Vikupautomsk.ru

Выкуп Авто МСК
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рекуперативное торможение в электромобилях: что это и как работает

Рекуперативное торможение в электромобилях: что это и как работает

Сам по себе термин «рекуперация» известен достаточно давно и подразумевает возможность частичного возврата использованной энергии (тепла, воды, газов) с целью ее повторного применения. В этом смысле рекуперативное торможение также подразумевает процесс возврата части затраченной энергии.

Что это такое рекуперативное торможение

При выборе электромобиля одним из важнейших его параметров является дальность пробега на одной зарядке. Производители электрокаров проводят активные исследования и внедряют все новые разработки, которые позволяют увеличить дальность пробега электрокара на одной зарядке. Рекуперативное торможение, как одна из возможностей частичного восстановления заряда батареи, является важным нюансом при выборе электрокара.

В нескольких словах рекуперативное торможение электромобилях можно описать как процесс получения энергии в ходе торможения авто, т.е. фактически это подзарядка аккумулятора электрокара прямо по ходу движения.

Принцип работы

Что бы понять, как работает система рекуперативного торможения, необходимо вспомнить, что каждое движущееся тело обладает кинетической энергией. При торможении машины с ДВС эта энергия расходуется в ходе контакта тормозных колодок и тормозных дисков, стирая их, т.е. просто «в никуда». В электромобилях применяется более внимательный подход к использованию энергии. Рекуперационный процесс здесь представлен следующим образом:

  1. При начале торможения электрический мотор меняет режим работы: вместо питания от аккумулятора он начинает работать как генератор, вырабатывая энергию. В этот момент в обмотке ротора и статора возникают токи противоположной направленности.
  2. Снижение скорости транспортного средства происходит за счет того, что на валу электромотора появляется тормозной момент.
  3. Имевшаяся до начала торможения кинетическая энергия трансформируется в электрическую и тепловую.
  4. Появляющаяся дополнительная электроэнергия поступает в аккумулятор, тем самым повышая его заряд.

Эффективность рекуперации

Рекуперация электродвигателя с точки зрения физического процесса является достаточно эффективной, поскольку его КПД составляет порядка 70%. Т.е. около 70% затрачиваемой на торможение энергии преобразуется в электроэнергию. Однако эффективность рекуперативного торможения с точки зрения увеличения дальности пробега машины не такая большая, поскольку увеличение пробега составляет всего в пределах 10-20% в зависимости от условий: тип авто и асинхронного двигателя, размер транспортного средства, скорость движения, характеристики батареи, дорожные условия и т.п.

Условия, при которых рекуперативное торможение двигателя постоянного тока наиболее эффективно:

  • загородные трассы, позволяющие развивать хорошую скорость;
  • холмистая местность и крутые спуски;
  • в городских условиях при передвижении в режиме «старт-стоп»;
  • большие размеры и вес авто;

В данном случае верно правило: чем чаще тормозит электрокар, тем его батарея больше заряжается.

Когда не эффективно

Ситуации, когда рекуперативное торможение электродвигателя не эффективно:

  • движение по ровной поверхности с одной скоростью (в таком режиме движения тормоз машины задействуется редко);
  • низкая температура АКБ (при низкой температуре аккумулятора рекуперативная электроэнергия будет вырабатываться в ограниченном объеме);
  • 100% заряд батареи (невозможно зарядить батарею, если она уже заряжена на 100%).

Перспективы

В ситуации, когда пробег электрокара ограничивается зарядом батареи, важен любой источник, помимо зарядной станции, который может вырабатывать дополнительную энергию. Поэтому рекуперативное торможение дпт – хороший и перспективный способ увеличения пробега. А 70% сохраненной энергии – хороший показатель с учетом того, что еще буквально 10-15 лет назад на такие потери вообще не обращали внимание.

Дополнительная информация! Более того, процесс модернизации и оптимизации рекуперации не останавливается. Сейчас ведутся разработки по усовершенствованию рекуперативных систем для того, чтобы повысить их эффективность, а также обеспечить возможность рекуперации не только в режиме торможения. В частности, активно разрабатывается особая подвеска, устройство которой позволяет использовать рекуперацию и при обычном движении. В этом случае эффективность рекуперации возрастет почти в два раза, а увеличение пробега электрокара за счет такой дополнительной подзарядки составит до 40-50%. Однако пока непонятно, когда такая схема будет реализована на серийных машинах.

Отдельные производители шагнули чуть дальше остальных и уже достаточно давно выпускают авто с опцией рекуперации: Nissan Leaf, BMWi3, Hyndai Loniq, Chevrolet Bolt. Другие только планируют это сделать. Тем не менее можно с уверенностью утверждать, что сегодня рекуперация как вид восполнения заряда батареи уже является одним из конкурентных преимуществ электромобиля.

Обратите внимание! Конечно, такой рекуператор не сравнится с зарядной станцией, однако, возможно, именно этот небольшой дополнительный заряд позволит автомобилю доехать до места зарядки и не остановиться где-нибудь на дороге с нулевым уровнем энергии.

Тормозные режимы асинхронных двигателей

Асинхронный двигатель может работать в следующих тормозных режимах: в режиме рекуперативного торможения, противовключения и динамическом.

Рекуперативное торможение асинхронного двигателя

Режим рекуперативного торможения осуществляется в том случае, когда скорость ротора асинхронного двигателя превышает синхронную.

Режим рекуперативного торможения практически применяется для двигателей с переключением полюсов и в приводах грузоподъемных машин (подъемники, экскаваторы и т.п.).

При переходе в генераторный режим вследствие изменения знака момента меняет знак активная составляющая тока ротора. В этом случае асинхронный двигатель отдает активную мощность (энергию) в сеть и потребляет из сети реактивную мощность (энергию), необходимую для возбуждения. Такой режим возникает, например, при торможении (переходе) двухскоростного двигателя с высокой на низкую скорость, как показано на рис. 1 а.

Читать еще:  Двигатель caab volkswagen caravelle т5 характеристики

Рис. 1. Торможение асинхронного двигателя в основной схеме включения: а) с рекуперацией энергии в сеть; б) противовключением

Предположим, что в исходном положении двигатель работал на характеристике 1 и в точке а, вращаясь со скоростью ωуст1 . При увеличении числа пар полюсов двигатель переходит на характеристику 2, участок бс которой соответствует торможению с рекуперацией энергии в сеть.

Этот же вид торможения может быть реализован в системе преобразователь частоты – двигатель при останове асинхронного двигателя или при переходе с характеристики на характеристику. Для этого осуществляется уменьшение частоты выходного напряжения, а тем самым синхронной скорости ωо = 2π f / p .

В силу механической инерции текущая скорость двигателя ω будет изменяться медленнее чем синхронная скорость ωо , и будет постоянно превышать скорость магнитного поля. За счет этого и возникает режим торможения с отдачей энергии в сеть .

Рекуперативное торможение также может быть реализовано в электроприводе грузоподъемных машин при спуске грузов. Для этого двигатель включается в направлении спуска груза (характеристика 2 рис. 1 б).

После окончания торможения он будет работать в точке со скоростью – ωуст2 . При этом осуществляется процесс спуска груза с отдачей энергии в сеть.

Рекуперативное торможение является наиболее экономичным видом торможения.

Торможение асинхронного электродвигателя противовключением

Перевод асинхронного двигателя в режим торможения противовключением может быть выполнен двумя путями. Один из них связан с изменением чередования двух фаз питающего электродвигатель напряжения.

Допустим, что двигатель работает на характеристике 1 (рис. 1 б) при чередовании фаз напряжения АВС. Тогда при переключении двух фаз (например, В и С) он переходит на характеристику 2, участок аб которой соответствует торможению противовключением.

Обратим внимание на то обстоятельство, что при противовключении скольжение асинхронного двигателя изменяется от S = 2 до S = 1.

Ротор при этом вращается против направления движения поля и постоянно замедляется. Когда скорость спадает до нуля, двигатель должен быть отключен от сети, иначе он может перейти в двигательный режим, причем ротор его будет вращаться в направлении, обратном предыдущему.

При торможении противовключением токи в обмотке двигателя могут в 7–8 раз превышать соответствующие номинальные токи. Заметно уменьшается коэффициент мощности двигателя. О КПД в данном случае говорить не приходится, т.к. и преобразуемая в электрическую механическая энергия и энергия, потребляемая из сети, рассеиваются в активном сопротивлении ротора, и полезно используемой энергии в данном случае нет.

Короткозамкнутые двигатели кратковременно перегружаются по току. Правда, у них при (S > 1) вследствие явления вытеснения тока заметно возрастает активное сопротивление ротора. Это приводит к уменьшению и увеличению момента.

С целью увеличения эффективности торможения двигателей с фазным ротором в цепи их роторов вводят добавочные сопротивления, что позволяет ограничить токи в обмотках и увеличить момент.

Другой путь торможения противовключением может быть использован при активном характере момента нагрузки, который создается, например, на валу двигателя грузоподъемного механизма.

Допустим, что требуется осуществить спуск груза, обеспечивая его торможение с помощью асинхронного двигателя. Для этого двигатель путем включения в цепь ротора добавочного резистора (сопротивления) переводится на искусственную характеристику (прямая 3 на рис. 1).

Вследствие превышения моментом нагрузки Мс пускового момента Мп двигателя и его активного характера груз может опускаться с установившейся скоростью – ωуст2 . В этом режиме торможение скольжения асинхронного двигателя может изменяться от S = 1 до S = 2.

Динамическое торможение асинхронного двигателя

Для динамического торможения обмотки статора двигатель отключают от сети переменного тока и подключают к источнику постоянного тока, как это показано на рис. 2. Обмотка ротора при этом может быть закорочена, или в ее цепь включаются добавочные резисторы с сопротивлением R2д.

Рис. 2. Схема динамического торможения асинхронного двигателя (а) и схема включения обмоток статора (б)

Постоянный ток Iп, значение которого может регулироваться резистором 2, протекает по обмоткам статора и создает относительно статора неподвижное магнитное поле. При вращении ротора в нем наводится ЭДС, частота которой пропорциональна скорости. Эта ЭДС, в свою очередь, вызывает появление тока в замкнутом контуре обмотки ротора, который создает магнитный поток, также неподвижный относительно статора.

Взаимодействие тока ротора с результирующим магнитным полем асинхронного двигателя создает тормозной момент, за счет которого достигается эффект торможения. Двигатель в этом случае работает в режиме генератора независимо от сети переменного тока, преобразовывая кинетическую энергию движущихся частей электропривода и рабочей машины в электрическую, которая рассеивается в виде тепла в цепи ротора.

На рисунке 2 б показана наиболее распространенная схема включения обмоток статора при динамическом торможении. Система возбуждения двигателя в этом режиме является несимметричной.

Для проведения анализа работы асинхронного двигателя в режиме динамического торможения несимметричную систему возбуждения заменяют симметричной. С этой целью принимается допущение, что статор питается не постоянным током Iп, а некоторым эквивалентным трехфазным переменным током, создающим такую же МДС (магнитодвижущую силу), что и постоянный ток.

Электромеханическая и механические характеристики представлены на рис. 3.

Рис. 3. Электромеханическая и механические характеристики асинхронного двигателя

Характеристика расположена на рисунке в первом квадранте I, где s = ω / ωo – скольжение асинхронного двигателя в режиме динамического торможения. Механические характеристики двигателя расположены во втором квадранте II.

Читать еще:  Что показывает уровень масла в двигателе

Различные искусственные характеристики асинхронного двигателя в режиме динамического торможения можно получить, изменяя сопротивление R2 д добавочных резисторов 3 (рис. 2) в цепи ротора или постоянный ток I п, подаваемый в обмотки статора.

Варьируя значения R2 д и I п, можно получить желаемый вид механических характеристик асинхронного двигателя в режиме динамического торможения и, тем самым, соответствующую интенсивность торможения асинхронного электропривода.

Мирошник А. И., Лысенко О. А.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

23. Режимы торможения асинхронных двигателей. Рекуперативное торможение ад.

24. Режимы торможения асинхронных двигателей. Электродинамическое торможение ад.

25. Режимы торможения асинхронных двигателей. Торможение ад противовключением.

Рекуперативное торможение осуществляется при вращении ротора активным моментом со скоростью ω>ω (рисунок 6.1). Этот же режим будет иметь место, если при вращении ротора со скоростью ω уменьшить частоту вращения поля статора ω(участок характеристики bc на рисунке 6.2). Роль активного момента здесь будет выполнять момент инерционных сил вращающегося ротора. Процесс аналогичен рекуперативному торможению ДПТ, изученному ранее.

Рисунок 6.3 – Торможение АД противовключением

Для осуществления торможения противовключением необходимо поменять местами две любые фазы статора (рисунок 6.3,а). При этом меняется направление вращения поля, машина тормозится в режиме противовключения, а затем реверсируется (рисунок 3,b).

В подъемных механизмах используется система реостатного противовключения (силовой спуск – рисунок 6.4). В цепь ротора АД с фазным ротором вводится добавочное сопротивление, достаточно большое для того, чтобы перевести режим работы АД в IV квадрант (точка b).

Специфическим является режим динамического торможения, которое представляет собой генераторный режим отключенного от сети переменного тока АД, к статору которого подведен постоянный ток, а ротор замкнут на сопротивление (рисунок 6.5). Этот режим применяется в ряде случаев, когда после отключения АД от сети требуется быстрая остановка без реверса. Постоянный ток, подводимый к обмотке статора, образует неподвижное в пространстве поле. При вращении ротора в его обмотке наводится переменная ЭДС, под действием которой протекает переменный ток. Этот ток создает также неподвижное поле. Складываясь, поля статора и ротора образуют результирующее поле, в результате взаимодействия с которым тока ротора возникает тормозной момент. Энергия, поступающая с вала двигателя, рассеивается при этом в сопротивлениях роторной цепи. Величина намагничивающей силы (НС) поля статора зависит от схемы соединения обмотки статора и величины постоянного тока. Наиболее распространены две схемы питания цепи статора постоянным током, показанные на рисунке 6.6. Для удобства расчетов заменим постоянный ток эквивалентным по величине намагничивающей силы переменным трехфазным током. В симметричной трехфазной системе с действующим значением переменного тока I амплитуда намагничивающей силы составит

Обозначая переменный ток IЭКВ и приравнивая значения НС, создаваемых постоянным и эквивалентным переменным током для схемы «звезда» получаем (рисунок 6.7)

,

откуда .

Для схемы «треугольник» , и .

Таким образом, выбрав схему торможения и задавшись величиной постоянного тока, можно подсчитать эквивалентный по НС переменный ток.

Рекуперация

Электродвигатели предназначены для приведения в движение различных механизмов, но после завершения движения механизм необходимо остановить. Для этого можно использовать тоже электрическую машину и метод рекуперации. О том, что такое рекуперация электроэнергии, рассказывается в этой статье.

Рекуперация электроэнергии в электровелосипеде

Что такое рекуперация

Название этого процесса происходит от латинского слова «recuperatio», которое переводится как «обратное получение». Это возврат части израсходованной энергии или материалов для повторного использования.

Этот процесс широко используется в электротранспорте, особенно работающем на аккумуляторах. При движении под уклон и во время торможения системы рекуперации возвращает кинетическую энергию движения обратно в аккумулятор, подзаряжая их. Это позволяет проехать без подзарядки большее расстояние.

Рекуперативное торможение

Один из видов торможения – это рекуперативное. При этом скорость вращения электродвигателя больше, чем заданная параметрами сети: напряжением на якоре и обмотке возбуждения в двигателях постоянного тока или частотой питающего напряжения в синхронных или асинхронных двигателях. При этом электродвигатель переходит в режим генератора, а выработанную энергию отдаёт обратно в сеть.

Основным достоинством рекуператора является экономия электроэнергии. Это особенно заметно при движении по городу с постоянно изменяющейся скоростью, пригородном электротранспорте и метрополитене с большим количеством остановок и торможением перед ними.

Кроме достоинств, рекуперация имеет недостатки:

  • невозможность полной остановки транспорта;
  • медленная остановка при малых скоростях;
  • отсутствие тормозного усилия на стоянке.

Для компенсации этих недостатков на транспортных средствах устанавливается дополнительная система механических тормозов.

Как работает система рекуперации

Для обеспечения работы эта система должна обеспечивать питание электродвигателя от сети и возврат энергии во время торможения. Проще всего это осуществляется в городском электротранспорте, а также в старых электромобилях, оснащенных свинцовыми аккумуляторами, электродвигателями постоянного тока и контакторами, – при переходе на пониженную передачу при высокой скорости режим возврата энергии включается автоматически.

Читать еще:  Датчик давления масла в двигателе опель зафира

В современном транспорте вместо контакторов используется ШИМ-контроллер. Это устройство позволяет возвращать энергию как в сеть постоянного, так и переменного тока. При работе оно работает как выпрямитель, а во время торможения определяет частоту и фазу сети, создавая обратный ток.

Интересно. При динамическом торможении электродвигателей постоянного тока они так же переходят в режим генератора, но вырабатывающаяся энергия не возвращается в сеть, а рассеивается на добавочном сопротивлении.

Силовой спуск

Кроме торможения, рекуператор используется для уменьшения скорости при опускании грузов грузоподъёмными механизмами и во время движения вниз по наклонной дороге электротранспорта. Это позволяет не использовать при этом изнашиваемый механический тормоз.

Применение рекуперации в транспорте

Этот метод торможения используется много лет. В зависимости от вида транспорта, его применение имеет свои особенности.

В электромобилях и электровелосипедах

При движении по дороге, а тем более, по бездорожью электропривод почти всё время работает в тяговом режиме, а перед остановкой или перекрёстком – «накатом». Остановка производится, используя механические тормоза из-за того, что рекуперация при малых скоростях неэффективна.

Кроме того, КПД аккумуляторов в цикле «заряд-разряд» далёк от 100%. Поэтому, хотя такие системы и устанавливаются на электромобили, большую экономию заряда они не обеспечивают.

Схема рекуперации в автомобиле

На железной дороге

Рекуперация в электровозах осуществляется тяговыми электродвигателями. При этом они включаются в режиме генератора, преобразующего кинетическую энергию поезда в электроэнергию. Эта энергия отдаётся обратно в сеть, в отличие от реостатного торможения, вызывающего нагрев реостатов.

Рекуперация используется также при длительном спуске по склону для поддержания постоянной скорости. Этот метод позволяет экономить электроэнергию, которая отдается обратно в сеть и используется другими поездами.

Раньше этой системой оборудовались только локомотивы, работающие от сети постоянного тока. В аппаратах, работающих от сети переменного тока, есть сложность с синхронизацией частоты отданной энергии с частотой сети. Сейчас эта проблема решается при помощи тиристорных преобразователей.

Режим рекуперации поезда

В метро

В метрополитене во время движения поездов происходит постоянный разгон и торможение вагонов. Поэтому рекуперация энергии даёт большой экономический эффект. Он достигает максимума, если это происходит одновременно в разных поездах на одной станции. Это учитывается при составлении расписания.

В городском общественном транспорте

В городском электротранспорте эта система устанавливается практически во всех моделях. Она используется в качестве основной до скорости 1-2 км/ч, после чего становится неэффективной, и вместо неё включается стояночный тормоз.

В Формуле-1

Начиная с 2009 года, в некоторых машинах устанавливается система рекуперации. В этом году такие устройства ещё не давали ощутимого превосходства.

В 2010 году такие системы не использовались. Их установка с ограничением на мощность и объём рекуперированной энергии возобновилась в 2011 году.

Торможение асинхронных двигателей

Снижение скорости асинхронных электродвигателей осуществляется тремя способами:

  • рекуперация;
  • противовключение;
  • динамическое.

Рекуперативное торможение асинхронного двигателя

Рекуперация асинхронных двигателей возможна в трёх случаях:

  • Изменение частоты питающего напряжения. Возможно при питании электродвигателя от преобразователя частоты. Для перехода в режим торможения частота уменьшается так, чтобы скорость вращения ротора оказалась больше синхронной;
  • Переключением обмоток и изменением числа полюсов. Возможно только в двух,- и многоскоростных электродвигателях, в которых несколько скоростей предусмотрены конструктивно;
  • Силовой спуск. Применяется в грузоподъёмных механизмах. В этих аппаратах устанавливаются электродвигатели с фазным ротором, регулировка скорости в которых осуществляется изменением величины сопротивления, подключаемого к обмоткам ротора.

В любом случае при торможении ротор начинает обгонять поле статора, скольжение становится больше 1, и электромашина начинает работать как генератор, отдавая энергию в сеть.

Схема электродвигателя с фазным ротором

Противовключение

Режим противовключения осуществляется переключением двух фаз, питающих электромашину, между собой и включением вращения аппарата в обратную сторону.

Возможен вариант включения при противовключении добавочных сопротивлений в цепь статора или обмоток фазного ротора. Это уменьшает ток и тормозной момент.

Важно! На практике этот способ применяется редко из-за превышения токов в 8-10 раз выше номинальных (за исключением двигателей с фазным ротором). Кроме того, аппарат необходимо вовремя отключить, иначе он начнёт вращаться в обратную сторону.

Динамическое торможение асинхронного двигателя

Этот метод осуществляется подачей в обмотку статора постоянного напряжения. Для обеспечения безаварийной работы электромашины ток торможения не должен превышать 4-5 токов холостого хода. Это достигается включением в цепь статора дополнительного сопротивления или использованием понижающего трансформатора.

Постоянный ток, протекающий в обмотках статора, создаёт магнитное поле. При пересечении его в обмотках ротора наводится ЭДС, и протекает ток. Выделившаяся мощность создаёт тормозной момент, сила которого тем больше, чем выше скорость вращения электромашины.

Фактически асинхронный электродвигатель в режиме динамического торможения превращается в генератор постоянного тока, выходные клеммы которого закорочены (в машине с короткозамкнутым ротором) или включенные на добавочное сопротивление (электромашина с фазным ротором).

Схема динамического торможения асинхронного электродвигателя

Рекуперация в электрических машинах – это вид торможения, позволяющий сэкономить электроэнергию и избежать износа механических тормозов.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector