Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое пусковой момент асинхронного двигателя, как его рассчитать и увеличить

Что такое пусковой момент асинхронного двигателя, как его рассчитать и увеличить

Переход двигателя из покоя в рабочее состояние называют пусковым моментом асинхронного электродвигателя. При этом подразумевается, что на обмотки двигателя подано номинальное напряжение стандартной частоты. Этот временной промежуток называют «моментом трогания», «начальным моментом» или «начальный пусковой момент асинхронного двигателя». При этом электродвигатель потребляет максимальное количество электроэнергии. Она расходуется на преодоление тормозного момента вала, потерь в двигателе для придания вращательного момента механизмам. В этой статье мы расскажем читателям сайта Сам Электрик, как рассчитывается пусковой момент электродвигателя и как его можно увеличить.

  • Расчет пускового момента
  • Методы увеличения Мпуск
  • Схемы включения асинхронного двигателя
  • Способы снижения пусковых токов АД

Расчет пускового момента

Пусковой момент, который зависит от номинального усилия на валу и кратности пускового момента, можно вычислить по формуле:

  • Мн – номинальное усилие на валу электродвигателя;
  • Кпуск.– кратность пусков, паспортная величина, которая принимает значения от 1,5 до 6.

На практике применяют другую формулу:

Необходимые данные указываются на шильдике двигателя или в паспорте, где F1 – номинальные обороты.

Р2 равна номинальной мощности в кВт, является расчетной величиной.

Для того, чтобы узнать значение Р2, следует воспользоваться формулой, в которой учитываются пусковой ток, напряжение сети, скольжение. Эти данные можно узнать в паспорте, справочнике или на сайте завода-изготовителя.

Методы увеличения Мпуск

Из формулы видно, от чего зависит пусковой момент асинхронного двигателя и как увеличить его, изменяя параметры. Он зависит от мощности трехфазного двигателя и величины скольжения.

Мощность определяется по формуле, корень из 3 умноженный на напряжение и ток. Скольжение изменяет свое значение в зависимости от оборотов вала механизма. При оборотах двигателя равных нулю, скольжение принимает значение равное 1.

При разгоне электродвигателя оно уменьшается и стремится к нулю при достижении номинальных оборотов ротора. Для того чтобы увеличить пусковой момент, достаточно увеличить пусковой ток или питающее напряжение. Величину скольжения изменить нельзя.

Для примера приведем расчет пускового момента, используя паспортные данные некоторых двигателей. Результат сведен в нижеприведенную таблицу:

При этом следует помнить, что использование электродвигателя в механизмах с пусковым моментом, превышающим усилие двигателя на валу – недопустимо. В этом случае электродвигатель не сможет преодолеть потери в двигателе и тормозной момент механизма. Он просто выйдет из строя. Т.е. усилие электродвигателя недостаточно для нормальной работы устройства.

Схемы включения асинхронного двигателя

Для уменьшения воздействия пусковых токов применяются различные схемы включения. Это зависит от механизма и мощности электродвигателя.

Типовое включение двигателя осуществляется напрямую. Напряжение на обмотки подается через магнитный пускатель.

Во время пуска в сети возникает бросок тока, который превышает номинальный в 5-7 раз. Длительность зависит от мощности электродвигателя и нагрузки на валу. Чем мощнее устройство, тем длительнее период разгона.

В результате возникает понижение напряжения в сети, что отрицательно сказывается на аппаратуре, подключенной к этой цепи. Маломощные не оказывают существенного влияния на сети.

На графике снизу представлена зависимость тока от времени разгона электродвигателя:

При запуске мощного электропривода 10 и более кВт следует ограничивать пусковой ток. Это необходимо, чтобы сети не испытывали значительные перегрузки, в результате, которой происходит понижение напряжения сети, что приводит к нештатной ситуации.

Для этого применяются схемы переключения с треугольника на звезду, используются токоограничивающие устройства или частотные преобразователи.

Способы снижения пусковых токов АД

Уменьшить пусковые токи асинхронного двигателя можно несколькими способами. Перечислим их по порядку.

Наиболее распространенным методом, является запуск двигателя при пониженном напряжении. Для чего коммутируют обмотки асинхронного двигателя. В начальный момент пуска, обмотки переключают с треугольника на звезду. После набора оборотов коммутацию возвращают в первоначальное положение. При этом следует учитывать, что пусковой момент при таком запуске уменьшается. Например, при снижении напряжения в 1,72 (корень квадратный из 3) раза, момент уменьшится в три раза. Такой метод применяется при запуске механизмов с минимальной нагрузкой на валу, где установлены асинхронные электродвигатели с короткозамкнутым ротором.

Так же ограничение токов во время запуска двигателя осуществляют включением последовательно с обмотками статора индукционных сопротивлений. В некоторых случаях для этих целей используются резисторы. После выхода двигателя на оптимальные режимы, резисторы шунтируются.

На рисунке снизу показаны варианты запуска при пониженном напряжении:

Пуск при пониженном напряжении

При уменьшении нагрузки на валу можно регулировать пусковые токи. В первоначальный промежуток времени подключается часть нагрузки. После достижения оптимальных оборотов, подается полная нагрузка.

Для мощных устройств применяют реостатный запуск. Такой пуск используют для приводов укомплектованных асинхронными электродвигателями с фазным ротором. Регулировка производится ступенчато, т.е. резисторы отключаются постепенно с набором скорости вращения. Таким образом обеспечивается плавный пуск.

На рисунке снизу представлена принципиальная схема запуска:

График токов при прямом и плавном пуске электропривода:

Наиболее щадящий запуск механизмов обеспечивает пуск с помощью частотного преобразователя. В этом случае частотный преобразователь самостоятельно выбирает оптимальные режимы. При этом можно увеличить пусковой момент, не повышая нагрузку на сети. Использование частотного преобразователя полностью исключаются нежелательные броски тока в сети.

Вот и были рассмотрены способы увеличения пускового момента асинхронного двигателя, а также правильный его расчет. Если остались вопросы, задавайте их в комментариях под статьей!

Пуск в ход асинхронных электродвигателей

В начальный момент пуска скольжение s = 1, поэтому, пренебрегая током холостого хода, величина пускового тока I п будет равна
I п = U 1 / (√ [(r 1 + r’ 2 ) 2 + (x 1 + x’ 2 ) 2 ]).

Следовательно, улучшить пусковые свойства двигателя можно путем увеличения активного сопротивления цепи ротора r’ 2 , так как в этом случае уменьшается пусковой ток и увеличивается пусковой момент. В то же время напряжение U 1 по-разному влияет на пусковые характеристики: с уменьшением U 1 пусковой ток уменьшается, что благоприятно влияет на пусковые свойства двигателя, но одновременно это вызывает уменьшение пускового момента. Возможность применения того или иного способа улучшения пусковых характеристик определяется условиями эксплуатации двигателя и требованиями, которые к нему предъявляются.

Пуск в ход двигателя с короткозамкнутым ротором
Пуск в ход двигателя непосредственным включением в сеть. Этот способ пуска отличается от других своей простотой. Однако в момент подключения двигателя к сети в цепи статора возникает большой пусковой ток, в 5-7 раз превышающий номинальный ток двигателя. При малой инерционности исполнительного механизма скорость двигателя очень быстро возрастает до установленного значения, и ток спадает, достигая величины, соответствующей нагрузке двигателя. В этих условиях пусковой ток не представляет опасности для двигателя, поскольку он быстро спадает и не может вызвать перегрева обмоток машин. Но значительный бросок тока в цепи двигателя влияет на питающую сеть и при недостаточной мощности последней это влияние может выразиться в заметных колебаниях напряжения сети. Однако при современных мощных энергетических системах и сетях двигатели с короткозамкнутым ротором, как правило, запускаются непосредственным включением в сеть на полное напряжение.

Читать еще:  Что такое гбц в двигателе ваз

При необходимости уменьшения пускового тока применяют какой-либо из способов пуска при пониженном напряжении.

Пуск в ход двигателя при пониженном напряжении. Пусковой ток двигателя пропорционален напряжению U 1 , поэтому уменьшение напряжения U 1 сопровождается соответствующим уменьшением пускового тока.

Имеется несколько способов понижения напряжения U 1 в момент пуска. Для асинхронных двигателей, работающих при соединении обмотки статора треугольником, у которых фазное напряжение равно напряжению сети, может быть применен пуск в ход переключением обмотки статора со звезды на треугольник. В момент подключения двигателя к сети переключатель устанавливают в положение «звезда», при котором обмотка статора оказывается соединенной звездой. В этом случае фазное напряжение на статоре понижается в √3 раз. Во столько же уменьшается и ток в фазных обмотках двигателя. Кроме того, при соединении обмоток звездой линейный ток равен фазному, в то время как при соединении треугольником он больше фазного в √3 раз. Следовательно, применение способа пуска в ход переключением статорной обмотки со звезды на треугольник дает уменьшение пускового (линейного) тока в три раза по сравнению с пусковым током при непосредственном подключении двигателя к сети. После того как ротор двигателя разгонится до скорости, близкой к номинальной, переключатель быстро переводят в положение «треугольник». Возникший при этом бросок тока обычно невелик и не влияет на работу сети. Однако описанный способ пуска имеет серьезный недостаток. Дело в том, что уменьшение фазного напряжения в √3 раз при пуске влечет за собой уменьшение пускового момента в (√3) 2 = 3 раза, так как пусковой момент двигателя прямо пропорционален квадрату напряжения. Такое значительное уменьшение пускового момента ограничивает применение этого способа пуска для двигателей, включаемых под нагрузкой на валу.

Снижение напряжения U 1 при пуске в ход асинхронного двигателя может быть достигнуто также с помощью реакторов или автотрансформатора. Порядок включения следующий. При разомкнутом рубильнике 2 включают рубильник 1. Ток из сети поступает в обмотку статора через реакторы Р, в которых происходит падение напряжения jI 1 x p (здесь x p – индуктивное сопротивление реактора). В результате на выводы статорной обмотки двигателя подводится пониженное напряжение Ù’ 1 = Ù 1 — jI 1 x p . После того как ротор двигателя разгонится и пусковой ток спадет, включают рубильник 2, и двигатель оказывается под полным напряжением сети U 1н .

Недостаток этого способа пуска состоит в том, что уменьшение напряжения в Ù 1 /U 1н раз сопровождается уменьшением начального пускового момента М п двигателя в (Ù 1 /U 1н ) 2 раз. Необходимое сопротивление реактора определяется по формуле:
x p = [U 1н (1 — K p )]/K p I п ,
где U 1н – номинальное (фазное) напряжение статорной обмотки;
K p = I’ п /I п – отношение пускового тока статора при пуске к пусковому току двигателя при пуске непосредственным включением в сеть; обычно K p = 0,65.

При автотранспортном пуске вначале замыкают рубильник 1, соединяющий звездой обмотки автотрансформатора. Затем замыкают рубильник 2, и двигатель оказывается включенным на пониженное напряжение U’ 1 . При этом пусковой ток двигателя, измеренный на выходе автотрансформатора, уменьшается в К а раз, где К а – коэффициент трансформации автотрансформатора. Ток, измеренный на входе автотрансформатора, уменьшается в К 2 а раз по сравнению с пусковым током при непосредственном включении двигателя в сеть. Дело в том, что в понижающем автотрансформаторе первичный ток в К а раз меньше вторичного, а поэтому уменьшение пускового тока при автотрансформаторном пуске составляет К а ∙К а = К 2 а раз.

После того как ротор двигателя придет во вращение, рубильник 1 размыкают, и автотрансформатор превращается в реактивную катушку. При этом напряжение на выводах статорной обмотки несколько повышается. Включением рубильника 3 на зажимы двигателя подается полное напряжение сети U 1н . Таким образом, автотрансформаторный пуск происходит тремя ступенями: на первой ступени к двигателю подводят напряжение, равное 50-70% от номинального; на второй ступени, где трансформатор служит реактором, напряжение составляет 70-80% от номинального. Так как применение автотрансформатора дает уменьшение пускового тока в К 2 а раз
I’ п = I п / К 2 а ,
то мощность, на которую должен быть рассчитан пусковой автотрансформатор,
S a = 3U 1н I п (1 / К 2 а ),
где U 1н – номинальное (фазное) напряжение статорной обмотки;
I п — пусковой ток двигателя при пуске непосредственным включением в сеть.

Автотрансформаторный способ пуска, как и другие способы пуска асинхронных двигателей, основанные на уменьшении подводимого напряжения, сопровождается уменьшением пускового момента, так как величина последнего прямо пропорциональна квадрату напряжения. С точки зрения пусковых токов и пусковых моментов, автотрансформаторный способ пуска выгоднее реакторного, так как при одинаковом уменьшении напряжения пусковой ток при реакторном способе пуска уменьшается в раз, а при автотрансформаторном способе пуска – в (U’ 1 / U 1н ) 2 раз. Но сложность пусковой операции и высокая стоимость аппаратуры несколько ограничивают применение автотрансформаторного способа пуска асинхронных двигателей.

Компенсация пусковых токов электродвигателей.

Motor starting current compensation.

Активные фильтры эффективно компенсируют пусковые токи электродвигателей, сохраняя неизменным пусковой момент и время разгона привода.

Пусковые токи электродвигателей переменного тока (асинхронных и синхронных при асинхронном пуске) возникают в момент подачи напряжения и могут превышать в 5–7 раз номинальный ток. По мере разгона двигателя ток снижается, вплоть до достижения подсинхронной скорости. Пусковые токи перегружают источники электроэнергии, линии электропередачи, могут привести к срабатыванию защит и отключению коммутационных аппаратов.

При питании удалённых потребителей по протяжённым линиям пусковые токи вызывают глубокие провалы напряжения.

Провал напряжения на трансформаторах собственных нужд шагающего экскаватора при включении привода тяги; в результате провала напряжения главные приводы отключены защитой.

При электроснабжении от автономных источников пусковые токи создают опасность отключения генераторов.

Применение тиристорных устройств плавного пуска (УПП) лишь отчасти улучшает ситуацию, так как пусковой ток при любых условиях в 2,5 – 3 раза будет превышать номинальное значение.

Пусковой ток (черная линия) и напряжение (красная линия) при включении привода подруливающего устройства (1 МВт) с тиристорным УПП на судне.

На приведенном графике ток при пуске в 3 раза превышает номинальное значение (940 А); колебания напряжения на входе УПП – до 20% от номинального (690 В).

Особенность пускового тока электродвигателя состоит в том, что он носит в основном реактивный (индуктивный) характер.

Коэффициент мощности в цепи питания устройства плавного пуска асинхронного двигателя.

Читать еще:  В какую сторону крутится двигатель мотоблока

На приведенном графике коэффициент мощности в цепи питания УПП при пуске асинхронного двигателя изменяется от 0,1 до 0,8.

Активные фильтры прекрасно компенсируют реактивную мощность, и очень быстро. Это позволяет использовать их для компенсации пускового тока электродвигателей.

Фильтр подключается параллельно электродвигателю.

При работе в режиме динамической компенсации реактивной мощности фильтру нужно указать только величину коэффициента мощности, которую требуется поддерживать. В момент подачи питающего напряжения на электродвигатель активный фильтр мгновенно начинает генерировать реактивную мощность ёмкостного характера и предоставляет её для намагничивания стали электрической машины. Таким образом, обеспечивается необходимый для двигателя пусковой ток, при этом ток в сети возрастает незначительно (в зависимости от величины активной мощности при пуске).

Компенсация пускового тока асинхронного двигателя активным фильтром (осциллограмма токов).

красная линия – ток в обмотке статора асинхронного двигателя;

синяя линия – ток, потребляемый из сети.

Достоинство данного решения по сравнению с УПП в том, что двигатель разворачивается при номинальном напряжении. Это обеспечивает требуемый момент на валу и позволяет избежать затяжного пуска привода.

Предложения Инженерного центра «АРТ».

Полный комплекс работ по созданию систем компенсации пусковых токов электродвигателей на базе активных фильтров

Что такое пусковой ток асинхронного двигателя

Из курса электротехники известно, что при пуске асинхрон­ные электродвигатели потребляют из питающей сети значитель­ные пусковые токи. Действительно, в момент пуска скольжение асинхронного электродвигателя s=1, в номинальном же режиме оно не превышает 0,05. Это означает, что в момент пуска вращающееся магнитное поле статора в 20 раз чаще пересека­ет обмотку ротора.

Однако пусковой ток в статорной и роторной обмотках обыч­но не превышает номинальный ток более чем в 7—8 раз, так как в момент пуска индуктивное сопротивление роторной цепи резко повышается за счет увеличения частоты тока. Известно, что индуктивное сопротивление любой цепи может быть опре­делено но следующему выражению:

где L—индуктивность цепи.

В момент пуска частота тока в обмотке ротора при принятых выше условиях (s пуск = 1; s ном = 0,05) в 20 раз выше, чем в но­минальном режиме. Поэтому полное сопротивление роторной цепи Z = ?R 2 + x L 2 при пуске намного выше, по сравнению с номи­нальным режимом. Этим и объясняется тот факт, что ток в мо­мент пуска не в 20 раз превышает свое номинальное значение, а лишь в 7—8.

Для самого электродвигателя повышенные пусковые токи большой опасности не представляют, так как протекают они в течение сравнительно короткого промежутка времени и пере­греть обмотки не успевают. Однако .повышенные пусковые токи приводят к большим провалам напряжения в питающей сети, что крайне неблагоприятно сказывается на работе других потре­бителей. Это заставляет применять ряд специальных мер, огра­ничивающих пусковые токи асинхронных электродвигателей.

Следует иметь в виду, что асинхронные электродвигатели, имея большой -пусковой ток, обладают сравнительно неболь­шим пусковым моментом, так как в момент пуска коэффициент мощности роторной щеп и очень низок. Вращающий же момент, развиваемый асинхронным электродвигателем, согласно выра­жению (96), пропорционален не только току ротора, но и коэф­фициенту мощности роторной «цепи.

Поэтому искусственные схемы пуска асинхронных электро­двигателей, рассматриваемые ниже, часто имеют своей целью не только снижение пусковых токов, но и повышение пусковых моментов.

Пуск электродвигателей с фазным ротором . Асинхронные электродвигатели с фазным ротором, т. е. с ротором, имеющим контактные кольца, пускаются в ос од при помощи пускового реостата, включенного в цепь ротора ( см. рис. 40, а ). Введение реостата уменьшает пусковой ток и позволяет получить, , требуемый пусковой момент вплоть до M крит . Выражение (93) показывает, что величина скольже­ния s крит , при которой имеет место максимальный момент, за­висит от активного сопротивления фазы ротора. Следователь­но, подобрав соответственную величину этого сопротивления, можно получить момент, близкий по величине к М крит (см. рис. 43 и 44).

Расчет пускового реостата удобно производить графо-аналитическим способом, имеющим много общего с .ранее рассмот­ренными способами для электродвигателей постоянного тока.

Чтобы рассчитать пусковой реостат, необходимо знать но­минальные данные электродвигателя и иметь его естествен­ную механическую характеристику п = f(М): Последняя мо­жет быть легко построена, как известно, по двум точкам — по синхронной скорости при нулевом моменте и по номинальной скорости при номинальном (моменте. Имея эти данные, можно производить расчет пускового реостата по следующей методике.

1. Выбираются пределы изменения вращающего момента при пуске М m ах и М min и откладываются на пусковой диаграм­ме (рис. 47). При выборе моментов следует руководствоваться тем, что максимальный момент при пуске должен быть несколь­ко меньше опрокидывающего момента, а минимальный мо­мент— несколько выше момента статического сопротивления М с , причем, чем меньше выбрана разность (М m ахМ min ), тем больше ступеней будет иметь пусковой реостат и тем плавнее и быстрее будет происходить пуск электродвигателя.

2. Пуск электродвигателя должен начинаться с точки 1, так как при трогании с места электродвигатель, по при­нятому выше условию, должен развивать момент М m ах при n = 0. Следовательно, первая пусковая характеристика а, соот­ветствующая полностью включенному пусковому реостату, должна проходить через точки п и 1. Скорость электродвигате­ля будет возрастать, так как М m ах > M c , т. е. имеется избыточ­ный момент, сообщающий механизму ускорение. С увеличени­ем скорости вращающий момент будет уменьшаться, и при до­стижении им значения М min (точка 2 ) должна быть отключе­на первая ступень пускового реостата.

3. При отключении первой ступени происходит переход электродвигателя на работу с характеристики а на характери­стику b, соответствующую включенному пусковому реостату без первой ступени. За время отключения первой ступени скорость электродвигателя практически не успевает измениться, поэтому можно считать, что переход с одной характеристики на другую происходит по горизонтальной прямой 23 и характе­ристика b проходит через точки п и 3.

4. Дальнейший разгон электродвигателя происходит уже по характеристике b до тех пор, пока вращающий момент снова не снизится до значения М min . При этом должна быть отключена вторая ступень реостата и электродвигатель перейдет на работу по характеристике с. Переход происходит по горизон­тальной прямой 4—5, а характеристика с проходит через точ­ки n и 5.

5. Когда при работе на характеристике с момент опять снизится до значения M min , отключается третья последняя сту­пень пускового реостата и электродвигатель переходит на рабо­ту по естественной характеристике d. На этой характеристике разгон электродвигателя продолжается до тех пор, пока его вращающий момент не станет равным моменту статического сопротивления. После этого разгон прекратится и электродвига­тель будет работать с установившейся скоростью.

Следует заметить, что в рассмотренном случае число сту­пеней пускового реостата заранее выбрано. Поэтому моменты М m ах и М min должны быть выбраны так, чтобы при отключении третьей ступени электродвигатель переходил на естественную характеристику d. Если этого не происходит, необходимо не­сколько изменить значения моментов M mах и М min и повторить построение. В том случае, когда число ступеней не ограничи­вается, построение ведется до тех пор, пока не происходит переход на естественную характеристику. Число ступеней реостата определяется в этом случае по пусковой диаг­рамме.

Читать еще:  Датчик давления в топливной рампе дизельного двигателя

6. Пользуясь пусковой диаграммой (см. рис. 47), нетрудно определить сопротивление как всего реостата, так и отдельных его ступеней. Нетрудно доказать, что отрезок 79 представля­ет в масштабе сопротивлений активное сопротивление фазы об­мотки ротора, а отрезок 17 в том же масштабе — полное ак­тивное сопротивление фазы пускового реостата. Отрезки 13, 35 и 57 представляют соответственно величины активных сопротивлений первой, второй и третьей ступеней пускового ре­остата.

Масштаб сопротивлений может быть определен по выра­жению

где 79 — отрезок на диаграмме в единицах длины;

R 2 — активное сопротивление одной фазы ротора, кото­рое может быть взято из паспортных данных элект­родвигателя или определено путем измерения или приближенного расчета по формуле

где s —номинальное скольжение;

I 2 —номинальный ток в фазе .ротора;

М—номинальный вращающий момент.

Рассмотренный способ пуска в ход асинхронных электро­двигателей с фазным ротором отличается простотой, надежно­стью. Он позволяет снизить величину .пускового тока и повы­сить, при необходимости, пусковой момент вплоть до опрокиды­вающего момента. Недостатком данного способа следует счи­тать значительные потери энергии в пусковых реостатах, а также большие габариты последних при большом числе ступеней. Чтобы избежать применения слишком громоздких пусковых ре­остатов, в крановых схемах часто применяют реостаты с так на­зываемой несимметричной схемой, когда сопротивление выво­дится не одновременно из трех фаз роторной цепи, а постепенно.

В начальный момент пуска в роторную цепь электродвига­теля введено все сопротивление. Затем постепенно, по мере разгона электродвигателя, с помощью барабанного или кулач­кового контроллера выводится первая ступень сопротивления из цепи первой фазы, потом второй, затем третьей; при следу­ющем положении контроллера выводится вторая ступень со­противления из цепи первой фазы и так до тех пор, пока при последнем положении контроллера не будет выведено все сопротивление и замкнута накоротко цепь ротора.

Такой способ пуска создает некоторую асимметрию токов роторной цепи, что, однако, опасности для электродвигателя не представляет и позволяет в то же время несколько умень­шить габариты пусковых реостатов и контроллеров.

Пуск электродвигателей с короткозамкнутым ротором.

Пуск мощных асинхронных электродвигателей с короткозамк­нутым ротором связан с рядом трудностей, так как ограничение пусковых токов введением дополнительных сопротивлений в. цепь ротора применить в данном случае невозможно. Как пра­вило, в подъемно-транспортных машинах находят применение электродвигатели с короткозамкнутым ротором сравнительно небольшой мощности, вследствие чего необходимости в ограни­чении пусковых токов обычно не возникает.

При питании асинхронного электродвигателя с короткозамк­нутым ротором от мощности сети пуск в большинстве случаев производится путем подключения обмотки статора к полному напряжению питающей сети, как показано на рис. 48, а.

Если мощность электродвигателя соизмерима с мощностью сети, пусковые токи вызывают недопустимо большие падения напряжения, что ухудшает условия работы других потребите­лей, питающихся от той же сети; в этом случае необходимо принимать меры, ограничивающие пусковые токи.

При пуске непосредственным включением на полное на­пряжение обмотка статора подключается к сети простым вклю­чением соответствующего аппарата — рубильника, контактора, магнитного пускателя и т. п. При этом имеет место толчок пу­скового тока, который в 7—8 раз превышает номинальный ток электродвигателя. Нужно иметь в виду, что толчок тока в мо­мент пуска зависит не от нагрузки, а от величины сопротивле­ния обмоток электродвигателя и напряжения сети. В связи с этим, если возникает необходимость в снижении пусковых то­ков, к электродвигателю в момент пуска подводят пониженное напряжение.

Снижение напряжения, подводимого к статорной обмотке, может быть осуществлено:

а) переключением обмотки статора со звезды на треугольник;

б) при помощи активного сопротивления, включаемого в цепь статора;

в) применением автотрансформатора.

Общим для всех указанных способов является снижение пускового тока электродвигателя при одновременном уменьше­нии его пускового момента, который, как известно, пропорционален квадрату напряжения. Это означает, что рассматрива­емый способ пуска применим лишь при небольших моментах сопротивления.

Пуск переключением статорной обмотки со звезды на треу­гольник применяется наиболее часто для асинхронных электро­двигателей с короткозамкнутым ротором, у которых при нор­мальной работе обмотка статора соединена треугольником. Принцип работы схемы (рис. 48, б) состоит в том, что в началь­ный период пуска обмотка статора включается звездой и присоединяется к сети. Когда же электродвигатель разовьет не­которую скорость, обмотку переключают на треугольник. Оче­видно, что величина пускового тока при соединении звездой в ?3 раз меньше, чем при соединении треугольником, так как величина напряжения, подводимого к каждой фазе электродви­гателя, в первом случае в ?3 раз меньше по сравнению со вто­рым случаем. Правда, пусковой момент будет в три раза мень­ше. Как показано на рис. 48, б, для осуществления пуска элек­тродвигателя данным способом никакой сложной аппаратуры не требуется. Пуск электродвигателя осуществляется обычным трехполюсным переключателем Р.

Сравнительно редко используется малоэкономичный способ пуска при помощи активного сопротивления, включаемого в цепь обмотки статора. Этот способ пуска применяют лишь в тех случаях, когда обмотка статора электродвигателя при нор­мальной работе должна быть включена звездой. При пуске вначале замыкается рубильник Р 1 (рис. 48, в). При этом статорная обмотка подключается к сети через реостат R. Когда электродвигатель разовьет некоторое число оборотов, замыка­ется рубильник Р 2 и реостат шунтируется.

Довольно редко также применяется пуск асинхронных элек­тродвигателей с помощью автотрансформатора. В этом случае в первый период пуска шестиполюсный переключатель П (рис. 48, г) ставится в положение 1 и к зажимам статора через автотрансформатор Т подводится пониженное напряжение. Ког­да электродвигатель разгонится, переключатель ставится в поло­жение 2 и статор оказывается под полным напряжением сети.

Общим недостатком всех рассмотренных способов пуска асинхронных электродвигателей с короткозамкнутым ротором от пониженного напряжения является значительное снижение пускового момента.

Чтобы ограничить пусковой ток без одновременного сниже­ния пускового момента, необходимо на время пуска увеличить сопротивление обмотки ротора. Для этого, на роторе помещают не одну, а две короткозамкнутые об­мотки (двухклеточные электродвигатели) или выполняют ро­торы с так называемым глубоким пазом.

Двухклеточные асинхронные электродвигатели и электро­двигатели с глубоким пазом обладают большим пусковым мо­ментом и меньшей кратностью пускового тока, чем короткозамкнутые электродвигатели обычного исполнения, од­нако стоимость первых значительно выше и применяют их срав­нительно редко.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector