Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Британцы занялись разработкой гибридного ракетного двигателя

Британцы занялись разработкой гибридного ракетного двигателя

Британская компания Reaction Engines занялась разработкой относительно компактного гиперзвукового реактивного двигателя для ракет, который будет эффективно работать как в атмосфере, так и в вакууме. При этом, как пишет Aviation Week, силовая установка сможет функционировать без сбоев во всех диапазонах скоростей, начиная дозвуковым и заканчивая гиперзвуковым. Новая установка будет собираться по гибридной схеме, совмещая в себе преимущества атмосферного реактивного и ракетного двигателей, и ее можно будет использовать повторно.

Сегодня ракеты-носители в зависимости от класса имеют несколько ступеней, двигатели каждой из которых работают на строго определенном участке полета. При этом все двигатели являются ракетными, то есть и горючее, и окислитель для их работы подаются из баков в самих ступенях ракеты. Такая конструкция проверена десятилетиями, однако имеет несколько недостатков. В их числе, например, — относительно небольшой забрасываемый вес ракеты-носителя при ее существенных габаритах.

Новый гибридный гиперзвуковой реактивный двигатель позволит сделать ракеты-носители компактнее. Установка получила название SABRE (Synergistic Air-Breathing Rocket Engine, синергичный атмосферный ракетный двигатель). Общие ее габариты будут соответствовать габаритам турбореактивного двухконтурного двигателя с форсажной камерой F135, устанавливаемого на американские истребители F-35 Lightning II. Его длина составляет 5,6 метра, а диаметр — 1,2 метра.

Предполагается, что двигатель получит универсальные камеру сгорания и сопло, по конструкции во многом схожие с подобными элементами обычного ракетного двигателя. На старте и при разгоне SABRE будет работать как обычный прямоточный реактивный двигатель, используя для сжигания топлива воздух. Этот воздух будет подаваться в газогенератор по обводным воздухозаборникам, идущим вокруг системы подачи топлива и окислителя. При достижении скорости в пять чисел Маха (6,2 тысячи километров в час) двигатель будет переходить в ракетный режим.

Гелиевая система охлаждения SABRE

Для охлаждения поступающего воздуха Reaction Engines уже разработали соответствующую систему. Она представляет собой сеть трубок диаметром один миллиметр и общей протяженностью около двух тысяч километров. Толщина стенки одной трубки составляет 20 микрон. Сеть этих трубок будет покрывать внешнюю стенку воздуховодов. В сами трубки под давлением в 200 бар (197 атмосфер) будет подаваться гелий, выполняющий роль теплоносителя. По расчетам разработчиков, система позволит охлаждать поступающий воздух за 1/100 секунды.

На первом этапе разработки британская компания планирует создать гибридный двигатель — демонстратор технологий. В атмосферном режиме он сможет развивать тягу до 196 килоньютонов. При этом полноценная силовая установка в этом режиме будет выдавать уже 667 килоньютонов. Для сравнения, двигатель F135 способен развивать тягу в 191 килоньютон в режиме форсажа. Первые испытания демонстратора технологий планируется провести через 12–15 месяцев, а полноценной силовой установки — в 2020–2021 годах.

SABRE позволит создавать одноступенчатые ракеты-носители, причем силовую установку, в отличие от обычных ракетных двигателей, можно будет использовать повторно. По оценке британской компании, гибридный гиперзвуковой двигатель будет иметь несколько преимуществ. Во-первых, он упростит конструкцию ракет-носителей. Во-вторых, повторное его использование позволит сделать запуски грузов в космос дешевле. Наконец, потребление топлива новой силовой установкой будет значительно меньше, чем у обычных ракетных двигателей.

В настоящее время многие страны занимаются разработкой новых силовых установок для ракет-носителей. Так, в конце августа текущего года индийская Организация космических исследований провела первые успешные испытания гиперзвуковых прямоточных воздушно-реактивных двигателей. Такие силовые установки индийцы планируют устанавливать на ракеты-носители, что позволит отказаться от части запаса жидкого окислителя, а значит, сделать массу ракеты меньше. Это в свою очередь позволит несколько увеличить забрасываемый вес.

Ракетное топливо

Раке́тное то́пливо — вещества, используемые в ракетных двигателях различных конструкций для получения тяги и ускорения ракеты посредством энергии химической реакции (горения).

Не следует путать ракетное топливо с рабочим телом нехимических ракетных двигателей, например ядерных или электрических.

Содержание

  • 1 Понятие
  • 2 Группы
  • 3 Типы
  • 4 Топливо космических ракет и аппаратов
  • 5 Примечания
  • 6 Ссылки

Понятие [ править ]

Ракетное топливо — компонент веществ питания ракетного двигателя для создания им тяги и движения ракеты в заданном направлении. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например ядерный ракетный двигатель, или ионный и т. д. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое ракетное топливо делится на окислитель и горючее. Эти компоненты находятся в ракете в жидком состоянии в разных баках. Смешивание происходит в камере сгорания, обычно с помощью форсунок. Давление создается за счет работы турбонасосной или вытеснительной системы. Также компоненты топлива используются для охлаждения сопла ракетного двигателя.

Читать еще:  Шкода октавия какой самый удачный двигатель

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в смеси твёрдых веществ.

Группы [ править ]

Ракетное топливо в достаточно условной мере может быть разделено на различные группы; в качестве основных групп обычно рассматриваются следующие:

  • Электрореактивные: электроэнергия и рабочие тела.
  • Ядерные: ядерное деление, синтез, распад изотопов.
  • Химические: химические реакции, реакции рекомбинации свободных радикалов.
  • Физические: потенциальная энергия сжатых газов.

Типы [ править ]

Топливо космических ракет и аппаратов [ править ]

Вывод космических аппаратов за пределы земной атмосферы и разгон до орбитальных скоростей требует огромных энергозатрат. Используемые в настоящее время топлива и конструкционные материалы ракет обеспечивают соотношение масс на старте и на орбите не лучше 30:1. Поэтому масса космической ракеты на старте составляет сотни и даже тысячи тонн. Отрыв такой массы от стартового стола требует превосходящей реактивной тяги двигателей. Поэтому основное требование к топливу первой ступени ракет — возможность создания значительной тяги при приемлемых габаритах двигателя и запасах топлива. Тяга прямо пропорциональна удельному импульсу и массовому расходу топлива. Т.е. топлива с высоким удельным импульсом требуется меньше для вывода на орбиту равной нагрузки. Удельный импульс обратно пропорционален молекулярному весу продуктов горения, что означает низкую плотность высокоэффективного топлива и, соответственно, значительный объем и вес конструкции двигателя и топливной системы. Поэтому при выборе топлив ищут компромисс между весом конструкции и весом топлива. На одном конце этого выбора находится топливная пара водород+кислород с наивысшим удельным импульсом и низкой плотностью. На другом конце находится твердое топливо на основе перхлората аммония с низким удельным импульсом, но высокой плотностью.

Помимо тяговых возможностей топлива, учитываются и другие факторы. Неустойчивость горения некоторых топлив зачастую приводила к взрывам двигателей. Высокая температура горения некоторых топлив предъявляла повышенные требования к конструированию, материалам и технологии двигателей. Криогенные топлива утяжеляли ракету теплоизоляцией, затрудняли выбор хладостойких материалов, усложняли проектирование и отработку. Поэтому на заре космической эры получило широкое распространение такое легкое в получении, хранении и использовании топливо как несимметричный диметилгидразин. При этом оно имело вполне приемлемые тяговые характеристики, поэтому довольно широко используется и в наше время.

Помимо технических факторов важны экономические, исторические и социальные. Криогенные топлива требуют дорогой сложной специфической инфраструктуры космодрома для получения и хранения криогенных материалов, таких как жидкие кислород и водород. Высокотоксичные топлива, такие как НДМГ, создают экологические риски для персонала и мест падения ступеней ракет, экономические риски последствий заражения территорий при аварийных ситуациях.

В ракетах для запуска космических аппаратов в настоящее время, в основном, используются четыре вида топлива:

  • Керосин + жидкий кислород. Популярное, дешевое топливо с великолепно развитой и отработанной линейкой двигателей и топливной инфраструктурой. Имеет неплохую экологичность. Лучшие двигатели обеспечивают удельный импульс немногим выше 300 секунд при атмосферном давлении.
  • Несимметричный диметилгидразин + тетраоксид азота. Чрезвычайно токсичное топливо. Однако высокая устойчивость горения, относительная простота топливной арматуры, легкость хранения, хорошая плотность топлива, хорошие энергетические характеристики предопределили широкое распространение. Сегодня предпринимаются усилия по отказу от НДМГ. УИ примерно аналогичен кислород-керосиновой паре.
  • Жидкий водород + жидкий кислород. Низкая плотность и чрезвычайно низкие температуры хранения водорода делает очень сложным использование топливной пары в первой ступени ракет-носителей. Однако высокая эффективность приводит к широкому использованию в верхних ступенях ракет-носителей, где приоритет тяги уменьшается, а цена массы растет. Топливо имеет великолепную экологичность. УИ лучших двигателей на уровне моря свыше 350 секунд, в вакууме — 450 секунд.
  • Смесевое твёрдое ракетное топливо на основе перхлората аммония. Дешевое топливо, но требует высокой культуры производства. Широко используется в западном ракетостроении на первой ступени ракет благодаря легкости получения значительной тяги. Двигателями на твердом топливе сложно управлять по вектору тяги, поэтому их часто ставят в параллель с небольшими жидкостными двигателями, которые обеспечивают управляемость полета. Имеет низкую экологичность. Типовой УИ — 250 секунд.

Наблюдается также высокий интерес к перспективной топливной паре метан + жидкий кислород. [1]

Энциклопедия

Вещество или совокупность веществ, являющихся источником энергии и рабочего тела для создания реактивной силы в ракетном двигателе (РД). По виду источника энергии различают химические и ядерные РТ. Наибольшее практическое применение для РД межконтинентальных баллистических ракет (МБР), используемых в РВСН, получили химические РТ, являющиеся одновременно источником энергии, выделяемой за счет экзотермических реакций горения, и источником рабочего тела, в качестве которого выступают продукты сгорания топлива. Химические РТ по агрегатному состоянию разделяются на жидкие (ЖРТ), твердые (ТРТ) и смешанного агрегатного состава.

Читать еще:  Что такое двухвальный и четырехвальный двигатель

ЖРТ — ракетные топлива, находящиеся в жидком агрегатном состоянии в условиях эксплуатации. ЖРТ подразделяются на однокомпонентные (унитарные) и двухкомпонентные, называемые также топливами раздельной подачи. В качестве однокомпонентных ЖРТ могут рассматриваться химические вещества или их смеси, способные в определенных условиях к химическим реакциям распада или горения с выделением тепловой энергии. К таким веществам относятся, например, гидразин N2H4, пероксид водорода Н2О2, этиленоксид СН2СН2О и др. Однокомпонентные ЖРТ используются в ЖРД малой тяги, в качестве топлив для РД систем управления и ориентации, а также для газогенерирующих систем. Двухкомпонентные ЖРТ состоят из окислителя и горючего. В качестве окислителей используются вещества, содержащие преимущественно атомы окислительных элементов. К таким веществам относятся жидкие фтор F2 и кислород О2, концентрированная азотная кислота HNO3, азотный тетраоксид N2O4. Наиболее эффективными горючими ЖРТ являются жидкий водород Н2, керосин Т-1 (фракция с пределами выкипания 150. 280°С), гидразин N2H4, несимметричный диметилгидразин H2NN(CH3)2 (НДМГ). В качестве горючих могут использоваться также металлы Mg, Al и их гидриды, вводимые в состав жидких горючих в виде дисперсных порошков с образованием гелей. При подаче в камеру сгорания РД компоненты ЖРТ могут самовоспламеняться (например, N2O4 + H2NN(CH3)2) или не самовоспламеняться (ж.H2+ж.О2). В последнем случае используются специальные системы воспламенения или специальные пусковые топлива. Двухкомпонентные ЖРТ используются преимущественно в маршевых двигателях ракет и их ступеней. Для придания ЖРТ комплекса требуемых свойств в компоненты топлива обычно вводят специальные присадки, способствующие, например, повышению стабильности физико-химических свойств компонентов при хранении или эксплуатации. Основным достоинством ЖРТ, определяющим целесообразность их использования, является возможность получения высокого уровня энергетических характеристик.

Например, для топлива на основе жидких О2 и Н2 при рк/pа=7/0,1 МПа реализуется удельный импульс до 3835 м/с тогда как для наиболее высокоэнергетических твердых топлив его значение не превышает 3000 м/с в сопоставимых условиях.

Компоненты ЖРТ разделяют на высококипящие и низкокипящие. Высококипящий компонент — это компонент ЖРТ, имеющий температуру кипения выше 298К при стандартных условиях. Высококипящие компоненты в интервале температур эксплуатации представляют собой жидкости. К высококипящим компонентам относятся азотнокислотные окислители, азотный тетраоксид а также целый ряд широко используемых горючих — керосин Т-1, несимметричный диметилгидразин и др.

Низкокипящий компонент — это компонент ЖРТ, имеющий температуру кипения ниже 298К при стандартных условиях. В интервале температур эксплуатации ракетной техники низкокипящие компоненты обычно находятся в газообразном состоянии. Для содержания низкокипящих компонентов в жидком состоянии используется специальное технологическое оборудование. Среди низкокипящих компонентов выделяют так называемые криогенные компоненты, имеющие температуру кипения ниже 120К. К криогенным компонентам относятся сжиженные газы: кислород, водород, фтор и др. Для уменьшения потерь на испарение и увеличения плотности возможно применение криогенного компонента в шугообразном состоянии, в виде смеси твердой и жидкой фаз этого компонента.

ТРТ — гомогенные или гетерогенные взрывчатые системы, способные к самостоятельному горению в широком диапазоне давлений (0,1. 100 МПа) с выделением значительного количества тепла и газообразных продуктов горения. По химическому составу и способу производства подразделяются на баллиститные и смесевые. Структурно-энергетической основой баллиститов являются нитраты целлюлозы — коллоксилины с содержанием азота около 12%, пластифицированные труднолетучими активными растворителями (нитроглицерином, динитратдиэтиленгликолем) или другими жидкими нитроэфирами. В состав баллиститов могут вводиться мощные взрывчатые вещества (МВВ) — октоген или гексоген, а также входят также стабилизаторы химической стойкости, стабилизаторы горения, модификаторы горения, технологические и энергетические добавки (порошки Al, Mg или их сплавы). Баллиститы представляют собой твердые растворы, находящиеся в интервале температур эксплуатации в стеклообразном физическом состоянии.

Смесевые ТРТ это гетерогенные смеси окислителя (преимущественно перхлората аммония NH4ClO4, перхлората калия КСlO4 или нитрата аммония NH4NO3) и горючего-связующего, представляющего собой пластифицированный полимер (например, бутилкаучук, полибутадиен, полиуретан) с ингредиентами системы отверждения, технологическими и специальными добавками. В состав смесевых ТРТ для повышения их энергетических характеристик могут вводиться мощные бризантные ВВ (гексоген или октоген) в количестве до 50% и до 20% металлических горючих (Al, Mg или их гидридов). Регулирование баллистических характеристик (скорости горения и ее зависимости от различных факторов) ТРТ обычно осуществляется изменением дисперсности порошкообразных компонентов или введением в состав топлив модификаторов горения. Компоненты смесевых ТРТ обычно выполняют несколько функций: окислители являются наполнителями полимерной матрицы, обеспечивают необходимый уровень баллистических и энергомассовых характеристик; горючие, представляющие собой в большинстве случаев пластифицированные полимеры, обеспечивают монолитность твердотопливного заряда и необходимый уровень его механических характеристик; металлическое горючее предназначено для увеличения плотности топлива и повышения его энергетических возможностей.

Читать еще:  Что такое vanos на двигателе bmw

Определенное по массе количество ТРТ, являющееся основным источником энергии и рабочего тела, имеющее заданные форму, размеры и начальную поверхность горения называется зарядом твердого топлива (ЗТТ). Применительно к РДТТ под ЗТТ понимают часть РД, обеспечивающую требуемый закон газообразования рабочего тела. По методу монтажа в камере РДТТ заряды подразделяются на вкладные, прочноскрепленные литые в корпус и литые в корпус, раскрепленные с помощью манжет.

В диапазоне температур эксплуатации смесевые ТРТ находятся в высокоэластическом состоянии. ТРТ по сравнению с ЖРТ более просты в эксплуатации, но уступают им по энергетическим характеристикам.

Топлива смешанного агрегатного состава (гибридные) представляют собой двухкомпонентные РТ, в которых компоненты, находясь в различных агрегатных состояниях, могут быть жидкими, твердыми или газообразными. Из-за сложности компоновки РД гибридные РТ используются ограниченно.

В РД МБР РВСН используются как высококипящие самовоспламеняющиеся ЖРТ (преимущественно, N2O4+H2NN(CH3)2), так и смесевые ТРТ. ЖРТ используются в РД ампулизированных ракет шахтного базирования, а ТРТ в РД ракет как шахтного, так и подвижного базирования.

Табл. 1. Основные характеристики двухкомпонентных ЖРТ при pк/pа=7/0,1 МПа

Классификация Ракетного топлива

Ракетное топливо в наше время разделяют на две категории: жидкое ракетное топливо и твердое ракетное топливо. Питаемый жидким ракетным топливом реактивный двигатель, имеет колоссальную мощность и скорость, несравнимую ни с чем в данный момент на нашей планете. Твердое ракетное топливо и соответственно двигатель существенно отличается от реактивного двигателя на жидком топливе в его базовой конструкции. В некотором смысле он напоминает огромный фейерверк управляемого сгорания, содержащий окислитель, смешанный в с порошком.

Жидкое ракетное топливо состоит из самого топлива и окислителя. Топливо в ракетном двигателе — почти копия реактивного топлива, а окислитель в ракетном двигателе — копия воздуха, который позволяет топливу сгорать в реактивном двигателе. Все топливо ракетного двигателя — это прежде всего керосин, водород (сжижаемый для хранения в бортовых резервуарах), и состав азота/водорода, названный гидразином (N2H4). В случае керосина и водородного топлива, кислород (сжижаемый для хранения в бортовых резервуарах) формирует окислитель. Этот сжижаемый кислород иногда символично называют акронимом.

Если топливо — гидразин, окислитель — состав азота/кислорода, названный четырехокисью азота (N2O4).

Горящее самым чистым образом жидкое ракетное топливо — это водород, который при объединении с кислородом, приводит только энергию и водной пар. Керосин при использовании в качестве жидкого ракетного топлива, после усовершенствования содержит небольшое количество примесей, газы CO2 — неизбежный побочный продукт сгорания такого топлива из-за углеродистых атомов в его молекулах. Гидразин и четырехокись азота приводят к значительным количествам азота, когда они реагируют. Этот газ не ядовит, и фактически составляет почти три четверти состава атмосферы земли.

Самое раннее твердое ракетное топливо было подобно пороху, и использовалось в фейерверке и вооружении. Сегодня, этот тип топлива используется в модельных ракетах. Типичная модель — ракетный двигатель — маленький цилиндр заполненный материалом идентичным пороху. Такая модель возгорается посредством искры в течение секунды. Движение, обеспеченное небольшим двигателем как этот, может продвинуть маленькую ракету ( 0.5 м. ) к высоте нескольких сотен метров, однако такая ракета после истощения топлива, незамедлительно падает.

Твердое ракетное топливо содержит топливо, окислитель, и катализатор, который облегчает устойчивое, надежное сгорание топлива после воспламенения. Эти топливные элементы — все первоначально в измельченной форме. Они смешаны и упакованы однородно, чтобы гарантировать и поддерживать сгорание. Вооруженные силы использует ракетный двигатель на твердом ракетном топливе, которое содержит древесный уголь (углерод) как топливо, нитрат калия как окислитель, и сера как катализатор. Эту комбинацию называют дымным порохом. Альтернативные материалы, которые могут использоваться, чтобы создать твердое ракетное топливо это хлорат натрия, хлорат калия, измельченный магний, или измельченный алюминий. Комбинации этих веществ называют белым порохом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector