Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор поликлиновой: электрическое сердце автомобиля

Генератор поликлиновой: электрическое сердце автомобиля

На современных двигателях все более широкое применение находят электрические генераторы, имеющие привод поликлиновым (ручейковым) ремнем. О том, что такое поликлиновый генератор, какую конструкцию он имеет и как работает, а также о правильном подборе автомобильного генератора читайте в данной статье.

Что такое генератор поликлиновой?

Генератор поликлиновой — компонент электрической бортовой системы транспортного средства; генератор переменного тока с приводом от коленчатого вала двигателя, оснащенный шкивом под поликлиновый ремень. Генератор обеспечивает питание компонентов электрической системы автомобиля и зарядку аккумуляторной батареи.

Данные генераторы устанавливаются на бензиновые и дизельные силовые агрегаты с ременным приводом вспомогательных агрегатов, в котором передача крутящего момента от коленвала осуществляется посредством плоского поликлинового (ручейкового) ремня. Обычно это двигатели легковых и грузовых автомобилей стандарта «Евро-3» и выше (также возможно переоснащение и двигателей «Евро-2»).

Поликлиновая передача имеет ряд преимуществ перед обычной клиноременной. В передаче этого типа используется один плоский ремень, на рабочей поверхности которого выполнен несколько (от 4 до 8) продольных канавок (ручейков) треугольной (клиновой) формы. Такая форма в несколько раз увеличивает площадь контакта ремня со шкивами, чем обеспечивается надежное сцепление этих деталей и передачу крутящего момента без проскальзывания.

Но главное, что поликлиновые ремни за счет своей небольшой толщины могут нормально работать при значительных изгибах и допускают применение шкивов малого диаметра. Это имеет ряд положительных последствий:

  • Снижение массы и стоимости шкива;
  • Возможность получения большого передаточного числа без сокращения ресурса ремня (обычные клиновые ремни за счет большой толщины менее эластичны и не могут работать со шкивами меньше некоторого диметра — они проскальзывают, изнашиваются и изламываются);
  • Повышение надежности всего двигателя.

Конструктивно поликлиновые генераторы идентичны обычным, отличаясь лишь типом шкива и некоторыми характеристиками.

Типы и характеристики генераторов

На современных транспортных средствах используются генераторы только одного типа — синхронные трехфазные переменного тока, оборудованные трехфазными выпрямителями. Данные агрегаты компактны и эффективны, и давно вытеснили генераторы постоянного тока (хотя их еще можно встретить на старых отечественных автомобилях).

Существующие сегодня генераторы делятся на группы по применимости, основным характеристикам и способу установки.

По применимости генераторы бывают двух основных типов:

  • Для бензиновых силовых агрегатов;
  • Для дизельных силовых агрегатов.

Генераторы для бензиновых моторов предназначены для работы на более высоких оборотах, для дизелей — на пониженных оборотах. Генераторы для различных моторов имеют ряд конструктивных отличий, в том числе неодинаковое число витков в обмотках, различные диаметры приводных шкивов и другие.

Автомобильные генераторы имеют следующие основные характеристики:

  • Номинальное напряжение;
  • Номинальный ток;
  • Токоскоростные характеристики.

Номинальное напряжение может составлять 13,5 или 14 В для транспортных средств с напряжением бортовой сети 12 В, и 28 В для транспортных средств с напряжением бортовой сети 24 В. Повышенное напряжение генератора компенсирует падение напряжения на выпрямителе и регуляторе. Номинальный ток может лежать в пределах 60-120 А, чем более мощные потребители установлены на транспортном средстве, тем больший ток должен обеспечивать агрегат.

Токоскоростные характеристики — это зависимость силы вырабатываемого тока от угловой скорости вращения (частоты) ротора агрегата. Из них наиболее важны:

  • Номинальная рабочая частота — частота вращения ротора, при которой вырабатывается номинальный ток;
  • Минимальная рабочая частота — частота вращения ротора, при которой вырабатывается ток на 40-50% меньше номинального, обычно это соответствует холостым оборотам мотора;
  • Максимальная рабочая частота — частота вращения ротора, при которой вырабатывается ток, не более чем на 10% превышающий номинальное значение.

Как правило, номинальный ток указывается для частоты вращения его ротора 5000 или 6000 об/мин. Минимальная частота составляет 1500 об/мин для обычных и 1800 об/мин для высокоскоростных генераторов. Обратите внимание: здесь речь идет именно о частоте вращения ротора генераторной установки, этим значениям соответствует в 1,2-2 раза более низкая частота вращения коленвала мотора.

Наконец, по способу монтажа генераторы поликлиновые делятся на две группы:

  • С обычным монтажом;
  • С монтажом на монокронштейне.

В первом случае генератор крепится к двигателю с помощью двух-четырех болтов и кронштейнов, агрегат жестко зафиксирован на своем месте. Во втором случае генератор установлен в подвижный кронштейн, с помощью которого осуществляется регулировка степени натяжения приводного ремня.

Конструкция и принцип работы поликлинового генератора

Конструктивно автогенератор состоит из нескольких основных компонентов — корпуса, статора, ротора, выпрямительного блока, регулятора напряжения, щеточного узла и приводного шкива. В некоторых агрегатах также присутствует один или два вентилятора охлаждения.

Корпус. Может быть цельным или составным. В первом случае это одна деталь, внутри которой расположены все остальные компоненты генератора. Во втором случае корпус состоит из двух половин, между которыми с помощью нескольких болтов зажимается статор — сегодня эта конструкция получила наибольшее распространение.

Статор. Основной компонент генератора, в котором вырабатывается ток. Статор состоит из металлического сердечника, внутри которого располагаются витки обмоток. Всего в статоре три обмотки, они изготавливается из изолированного медного провода большого сечения. Витки уложены в определенном порядке для обеспечения постоянных значений тока независимо от положения статора относительно ротора.

Ротор. Один из основных компонентов генератора, в нем формируется магнитное поле, обеспечивающее генерацию тока в статоре. Ротор состоит из вала, на котором располагаются полюса (металлические сердечники), обмотка возбуждения и контактные кольца для подачи тока на обмотку. Ротор размещается внутри статора, вал ротора располагается в подшипниках в торцах корпуса (или в крышках корпуса). Также на валу ротора, снаружи или внутри корпуса, могут располагаться один или два вентилятора охлаждения.

Щеточный узел. Узел с двумя подпружиненными графитовыми щетками, которые упираются в контактные кольца на валу ротора, обеспечивая подачу тока на вращающуюся обмотку возбуждения. Обычно щеточный узел объединяется с регулятором напряжения.

Выпрямительный блок. Узел, на котором устанавливается трехфазный выпрямитель тока на шести полупроводниковых диодах (по два на каждую фазу). Данный блок осуществляет выпрямление тока — преобразование переменного тока в постоянный, который далее используется для питания потребителей бортовой электросети. Выпрямительный блок обычно собирается на массивной подковообразной пластине (она служит в качестве теплоотвода для охлаждения диодов), которая устанавливается на задней стенке генератора и закрыта защитной крышкой.

Регулятор напряжения. Узел, выполняющий стабилизацию поступающего в бортовую сеть напряжения независимо от частоты вращения двигателя и других условий. В настоящее время используются только электронные регуляторы, объединенные с щеточным узлом.

Читать еще:  Эфир для холодного запуска дизельных двигателей

Приводной шкив. Поликлиновый пластиковый или металлический шкив, жестко установленный на выступающей за пределы корпуса части вала ротора. С его помощью осуществляется передача крутящего момента от коленчатого вала двигателя на ротор генератора. От размера шкива зависит передаточное число ременного привода.

Работает генератор следующим образом. При переводе замка зажигания в положение пуска двигателя на обмотку возбуждения генератора подается ток от аккумулятора, поэтому вокруг ротора образуется магнитное поле. При запуске двигателя ротор и вместе с ним силовые линии магнитного поля приходят во вращение, в обмотке статора за счет явления электромагнитной индукции образуется переменный ток — он снимается с выводов обмоток, поступает на выпрямитель и к потребителям. При успешном запуске двигателя обмотка возбуждения отключается от аккумулятора, необходимый для работы ток теперь поступает от статора — генератор переходит в режим самовозбуждения. При изменении режима работы двигателя изменяется и выходное напряжение генератора, однако в работу вступает стабилизатор напряжения, он в зависимости от изменения частоты вращения ротора генератора изменяет поступающий в обмотку возбуждения ток, чем достигается стабильность выходного напряжения.

Генератор в сборе монтируется на двигатель с помощью подвижного или неподвижного кронштейна. Привод этого агрегата может быть двух типов:

  • Отдельный привод генератора;
  • Совмещенный привод генератора, водяного насоса и/или других навесных агрегатов.

В первом случае крутящий момент от шкива коленвала с помощью ремня подается на шкив генератора, в приводе нет дополнительных деталей. Во втором случае ремень охватывает три шкива, также в этом приводе может присутствовать натяжитель ремня.

Вопросы правильного выбора, ремонта и замены генератора

Генератор с течением времени может терять свои характеристики или полностью выходить из строя. При подозрениях на поломку следует проверить работоспособность агрегата — это необходимо выполнять в соответствии с инструкцией по ТО и ремонту транспортного средства. Многие неисправности агрегата можно устранить — поменять выпрямитель, регулятор и другие детали. Но если генератор не подлежит ремонту, то его необходимо заменить в сборе.

Выбирать генератор необходимо того же типа и каталожного номера, что был установлен на авто ранее. В крайнем случае следует подбирать генератор по его основным характеристикам и по диаметру приводного шкива. В первую очередь, нужно обращать внимание на номинальное напряжение и ток, а также на назначение генератора — нельзя использовать агрегат для дизелей на бензиновых моторах, и наоборот. А изменение диаметра шкива изменяет передаточное число привода и, соответственно, режимы работы генератора.

Устанавливать и регулировать новый генератор также необходимо в полном соответствии с указаниями инструкции. У многих автомобилей замена этого агрегата имеет свои особенности, которые обязательно нужно учитывать. Особое внимание нужно уделять регулировке силы натяжения ремня, ее нельзя увеличивать и уменьшать. При правильной замене генератора и регулировке его привода электросистема автомобиля вновь будет работать нормально на всех режимах.

Определение частот вращения ротора генератора и передаточного числа привода от двигателя к генератору

Инженерный расчет генератора, сводится к перерасчету передаточного отношения привода генератора от коленчатого вала двигателя. Э.д.с фазы будем считать по формуле е=l·Vотн·Вd . Воспользуемся рядом упрощений и допущений /19/. Вектор магнитной индукции Вd перпендикулярен вектору относительной скорости движения Vотн. Магнитная индукция в зазоре равна индукции постоянного магнита Вd=Вм, так как считаем что воздушные зазоры пренебрежимо малы и линии индукции не имеют выпячиваний в воздушном зазоре ( т.е. параллельны друг другу). Тогда можно записать что:

Для перерасчета считаем, что l·Vотн=const для определенной частоты вращения. При пересчете будем опираться на технические данные ГУ Г273 и его ТСХ /20/ (Рисунок А.1 в приложении А). Также считаем, что у обмотки возбуждения магнитная индукция равна Вм1=1.7 Тл, а у выбранного магнита Вм2=1.05 Тл.

1. Расчет при холостом ходе генератора.

-частота вращения ротора генератора при Iнагр =0 и UГУ =28 В.

— следовательно, так как магнитная индукция в 1.62 раза меньше, то исходя из формулы (1) считаем, что частоту вращения ротора надо поднять с 1050 до 1700 об/мин. Так как при n=1050 об/мин и Вм2=1.05 Тл генератор не выдает необходимого напряжения в 28 Вольт (Напряжение равно только 17 В).

2. При контрольном режиме ТСХ.

при Iнагр =20 и UГУ =28 В

Соотношение Вd и Вм остается прежним 1.62 раза. Из формулы (1) находим, что чтобы обеспечить необходимое напряжение ГУ в 28 Вольт надо поднять частоту вращения генератора до 3564 об/мин.

3. При номинальном режиме работы, когда nномгу = 5000 об/мин при Iнагр =28А и UГУ =28 В, надо поднять частоту вращения ротора до 8100 об/мин.

При максимальной частоте вращения двигателя частота вращения ротора генератора должна составлять не менее 10800 об/мин.

Ввиду того, что частота вращения ротора генератора необходимая для обеспечения заданного напряжения не соответствует частоте вращения коленчатотго вала двигателя, необходимо ставить повышающий редуктор привода генератора. Примерные частоты вращения двигателя находятся в пределах 700 -4500 об/мин, минимальная частота вращения генератора 1700 об/мин.

Необходимо обеспечить токоотдачу на минимальных оборотах то, есть при минимальной частоте вращения двигателя 700 об/мин, надо чтобы генератор имел частоту вращения 1700 об/мин. Следовательно необходимо выбрать передаточное число 1700/700=2.4, (i=2.4)- повышающего редуктора от двигателя к генератору.

Так как вместо обмотки возбуждения на генераторе установлен постоянный магнит магнитный поток невозможно уменьшить при увеличении частоты вращения (Ф=const). Неизбежно повышение напряжения на выходе генератора, причем оно будет увеличиваться пропорционально увеличению частоты вращения ротора генератора. Рассчитаем во сколько раз увеличится напряжение генератора по-формуле

,где nmax и nmin частоты вращения двигателя.

Нам известны nmax =4500 об/мин, nmin =700 об/мин и Umin=28 В , тогда

.

Напряжение генераторной установки изменяется в пределах 28 . 170 Вольт.

Выбор гидроцилиндра для основной стрелы Схема к определению усилия на штоке
Определим ход поршня. Ориентируясь на параметры механизмов подъема сельскохозяйственных погрузчиков, примем r = 710 мм: a=arccos(H0/R) (3.2) где Но — расстояние от земли до точки соединения основной стрелы с платформой; R — длина стрелы основной и передней вместе. Расстояние между опорами гидроцили .

Методика расчета устройства для намагничивания вала редуктора ТРКП пассажирского вагона
Схема намагничивающего устройства приведена на рисунках 5.1 и 5.2. Определим величину намагничивающей силы Iw устройства для создания в изделии необходимой индукции. Рисунок 5.1 – Эквивалентная электрическая схема НУ Рисунок 5.2 – Расчетная схема намагничивающего устройства Величину намагничивающей .

Читать еще:  Что такое тахогенератор двигателя для стиральной машины

Расчет исполнительных резмаров рабочих деталей штампа, определение центра давления штампа, конструирование штампа
Центр давления штампа. Ось равнодействующей усилий штамповки должна совпадать с осью хвостовика штампа. Иначе возникнут перекос штампа, неравномерность зазоров между матрицами и пуансонами, износ направляющих пресса и даже поломка штампа. Центр давления находят из равенства момента равнодействующей .

Это важно:

Движение в сложных погодных условиях

Если вам надо срочно ехать, а на улице сильный дождь, ночь или ослепительно яркое солнце, то, скорее всего, это вас не остановит. Но если уж вы решились на поездку в таких условиях, только одного осознания трудностей предстоящей поездки недостаточно.

Передаточное отношение

Передаточное отношениеотношение между угловыми скоростями, либо крутящими моментами валов (в передачах), либо перемещениями (линейным или угловым). Понятие применяется в машиностроении (передачи), теории механизмов и машин, метрологии.

Ввиду большой распространённости редукторов, термин чаще всего применяют в смысле передаточного отношения механических передач. Но несмотря на отличие этого термина от передаточного числа, некоторые авторитетные издания допускают путаницу в этом вопросе [1] .

Содержание

  • 1 Механические передачи
  • 2 Другие виды передач
  • 3 Теория механизмов и машин
  • 4 Метрология
  • 5 Передаточное число
  • 6 Примечания
  • 7 Литература

Механические передачи [ править | править код ]

Передаточное число любой механической передачи (зубчатая, цепная, ременная, волновая, червячная и другие), есть отношение угловых частот вращения первичного и выходного валов. Тем самым, при значении выше 1 механическая передача является понижающей (редуктор), а ниже 1 — повышающей (мультипликатор). Наиболее частым является применение понижающих передач, поскольку двигатели имеют обычно более высокую частоту вращения, чем приводимые ими во вращение устройства [2] .

i 12 = ω 1 ω 2 =>>>>

Передаточное отношение механических передач может быть постоянным и переменным, причём во втором случае может меняться ступенчато (смена зубчатых пар в редукторах станков, коробках передач автомобилей, звёздочек велосипеда) или бесступенчато (клиноременной вариатор, гидротрансформатор) [2] . Ременная, а также гидромеханическая передачи имеют при работе проскальзывание, при этом передаточное отношение может меняться в зависимости от передаваемого момента. В механических передачах передаточное отношение имеет знак, и положительным оно является, если направление вращения не меняется [3] . Однако если направление вращения значения не имеет, знак опускают [4] .

Передаточное отношение моментов механической передачи вращением равняется отношению моментов на выходном и входном валах.

i 12 = M 2 M 1 =>>>> ,

где M 1 , M 2 ,M_<2>> — крутящие моменты входного и выходного валов. Между передаточными отношениями по угловым скоростям и моментам имеется разница, поскольку передачи имеют обычно КПД отличный от единицы. В результате крутящий момент валов и угловые скорости будут связаны следующим соотношением:

ω 1 ω 2 ∗ η M = M 2 M 1 >>>*eta _=>>>> ,

где η M > — механический КПД передачи.

Другие виды передач [ править | править код ]

Электрическая передача обычно используется передачи вращения с понижением частоты вращения в крупногабаритных видах транспорта (тяжёлые грузовики, ледоколы, трактора, вездеходы, тепловозы). Для ступенчатой смены передаточного числа (а значит, и отношения) используют обычно смену числа пар полюсов электрической машины. В случае применения коллекторных машин, передача получается бесступенчатой

Особенность этой передачи, что она работает всегда с понижением частоты вращения, и в режиме блокировки передаточное отношение строго равно 1. [5] Передаточное отношение гидротрансформатора достигает максимума при минимальном передаваемом моменте [5] .

Теория механизмов и машин [ править | править код ]

В теории механизмов и машин, передаточным отношением звена или механизма называют отношение угловых скоростей [6] (либо мгновенных перемещений, в случае линейного передаточного числа механизма [7] ) входного и выходного звеньев. Таким образом, отличие здесь в том, что потери механизма не учитываются (нулевые), и в некоторых случае, соотношение меняется при работе механизма (передаточное отношение при работе кривошипно-шатунного механизма). Формула для угловых координат:

i = ω 1 ω 2 >>>> , где ω 1 , ω 2 ,omega _<2>> — угловые скорости звеньев [6] .

В рядовых механизмах общее передаточное отношение равняется произведению частных [6] .

Метрология [ править | править код ]

Передаточное отношение — отношение линейного или углового перемещения указателя к изменению измеряемой величины, вызвавшей такое перемещение [8] .

Передаточное число [ править | править код ]

Передаточное число — применительно к одиночной зубчатой паре, отношение числа зубьев большего и меньшего зубчатых колёс (ГОСТ 16530-83). Ввиду большего числителя дроби, передаточное число больше или равно (если число зубьев совпадает) единице. Из определения следует, что передаточное число является частным случаем передаточного отношения для одноступенчатого зубчатого редуктора (понижающая передача), причём передаточное число всегда беззнаковое.

u = zБ / zМ, где: zБ — число зубьев большей шестерни зубчатого колеса;
zМ — число зубьев меньшей шестерни зубчатого колеса .

Про генератор!

Продолжаем познавательную страничку.

Генератор предназначен для питания электрическим током всех потребителей и для подзарядки аккумуляторной батареи при работе двигателя на средних и больших оборотах. На современные автомобили устанавливается генератор переменного тока. Он включен в электрическую цепь автомобиля параллельно аккумуляторной батарее. Однако питать потребителей и заряжать батарею генератор будет только в том случае, если вырабатываемое им напряжение превысит напряжение аккумуляторной батареи. А произойдет это тогда, когда двигатель автомобиля начнет работать на оборотах выше холостых, так как напряжение, вырабатываемое генератором, зависит от скорости вращения его ротора. При этом, по мере увеличения частоты вращения ротора генератора, вырабатываемое им напряжение может превысить требуемое. Поэтому генератор работает в паре с регулятором напряжения. Регулятор напряжения является электронным прибором, который ограничивает вырабатываемое генератором напряжение и поддерживает его в пределах 13,6 — 14,2 вольта.

Конструкция:

Статор (неподвижная часть генератора) представляет собой обмотки с магнитопроводом, в которых образуется электрический ток. Ротор — вращающаяся часть генератора. Ротор состоит из обмоток возбуждения с полюсной системой, вала и контактных колец. Кольца выполняются чаще всего из меди, с опрессовкой их пластмассой. Для снижения износа и предотвращения окисления они могут изготавливаться из латуни или нержавеющей стали. К кольцам присоединяются выводы обмотки возбуждения. Питание к обмоткам подается через щетки (скользящие контакты), которые прижимаются к кольцам с помощью пружин.

Щетки бывают двух типов — меднографитные и электрографитные. Последние имеют более высокое электрическое сопротивление, что снижает выходные характеристики генератора, зато они обеспечивают значительно меньший износ контактных колец. Существуют и бесщеточные генераторы, у которых на роторе расположены постоянные магниты, а обмотки возбуждения — на статоре. Отсутствие щеток и контактных колец повышает надежность генератора, но увеличивает массу и шумность при работе.

Читать еще:  Двигатель ваз 2108 почему гнет клапана

При вращении ротора напротив катушек обмотки статора появляются попеременно разнополярные полюсы, т. е. направление и величина магнитного потока, пронизывающего катушку, меняется, что и приводит к появлению в ней переменного напряжения. Так как потребители электрической сети автомобиля работают на постоянном напряжении, в схему генератора вводится диодный выпрямитель.

Электронные регуляторы напряжения, как правило, встроены в генератор («таблетка») и объединены со щеточным узлом. Иногда они располагаются отдельно в подкапотном пространстве. Регуляторы изменяют ток возбуждения путем изменения времени включения обмотки ротора в питающую сеть. Устройства необслуживаемые, необходимо лишь контролировать надежность контактов. Существуют регуляторы напряжения, наделенные функцией термокомпенсации, — они измененяют напряжение зарядки в зависимости от температуры воздуха в подкапотном пространстве для обеспечения оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение подводится к батарее, и наоборот.

Генераторы выпускаются в двух конструктивных исполнениях — «классическом», с вентилятором у приводного шкива, и компактном, с двумя вентиляторами внутри генератора. Так как «компактные» генераторы имеют привод с более высоким передаточным отношением, их называют еще высокоскоростными генераторами.

Генератор устанавливается на специальном кронштейне двигателя и приводится в действие от шкива коленчатого вала через ременную передачу. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива генератора, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток. На современных моделях, как правило, привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра. Привод генератора может осуществляться как отдельно, так и одним ремнем вместе с насосом охлаждающей жидкости («помпой»). Натяжение ремня регулируется либо отклонением корпуса генератора, либо (в случае применения поликлинового ремня) натяжными роликами при неподвижном генераторе.

Возможна ли замена генератора одной марки на другой? — Вполне, если выполняются следующие условия:

• энергетические характеристики заменяющего генератора не ниже, чем у заменяемого;
• передаточное число от двигателя к генератору одинаково;
• габаритные и крепежные размеры заменяющего генератора позволяют установить его на двигатель. Большинство генераторов зарубежного производства имеют однолапное крепление, а отечественные крепятся за две лапы, поэтому замена «иномарочного» генератора отечественным потребует замены кронштейна;
• электрические схемы генераторных установок аналогичны.

И напоследок несколько «вредных» советов, как быстро и без проблем «сжечь» генератор:

1. Самый лучший и быстрый способ — «Переплюсовка».
Поменяйте местами провода от клемм аккумуляторной батареи, при этом возможен не только оптический эффект (яркая вспышка внутри генератора, легкое дымовое облако), но также звуковой (от щелчка до хлопка и шипения), обонятельный (почувствуете непередаваемый аромат горящих проводов!), и, наконец, тактильный (ожог 1-3 степени — подбирается экспериментально!) После применения этого способа диодный мост выгорает с вероятностью 99%, статор — 60%, реле-регулятор — 20%, провода — 10%, автомобиль целиком — 0,01%! Способ очень эффективен при «прикуривании». Возможны побочные эффекты — выгорание бортовых компьютеров, сигнализации, музыки и т.д. Большой плюс — не требует специальных навыков и знаний, легко осваивается начинающими.

2. Способ «Мойка».
Помойте двигатель своей машины. Особенно тщательно помойте генератор, проследите, чтобы потоки воды прополоскали все внутренности агрегата. Ни в коем случае не продувайте генератор после мойки! Сразу же заводите машину и включите побольше нагрузок — весь свет, обогрев, музыку. Если эффект не произошел — повторите попытку. Эффект появится, поверьте! Плюс — сгоревший генератор будет чистым.

3. «Дедовский» метод.
Сдёргивание плюсовой клеммы аккумулятора на работающем двигателе вроде бы для проверки зарядной системы. Процент сгоревших релюшек увеличивается до 50-70%. Способ требует определенной сноровки — главное, чтобы было побольше искр! Возникающие в цепях высоковольтные коммутационные процессы рано или поздно должны будут сжечь хоть что-нибудь в Вашем генераторе, или, в крайнем случае, в машине! Как всегда, рекомендуется включить побольше всяких там нагрузок — свет, печки, подогрев. Способ не очень эффективен на старых машинах, но главное — верить, что так и будет!

4. «Лужа»
Способ, которым пользуется множество автолюбителей, даже не подозревая об этом. При этом многие искренне уверены, что автомобиль и его агрегаты, включая генератор, по водонепроницаемости должен быть сродни подводной лодке. Дерзайте! Как много неисследованных глубин ждут своих первооткрывателей! И еще простой совет — лужу надо проезжать на возможно максимальной скорости, тщательно следя, чтобы брызги равномерно захлестывали подкапотное пространство. Отсутствие защитных кожухов и поддонов во многом облегчит Вашу непростую задачу. Очень большой плюс — способом можно пользоваться практически ежедневно, не выходя из машины!

5. Способ «Меломан».
Для очень крутых! Поставьте в Вашу машинку супер магнитолку, парочку CD чейнджеров, пару-тройку ламповых усилителей ватт по 200-300, сабвуфер ватт на 500, ну колонок с десяток, лучше полтора. Вообще, чем больше — тем лучше! Баксов на 12-25 тысяч! (Это не враки — случай зафиксирован!) Включайте! Если через пару минут генератор все ещё работает, а характерного дыма и запаха все еще нет — значит Вы поставили слишком дешёвую аппаратуру!

6. «Аккумуляторный» способ.
Наиболее коварный и таинственный из всех, поскольку его осознание требует понимания химических и физических процессов (ну хотя бы закон Ома, что уже не всем дано!) А если по-простому — используйте давно просроченный аккумулятор, не моложе трех-пяти лет. Чем старше — тем больше вероятность, что в аккумуляторе окажется короткозамкнутая банка. При этом аккумулятор может подавать признаки жизни — заводить машину, подзаряжаться от зарядного устройства и т.д., но при этом он становится мощной паразитной нагрузкой в цепи генератора. Возможно, что силы тока будет хватать на работу инжектора, но при включении дальнего света и обогрева генератор будет греться так, что его можно использовать для приготовления яичницы в походных условиях! Главное — не обращать на это внимания, и способ когда-нибудь сработает!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector