1 — секция; 2 — паз; 3 — проводник; 4 — изоляционный материал; 5 — клин; 6 — зубец

Рис. 256. Короткозамкнутый ротор: а — беличья клетка; б — ротор с беличьей клеткой из стержней; в — ротор с литой беличьей клеткой; 1 — короткозамыкающие кольца; 2— стержни; 3— вал; 4 — сердечник ротора; 5 — вентиляционные лопасти; 6 — стержни литой клетки

той обмотке ротора равно нулю. Пазы короткозамкнутого ротора обычно выполняют полузакрытыми, а в машинах малой мощности — закрытыми (паз имеет стальной ободок, отделяющий его от воздушного зазора). Такая форма паза позволяет хорошо укрепить проводники обмотки ротора, хотя и несколько увеличивает ее индуктивное сопротивление.

Читать еще:  Впрыск воды в двигатель своими руками схема

В двигателях мощностью до 100 кВт стержни беличьей клетки обычно получают путем заливки расплавленного алюминия в пазы сердечника ротора (рис. 256, в). Вместе со стержнями беличьей клетки отливают и соединяющие их торцовые короткозамыкающие кольца.

Для этой цели пригоден алюминий, так как он обладает малой плотностью, достаточно высокой электропроводностью и легко плавится.

Обычно двигатели имеют вентиляторы, насаженные на вал ротора. Они осуществляют принудительную вентиляцию нагретых частей машины (обмоток и стали статора и ротора), позволяя получить от двигателя большую мощность. В двигателях с короткозамкнутым ротором лопасти вентилятора часто отливают совместно с боковыми кольцами беличьей клетки (см. рис. 256, в).

Асинхронные двигатели с короткозамкнутым ротором просты по конструкции, надежны в эксплуатации. Их широко применяют для привода металлообрабатывающих станков и других устройств, которые начинают работать без нагрузки. Однако сравнительно малый пусковой момент у этих двигателей и большой пусковой ток не позволяют использовать их для привода таких машин и механизмов, которые должны пускаться в ход сразу под большой нагрузкой (с большим пусковым моментом). К таким машинам относятся грузоподъемные устройства, компрессоры и др.

Увеличить пусковой момент и уменьшить пусковой ток можно при выполнении беличьей клетки с повышенным активным сопротивлением. При этом двигатель будет иметь увеличенное скольжение и большие потери мощности в обмотке ротора. Такие двигатели называют двигателями с повышенным скольжением (обозначаются АС). Их можно использовать для привода машин, работающих сравнительно небольшое время. На э. п. с. переменного тока эти двигатели (со скольжением до 10%) применяют для привода компрессоров, которые работают периодически в течение коротких промежутков времени при уменьшении давления в воздушных резервуарах ниже определенного предела.

Двигатели с повышенным пусковым моментом. Короткозамкнутые асинхронные двигатели с повышенным пусковым моментом имеют специальную конструкцию ротора (обозначаются АП). К ним относятся двигатели с двойной беличьей клеткой и двигатели с глубокими пазами.

Ротор 3 (рис. 257,а) двигателя с двойной беличьей клеткой имеет две короткозамкнутые обмотки. Наружная клетка 1 является пусковой. Она обладает большим активным и малым реактивным сопротивлениями. Внутренняя клетка 2 является основной обмоткой ротора; она, наоборот, обладает незначительным активным и большим реактивным сопротивлениями. В начальный момент пуска ток проходит, главным образом, по наружной клетке, которая создает значительный вращающий момент. По мере увеличения частоты вращения ток переходит во внутреннюю клетку, и по окончании процесса пуска машина работает как обычный короткозамкнутый двигатель с одной (внутренней) клеткой. Вытеснение тока в наружную клетку в начальный момент пуска объясняется действием, э. д. с. самоиндукции, индуцируемой в проводниках ротора. Чем ниже расположен в пазу проводник, тем большим магнитным потоком рассеяния 6 он охватывается и тем большая э. д. с. самоиндукции в нем индуцируется (рис. 257, в), следовательно, тем большее он будет иметь индуктивное сопротивление.

Вытеснение тока в верхние проводники ротора сильно сказывается при неподвижном роторе, когда частота тока, индуцируемого в обеих клетках ротора, велика. При этом индуктивные

Рис. 257. Конструкция роторов асинхронных двигателей с повышенным пусковым моментом: с двойной беличьей клеткой (а), с глубокими пазами (б) и разрезы их пазов (в и г)

сопротивления обеих клеток значительно больше активных и ток распределяется между ними обратно пропорционально их индуктивным сопротивлениям, т. е. проходит в основном по наружной клетке с большим активным сопротивлением. По мере возрастания частоты вращения ротора частота тока в нем будет уменьшаться (вращающееся магнитное поле будут пересекать проводники ротора с меньшей частотой), и ток начнет проходить по обеим клеткам в соответствии с их активными сопротивлениями, т. е., главным образом, через внутреннюю клетку.

Таким образом, процесс пуска двигателя с двойной беличьей клеткой имеет сходство с процессом пуска асинхронного двигателя с фазным ротором, когда в начале пуска в цепь обмотки ротора вводится добавочное активное сопротивление (пусковой реостат), а по мере разгона это сопротивление выводится. Точно так же и в рассматриваемом двигателе ток в начале пуска проходит по наружной клетке с большим активным сопротивлением, а затем по мере разгона постепенно переходит во внутреннюю клетку с малым активным сопротивлением.

Для повышения активного сопротивления пусковой клетки стержни ее изготовляют из маргацовистой латуни или бронзы. Стержни рабочей клетки выполняют из меди, обладающей малым удельным сопротивлением, причем площадь поперечного сечения их больше, чем у пусковой клетки. В результате этого активное сопротивление пусковой клетки увеличивается в 4—5 раз по сравнению с рабочей. Между стержнями обеих клеток имеется узкая щель 5, размеры которой определяют индуктивность рабочей клетки. Двухклеточный двигатель на 20—30% дороже коротко-замкнутого двигателя обычной конструкции. Для упрощения технологии изготовления ротора двухклеточные двигатели небольшой и средней мощности выполняют с литой алюминиевой клеткой.

Действие двигателей с глубокими пазами (рис. 257, б) также основано на использовании явления вытеснения тока. В этих двигателях стержни 4 беличьей клетки выполнены в виде узких медных шин, заложенных в глубокие пазы ротора 3 (высота паза в 10— 12 раз больше его ширины). Нижние слои стержней, расположенные дальше от поверхности ротора, охватываются значительно большим числом магнитных линий потока рассеяния 6, чем верхние (рис. 257,г), поэтому они имеют во много раз большую индуктивность. В начале пуска в результате увеличенного индуктивного сопротивления нижних частей стержней ток проходит, главным образом, по их верхним частям. При этом используется только небольшая часть поперечного сечения каждого стержня, что приводит к увеличению его активного сопротивления, а следовательно, и к возрастанию активного сопротивления всей обмотки ротора.

При увеличении частоты вращения ротора вытеснение тока в верхние части стержней уменьшается (по той же причине, что и в двигателе с двойной беличьей клеткой), и после окончания пуска ток равномерно распределяется по площади их поперечного сечения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector