Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Торможение электродвигателя

Торможение электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Производственные процессы, связанные с эксплуатацией оборудования, оснащенного электрическими двигателями переменного или постоянного тока, требуют периодической остановки. Однако после отключения питающего напряжения от электродвигателей, их роторы продолжают вращение по инерции и останавливаются только через определенный промежуток времени. Такая остановка электродвигателя называется свободным выбегом.

Для электродвигателей, работающих с частыми пусками-остановами, остановка способом свободного выбега не подходит. Чтобы сократить время, необходимое для полной остановки вращения ротора применяется принудительное торможение. Способы торможения электродвигателя подразделяются на механические и электрические.

Механическое торможение

Остановка двигателей при таком способе торможения осуществляется благодаря специальным колодкам на тормозном шкиве. После отключения питающего напряжения тормозные колодки под воздействием пружин прижимаются к шкиву. В результате возникающего трения колодок о шкив кинетическая энергия вращающегося вала преобразуется в тепловую, что и приводит к его полной остановке. После подачи напряжения электромагнит (YB) растормаживает колодки, и эксплуатация электродвигателя продолжается в штатном режиме.

В зависимости от схемы электрического торможения, кинетическая энергия вращающегося ротора может отдаваться в сеть или на батарею конденсаторов, а также преобразовываться в тепло, которое поглощается обмотками электродвигателя или специальными реостатами.

Динамическое торможение электродвигателя

Эта схема остановки подходит для трехфазных электродвигателей как с которкозамкнутым, так и с фазным ротором.

Динамическое торможение электродвигателя с короткозамкнутым ротором осуществляется посредством отключения обмоток статора от питающей сети трехфазного переменного тока и переключением двух из них через систему контакторов и реле на источник выпрямленного постоянного напряжения.

Обмотки статора после подачи на них постоянного напряжения генерируют стационарное магнитное поле, под воздействием которого в короткозамкнутой «беличьей клетке»

вращающегося ротора начинает индуцироваться электрический ток, вызывающий появление томозного момента. Направление этого момента противоположно направлению вращения останавливающегося вала. После остановки двигателя подача постоянного напряжения на обмотки статора прекращается.

В двигателях с фазным ротором величину тормозного момента можно регулировать с помощью дополнительных сопротивлений, в качестве которых используются пусковые резисторы.

Торможение противовключением

Торможение асинхронного электродвигателя методом противовключения осуществляется путем реверсирования двигателя без отключения от питающей сети.

Управление торможением выполняется реле контроля скорости. В рабочем режиме контакты реле замкнуты. После нажатия на кнопку «СТОП» (SBC) группа контакторов производит переключение двух фаз, меняя порядок их чередования. В результате этого магнитное поле статора начинает вращаться в противоположном направлении, что приводит к замедлению вращения ротора. Когда скорость вращения становится близкой к нулю, реле контроля скорости размыкает контакты и подача питающего напряжения прекращается.

Конденсаторное торможение электродвигателей

Этот способ, называемый еще торможение с самовозбуждением, применим только к электродвигателям с короткозамкнутым ротором.

После прекращения подачи питающего напряжения ротор электродвигателя продолжает вращение по инерции и генерирует в обмотках статора электрический ток, который вначале заряжает батарею конденсаторов, а после накопления номинального заряда возвращается в обмотки. Это приводит к возникновению тормозного момента, величина которого зависти от емкости конденсаторных батарей, подключенных к каждой фазе по схеме «звезда» или «треугольник». Торможение с самовозбуждением применяется на двигателях с большим числом пусков-остановов, так как величина потерь энергии в двигателях при такой схеме остановки минимальная.

Рекуперативное торможение

Рекуперативное или иначе генераторное торможение асинхронных электродвигателей на практике используется в качестве предварительного подтормаживания , а также при опускании грузов кранами всех типов или пассажирских и грузовых лифтовых кабин.

Торможение асинхронного электродвигателя в рекуперативном режиме происходит, когда номинальная частота вращения ротора превышает его синхронную частоту. Двигатель начинает генерировать электрическую энергию и отдавать ее в питающую сеть, в результате чего создается тормозящий момент. Такой способ остановки применяется для многоскоростных двигателей путем постепенного переключения с большей частоты вращения ротора на меньшую. Таким образом, в определенный момент скорость, вращающегося под воздействием инерции вала, будет больше синхронной частоты, соответствующей подключенному количеству полюсов статора. Кроме того, рекуперативная схема торможения применяется для двигателей, подключенных к преобразователям частоты. Для этого достаточно уменьшить частоту питающего напряжения.

Остановка двигателей постоянного тока (ДПТ)

Торможение электродвигателей постоянного тока осуществляется противовключением и динамическим способом.

Динамическое торможение

Такая схема торможения применяется для двигателей с независимым возбуждением.

После нажатия кнопки «Стоп» (SB1) происходит отключение обмоток якоря от питающей сети и переподключение их на тормозной резистор. В обмотках якоря, вращающегося по инерции в стационарном магнитном поле, индуцируется постоянный ток, который проходя по обмоточным проводам резистора, преобразовывается в тепловую энергию.

Торможение противовключением

Метод противовключения основан на изменении полярности напряжения, подключаемого к обмоткам индуктора или якоря двигателя. Это приводит к смене полярности магнитного потока или направлению тока, индуцируемого в якоре. Таким образом, направление вращающего момента меняется на противоположное, что вызывает появление тормозящего эффекта. Скорость вращения якоря контролируется реле скорости, которое отключает питание якоря, когда она приближается к нулевой.

Способы торможения двигателей постоянного тока

Во многих случаях возникает необходимость затормозить ЭП. Торможение можно осуществить различными механическими и электромеханическими тормозами. Однако в качестве тормоза может быть использован и сам двигатель, поскольку любая электрическая машина обладает свойством обратимости, т.е. одна и та же электрическая машина может работать как в двигательном, так и в генераторном режиме. При смене двигательного режима на генераторный происходит изменение знака электромагнитного момента машины. При двигательном режиме работы знак момента совпадает со знаком (направлением) скорости вращения, а при генераторном – знак момента противоположен знаку скорости. Торможение самим двигателем повышает экономичность установки и упрощает ее. Существует три метода торможения электрических двигателей: динамическое, рекуперативное и торможение противовключением.

При динамическом торможении якорь электродвигателя отключают от питающей сети и замыкают на нагрузочное сопротивление (см. рис.20).

Машина переходит в генераторный режим работы и превращает запасенную кинетическую энергии вращающихся частей ЭП в электрическую энергию, которая выделяется на сопротивлении обмотки якоря Rя и сопротивлении Rд, включенным в цепь обмотки якоря, Rя+Rд.

Ток обмотки якоря в режиме динамического торможения протекает под воздействием ЭДС обмотки якоря. Поскольку ЭДС обмотки якоря имеет знак противоположный знаку напряжения, подаваемого на машину, ток якоря и электромагнитный момент изменяют свои знаки на противоположные. Момент становится тормозным, скорость двигателя уменьшается до нуля, двигатель останавливается.

На рис. 19 показана характеристика динамического торможения ДПТ НВ, уравне­ния которой получают из (68) и (69) при U = 0:

Из (73) и(74) видно, что характеристики Ω(I) и Ω(М) при U = 0 являются линейными. Схема динамического торможения, при котором ДПТ НВ имеет та­кую характеристику, приведена на рис. 20. Она может называться также схемой генератора, работающего на автономную нагрузку Rд.

Рис.20. Схема динамического торможения двигателя постоянного тока независимого возбуждения

ПрямаяВО на рис.19 (во втором квадранте) представляет собой механическую характеристику двигателя постоянного тока в режиме динамического торможения. Эффективность торможения по мере снижения скорости вращения падает, так как величина тормозного момента двигателя зависит от скорости. Динамическое торможение применяют в машинах с независимым электромагнитным или магнитоэлектрическим возбуждением.

В двигателях с параллельным и последовательным возбуждением обмотка возбуждения в период динамического торможения должна получать независимое питание от сети, поскольку при работе машины в режиме самовозбуждения уменьшение скорости нарушает условие самовозбуждения и тормозной момент становится недостаточным для эффективного торможения.

Расчет величины добавочного сопротивления при динамическом торможении приведен в разделе 4.5 (Регулирование тока и момента при пуске, торможении и реверсе), формула (89).

Рекуперативное торможениедвигателя осуществляют путем отдачи электрической энергии в сеть постоянного тока, питающую двигатель. Двигатель получает механическую энергию от рабочей ма­шины и отдает ее (рекуперирует) в виде электроэнергии в сеть (см. рис. 21, в). На этом участке Ω > +Ω, поэтому ЭДС обмотки якоря больше напряже­ния сети, ток и момент изменяют свои направления на противопо­ложные.

Из (65) можно получить выражение для тока якоря

Из приведенного выражения для тока якоря видно, что при Е>U ток якоря становится отрицательным, следовательно, и момент изменяет свой знак и становится тормозным. Механическая характеристика двигателя при рекуперативном торможении представлена на рис.19 прямой, представляющей собой продолжение характеристики двигательного режима (+ Ω Мп) во втором квадранте характеристики. При рекуперативном торможении кинетическая энергия вращающихся масс ЭП расходуется не на истирание механических тормозов, не на нагрев добавочных сопротивлений, как в случае динамического торможения, а отдается в сеть и может быть полезно использована другими приемниками электрической энергии. Поэтому рекуперативное торможение широко используется в ЭП, имеющих значительные инерционные массы. Двигатель с последовательным возбуждением, используемый в тяговых устройствах, нельзя непосредственно перевести в генераторный режим. Процесс рекуперации более просто осуществляется в машинах со смешанным возбуждением, благодаря чему они находят применение в тяговых ЭП.

Читать еще:  Great wall safe схема управления двигателем

Торможение противовключениемприменяют при необходимости быстрого торможения двигателя для производства реверса, т.е. разгону двигателя в направлении, противоположном начальному. Для этого полярность напряжения, приложенного к якорю, изменяют на противоположную. При таком переключении направления тока обмотки якоря и электромагнитного момента изменяются:

В начальный период в якорной цепи напряжение и ЭДС обмотки якоря будут действовать согласовано, создавая очень большой ток и тормозной момент.

Для ограничения толчков тока и момента при противовключении в якорную цепь вводят добавочное сопротивление Rд. В этом случае при расчете тока якоря следует принимать суммарное сопротивление цепи обмотки якоря R=Rя+ Rд. Величину Rд следует выбирать такой, чтобы ток Iпр не превышал (2–2,5)IN.

Режим противовключения наступает и в том случае, когда знак приложенного к якорю напряжения остается прежним, а изменяется направление вращения двигателя, т.е. Ω 14 151617>

Дата добавления: 2019-02-08 ; просмотров: 4968 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ЭЛЕКТРИЧЕСКОЕ ТОРМОЖЕНИЕ

Двигатели постоянного тока, в том числе и тяговые, как уже было отмечено, обладают свойством обратимости , т. е, могут работать как генераторы. При этом кинетическая и потенциальная энергия поезда преобразуются в электрическую. Получаемая энергия превращается в тепловую в резисторах или возвращается в контактную сеть. В зависимости от этого различают два вида электрического торможения: реостатное и рекуперативное.
При реостатном торможении тяговые двигатели отключают от контактной сети и включают на тормозные резисторы. Преимуществом этого способа торможения является независимость тормозного процесса от наличия напряжения в контактной сети. Применяют две системы реостатного торможения: с самовозбуждением двигателей и с независимым возбуждением.
В первом случае обмотки возбуждения двигателей соединены последовательно с обмотками их якорей. Чтобы обеспечить переход из тягового режима в тормозной, начало и конец обмоток возбуждения тяговых двигателей ме­няют местами с помощью контактов реверсора (рис. 45). Это необходимо, так как в генераторном режиме ток по обмоткам якоря проходит в направлении, противоположном его направлению в двигательном режиме, а по обмотке возбуждения ток должен проходить в том же направлении.

Рис.45 Схема цепей электрического торможения при включении группы тяговых двигателей на отдельный тормозной реостат

Действительно, если отсутствует напряжение, подаваемое на двигатель извне, направление тока будет определяться направлением э. д. с. двигателя, противоположным направлению внешнего напряжения.
Известно, что сталь после прекращения ее намагничивания обладает остаточным магнетизмом, который исчезает, когда изменяется направление тока в обмотках возбуждения. При этом может нарушиться самовозбуждение двигателей.
Во время торможения каждую группу, например, из двух тяговых двигателей, соединенных последовательно, можно включить на отдельный тормозной резистор Rт (см. рис. 45). Если в режиме тяги были замкнуты контакты реверсора 1, 2, то перед переходом на реостатное торможение они размыкаются и замыкаются контакты 3, 4. При этом тормозной ток Iт, проходя по обмоткам возбуждения в том же направлении, что и в двигательном режиме, создает поток, намагничивающий машину. Их общая э. д. с. увеличивается. Ток Iт возрастает до некоторого значения, определяемого скоростью движения и сопротивлением тормозного реостата Rт. Тормозную силу регулируют, изменяя ток Iт путем включения или выключения секций тормозного реостата с помощью контакторов (на рис. 45 они не показаны).
При реостатном торможении тяговые двигатели включают параллельно по два в каждом плече. В этом случае возросшее напряжение на каждом двигателе находится в допустимых пределах — в 1,5—1,7 раза выше, чем в тяговом режиме, и можно использовать в режиме торможения пусковой реостат. Однако при параллельном соединении двигателей последовательного возбуждения приходится принимать специальные меры для обеспечения их устойчивой работы и равномерного распределения тока между ними. Если двигатели включить параллельно (рис. 46 — замкнуты контакты 1, 2, а контакты 3, 4 разомкнуты), реостатное торможение неустойчиво, так как любое случайное увеличение тока в одной из двух ветвей, содержащих по два последовательно со­единенных двигателя, увеличивает э. д. с. двигателей этой ветви. Появляется уравнительный ток, который еще больше нагружает их и разгружает двигатели другой ветви. Это может в конце концов привести к короткому замыканию двигателей первой ветви и полному размагничиванию, а затем и перемагничиванию двигателей второй ветви.

(Электрически устойчивой является система, в которой при нарушении установившегося состояния, вызванном так называемыми возмущающими воздействиями, токи и напряжения изменяются, но после исчезновения этих воздействий принимают прежние установившиеся значения. Если меняются условия, определяющие установившийся режим (например, напряжение сети, сопротивление тормозного реостата), то устойчивая система принимает новое состояние равновесия. Система, не удовлетворяющая этим условиям, неустойчива.)

Наилучшее распределение нагрузок между тяговыми машинами и их устойчивую работу обеспечивает так называемая перекрестная схема (на рис. 46 контакты 1, 2 разомкнуты, а контакты 3, 4 замкнуты).

Рис.46. Схема цепей электрического торможения с общим тормозным реостатом при перекрестном включении обмоток возбуждения

Если по какой-либо причине э. д. с. двигателей I, II, а следовательно, и ток будут больше, чем соответственно э. д. с. и ток двигателей III, IV, ток в обмотках возбуждения последних будет возрастать, пока э. д. с. двигателей I, II и III, IV не станут равными.
В случае параллельного соединения трех групп двигателей возможно применение так называемой циклической схемы реостатного торможения, при которой обмотка возбуждения каждого двигателя соединена последовательно с якорем двигателя другой параллельной ветви. Подразумевается такое включение обмоток, при котором их потоки не размагничивают двигатели.
Реостатное торможение двигателей с самовозбуждением имеет ряд недостатков. Одним из них является сравнительно медленное самовозбуждение и относительно большое время, которое требуется для создания необходимой тормозной силы. Чтобы ускорить самовозбуждение, можно подать дополнительное напряжение от независимого источника либо на основную обмотку возбуждения, либо на специальную добавочную обмотку с небольшим числом витков. При этом начальная э. д. с. определяется уже не потоком остаточного магнетизма, а значительно большим магнитным потоком.
Тормозную силу регулируют, изменяя как сопротивление Rт, так и магнитный поток двигателей, для чего изменяют напряжение независимого источника.
В случае рекуперативного торможения электрическая энергия, возвращаемая в контактную сеть рекуперирующим электровозом, потребляется электровозами, находящимися с ним на одном участке и работающими в тяговом режиме. Если таких электровозов нет или необходимая им энергия меньше рекуперируемой, то так называемая избыточная энергия рекуперации через устанавливаемые на тяговой подстанции специальные устройства — инверторы, преобразующие постоянный ток в переменный трехфазный, направляется в энергосистему. На электрифицированных участках с очень интенсивным движением, где, как правило, почти вся рекуперируемая энергия потребляется электровозами или электропоездами, работающими в режиме тяги, иногда вместо инверторов на подстанциях устанавливают поглощающие резисторы. Они автоматически включаются при наличии избыточной энергии рекуперации.
Применение рекуперации дает большой эффект. На отдельных участках с крутыми спусками может быть сэкономлено до 20% электрической энергии, затрачиваемой на тягу поездов. Преимущества рекуперативного торможения этим не ограничиваются. Когда поезд следует по крутому спуску, для того чтобы его скорость не превысила допустимую, обычно локомотив и состав периодически подтормаживают пневматическими тормозами. В результате скорость движения поезда уменьшается, а затем вновь возрастает, т. е. средняя скорость его на спуске ниже допустимой. Кроме того, все время притормаживать поезд нельзя, так как истощается пневматическая тормозная система, снижается коэффициент трения колодок вследствие их нагревания. При рекуперативном торможении можно обеспечить на спуске постоянную скорость, близкую к допустимой, зависящей от состояния пути, конструкции электровозов, вагонов, контактной сети. Кроме того, к контактной сети при рекуперации подключается дополнительный источник энергии, напряжение в ней повышается, и другие электровозы на этом участке, следующие по подъему или площадке, могут развивать более высокую скорость.
Благодаря электрическому торможению также значительно уменьшается износ тормозных колодок и колес подвижного состава, в результате чего намного снижаются расход металла и затраты на ремонт колесных пар.
Системы рекуперативного торможения должны обеспечивать постоянный ток рекуперации в тяговых двигателях и тормозной момент в условиях непрерывного изменения напряжения в контактной сети. Напряжение в контактной сети колеблется хотя бы потому, что от нее в разные периоды питается различное количество электровозов и электропоездов, да и потребляемая ими мощность меняется в очень широких пределах. При эти возможны резкие изменения тока pрекуперации. Этот ток определяется разностью суммарной э. д. с. последовательно соединенных двигателей и напряжения в контактной сети, деленного на сопротивление их обмоток. Общее сопротивление обмоток двигателей, даже соединенных последовательно, как отмечалось выше, мало. Поэтому даже относительно небольшие резкие изменения разности суммарной э. д. с. и напряжения сети вызывают большие броски тока.
Предположим, что в контактной сети по какой-либо причине напряжение увеличилось. Тогда ток в якоре тягового двигателя, работающего в режиме генератора, может изменить направление, и двигатель автоматически перейдет в тяговый режим. Вместо того чтобы тормозить поезд, двигатель будет разгонять его. При понижении напряжения, наоборот, ток рекуперации резко увеличится, тормозной момент возрастет и в поезде возникнут сильные толчки вследствие набегания хвостовых вагонов.
Следовательно, при допустимых нормами колебаниях напряжения в контактной сети в системе рекуперативного торможения должен автоматически поддерживаться примерно один и тот же ток рекуперации, а значит, и тормозной момент, установленный в зависимости от условий движения поезда.
Напомним, что для перехода двигателя из тягового режима в генераторный необходимо, чтобы э. д. с. в обмотке якоря стала больше приложенного напряжения, т. е. напряжения в контактной сети. Но двигатель с последовательным возбуждением не может перейти в режим генератора, потому что магнитный поток возбуждения в нем резко снижается при уменьшении нагрузки, а э. д. с. в обмотке якоря не может стать выше напряжения в сети.
Для того чтобы осуществить рекуперативное торможение, необходимо обмотки возбуждения отключить от обмоток якорей и питать их от постороннего источника энергии, например от специального генератора возбудителя В (рис. 47, а).

Читать еще:  Где датчик температуры двигателя на polo

Рис.47 Схема рекуперативного торможения при независимом возбуждении тяговых двигателей со стабилизирующим резистором Rст (а) и с противовозбуждением возбудителя (б)

Якорь возбудителя приводится во вращение двигателем Д. В этом случае можно установить в обмотках возбуждения такой ток, при котором э. д. с. в обмотках якорей тяговых двигателей станет больше напряжения в контактной сети. Если скорость движения поезда уменьшится, то может снизиться э. д .с. двигателей, работающих в режиме генераторов. Однако достаточно увеличить ток возбуждения Iв чтобы поддержать необходимую э. д. с, а значит, ток и тормозной момент, создаваемый двигателями. Для этого регулируют ток Iв в независимой обмотке возбуждения возбудителя В, изменяя сопротивление реостата П..
Схемы, построенные по такому принципу, можно использовать для рекуперативного торможения нескольких параллельно включенных двигателей. При этом в каждой цепи двигателя имеется стабилизирующий резистор R т, а обмотки возбуждения подключены к общему возбудителю В. Стабилизирующие резисторы обеспечивают электрическую устойчивость системы в режиме рекуперативного торможения, но они жесоздают и присущий схеме недостаток: значительные потери энергии в этих резисторах и необходимость повышенной мощности возбудителя для их компенсации.
Предложено несколько схем, свободных от этого недостатка. Так, на восьмиосных электровозах для осуществления рекуперативного торможения используют противовозбуждение возбудителя (рис. 47, б). В этом случае обмотки возбуждения ОВ тяговых двигателей подключают к якорю возбудителя В. Возбудитель имеет две обмотки: независимую ОНВ, напряжение в которую подается от постороннего источника энергии, и обмотку противовозбуждения ОПВ, включенную последовательно в цепь тока рекуперации. Магнитные потоки обеих обмоток, создаваемые соответственно токами Iонв и Iр, направлены встречно. При увеличении тока рекуперации в случае уменьшения напряжения в контактной сети ток обмотки противовозбуждения снижает результирующий магнитный поток возбуждения возбудителя. Соответственно уменьшаются возбуждение генератора (тягового двигателя) и его э. д. с. Когда напряжение в контактной сети повышается, ток рекуперации уменьшается и все процессы в схеме проходят в обратном порядке. При рекуперативном торможении с использованием противовозбуждения обмотки возбуждения двигателей включают так же, как и при реостатном торможении, по циклической схеме. Это позволяет выравнивать токи в параллельных цепях якорей двигателей в случае повышения э. д. с. в одной из них.
В зависимости от скорости движения поезда рекуперативное торможение применяют на трех соединениях якорей тяговых двигателей. Если скорость движения большая, используют параллельное соединение. В случае малой скорости движения получить большую э. д. с. машин невозможно, и тогда применяют последовательно-параллельное или последовательное соединение.
Необходимые переключения в силовой цепи для перехода в рекуперативный режим производят тормозным переключателем. По устройству он аналогичен реверсору (см. рис. 44). На электровозах серий ВЛ8, ВЛ10, ВЛ11 (в двухсекционном исполнении) устанавливают два кулачковых тормозных переключателя.

Рекуперативное торможение

Описание электропоездов и электровозов, расписание поездов, фотографии

§ 94. Рекуперативное торможение

Электроподвижной состав постоянного тока с машинными преобразователями.

Для осуществления рекуперативного торможения используют схемы со стабилизирующими резисторами и с возбудителями встречного смешанного возбуждения.

Схема со стабилизирующими резисторами В схеме рис. 251, а стабилизирующий резистор /?ст сопротивлением гст является общим для цепей якоря и обмотки возбуждения тягового двигателя.

Уравнение напряжения для цепи тока возбуждения в установившемся режиме

= Свп,Фа = /„ (лст + г„ + г„) + /гст,

где £„, С„, га„, Ф„ и гяв — соответственно э. д с, постоянная, частота вращения, поток и сопротивление обмотки якоря возбудителя В, I, гае — соответственно ток и сопротивление двигателя М1.

Из этого выражения следует, что

/ _ £в — 1г„ ^ Сяп„Фв — 1г„

В цепи тока якоря двигателя М1

Еа = vCaФл = ис + /(лдя + г„) + /„/•„,

откуда можно получить уравнение для скорости:

Ц с + А>дя + Г„) + /.Гст

Из уравнения для /в вытекает, что при увеличении тока якоря / ток возбуждения

Рис. 251 Схемы силовых цепей при рекуперации иа электровозах постоянного тока со стабилизирующими резисторами (а) и с возбудителями встречного смешанного возбуждения (б, в, г, д)

уменьшается и наоборот. Чем больше сопротивление гст, тем резче проявляется эта зависимость и тем круче падает характеристика 1>(/), обеспечивая малую чувствительность системы к колебаниям напряжения в контактной сети При увеличении скорости движения V ток якоря / возрастает из-за увеличения э д. с. £д, а следовательно, уменьшаются ток возбуждения /„ и магнитный поток Фд. Поэтому тормозная сила В « 0,367СДФД/ будет возрастать лишь до определенного максимума, наступающего при некоторой скорости о„. В зоне скоростей выше ик тормозная характеристика оказывается механически неустойчивой

С увеличением сопротивления г„ уменьшаются величины Вт„ и ч„ Область возмож-

ного использования рекуперации ограничена минимальной скоростью:

«шн. = (V, — 2£д)/(СдФдт>х) » 1/с/(СжФЖП1М). т. е. ограничена по току /вга,х

Вид характеристики v(l) и для схемы рис. 251, а (так как Фдтах = /втах) определяется внутренними нагрузочными характеристиками СДФД(/В), реакцией якоря и насыщением возбудителя [характеристикой С„Фв(ів)], изменением частоты вращения двигателя Д возбудителя в зависимости от его нагрузки.

При рекуперации суммарная э. д. с двигателей 2£д должна быть больше напряжения сети £/с; с уменьшением скорости 2£д уменьшается. Следовательно, для расширения зоны рекуперации и снижения рт1П необходимо с понижением скорости движения поддерживать 2£д > > £/с. Это осуществляют в первую очередь, увеличивая число последовательно соединенных якорей двигателей, т. е. применяя переход с параллельного на последовательно-параллельное, а с последовательно-параллельного на последовательное соединения якорей двигателей. Жесткость характеристик увеличивается при переходе с параллельного на последовательное соединение якорей тяговых двигателей.

При использовании стабилизирующих резисторов в рекуперативном режиме необходимо иметь специальный возбудитель, мощность которого значительно превосходит мощность, необходимую непосредственно для питания обмоток возбуждения; кроме того, ограничивается область применения рекуперативного торможения и уменьшается максимальная тормозная сила. При рекуперативном торможении, например по схеме рис. 251, а, на электровозе ВЛ22М мощность, потребляемая обмотками возбуждения при токе возбуждения /„ = 200 Л, составляет 23,2 кВт. В действительности из-за наличия стабилизирующих резисторов применяют возбудитель мощностью 57 кВт, а для его привода — двигатель мощностью 67 кВт. В стабилизирующих резисторах теряется также и некоторая часть энергии, вырабатываемой двигателями в генераторном режиме, что уменьшает отдачу энергии в сеть. Поэтому на современных электровозах постоянного тока с тяговыми двигателями последовательного возбуждения применяют схемы рекуперации с возбудителями встречного смешанного возбуждения.

Схема с возбудителями встречного смешанного возбуждения. В схеме рис. 251, б применен возбудитель В с двумя обмотками возбуждения: независимой НО и встречной ВО. Через обмотку ВО протекает ток якоря тягового двигателя /. Во время рекуперации м. д с. обмоткн ВО направлена навстречу м д. с. обмоткн НО. По

мере увеличения тока рекуперации / э. д. с. £в возбудителя, а следовательно, и ток возбуждения /„ уменьшаются. При уменьшении тока / э. д. с. £в и ток /в увеличиваются. Следовательно, обмотка ВО возбудителя сглаживает толчки тока и тормозной силы при изменениях напряжения в контактной сети.

Читать еще:  Что такое гбц в двигателе авто

Форма рекуперативных характеристик при возбудителе встречного смешанного возбуждения будет иной, чем в схеме с возбудителем независимого возбуждения и стабилизирующими резисторами. Тре-бумая крутизна характеристик рекуперативного торможения по схеме рис. 251, б достигается изменением соотношения м. д. с. обмоток возбуждения возбудителя при заданном токе /нв. Чем больше

Отношение /И’воАкв^’но. тем больше ВЛИЯет

ток в якоре на э. д. с. возбудителя £в и тем круче характеристики и(/). Однако одновременно уменьшается максимальное значение тормозного усилия Втах.

В схемах со стабилизирующими резисторами в каждой параллельной цепи токи возбуждения определяются только токами якорной цепи. Поэтому, возможно, н отклонения токов в цепи якорей будут частично компенсированы отклонениями токов возбуждения. При одном возбудителе встречного смешанного возбуждения на локомотивах с двумя и большим числом параллельных цепей тяговых двигателей не может быть обеспечено удовлетворительное распределение токов по этим цепям. Неравномерность токов в параллельных цепях можно ограничить, если для каждой цепи установить свой возбудитель, э: д. с. которого уменьшалась бы только при увеличении тока в цепи своих якорей. Однако иметь на электровозе большое число возбудителей (например, на электровозах ВЛ8, ВЛ10У и ВЛ10 по четыре) нежелательно. Поэтому на э. п. с. постоянного тока с числом параллельных цепей двигателей две и больше применяют один или два возбудителя встречного смешанного возбуждения, а для выравнивания токов в параллельных цепях — схемы с циклической стабилизацией, включая в каждую параллельную цепь якорей уравнительные резисторы Яу (рис. 251, и ( 2 трансформатора приложенные к тиристорам прямое и обратное напряжения выше расчетного напряжения питания, что учитывают прн выборе тиристоров.

Инвертор, выполненный по схеме рис. 252, а, устойчиво работает на партии электровозов ВЛ10 и на опытных электровозах ВЛ12. Однако поочередное протекание тока через полуобмотки коммутирующего реактора !

Что такое рекуперативное торможение двигателем постоянного тока

7.5. Работа электродвигателей в тормозных режимах

Электрические двигатели используются не только для приведения во вращение механизмов, но и для их торможения. Торможение необходимо, если нужно быстро остановить механизм или уменьшить его частоту вращения. Применение механических тормозов для этого затруднительно из-за нестабильности их характеристик, малого быстродействия и трудностей автоматизации.

Различаются три вида тормозных режимов двигателей постоянного тока:

1) генераторное торможение с отдачей электрической энергии в сеть (рекуперативное торможение);

2) генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря (реостатное, или динамическое, торможение);

3) электромагнитное торможение (торможение противовключе-нием).

Во всех трех режимах электромагнитный момент М воздействует на якорь в направлении, противоположном п, т. е. является тормозным. Рассмотрим более подробно эти режимы.

Рекуперативное торможение. Двигатель с параллельным возбуждением переходит в режим рекуперативного торможения, если его частота вращения превышает по=и/(сеф). Тогда ЭДС машины становится больше напряжения сети и ток меняет направление:

т. е. двигатель переходит в генераторный режим, создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть использована.

Переход машины с параллельным возбуждением из двигательного режима в генераторный может происходить автоматически, если под действием внешнего момента якорь вращается с частотой, большей частоты вращения холостого хода: п

>п. Можно перевести машину в генераторный режим и принудительно, уменьшив частоту вращения п за счет увеличения магнитного потока (тока возбуждения) или снижения напряжения, подводимого к двигателю. Механические характеристики в генераторном режиме являются продолжением механических характеристик двигательного режима в область отрицательных моментов (рис. 7.23).

Двигатели с последовательным возбуждением не могут автоматически переходить в режим рекуперативного торможения. Если необходимо иметь рекуперативное торможение, схему двигателей в тормозном режиме изменяют, превращая двигатели в генераторы с независимым возбуждением. Двигатели со смешанным возбуждением могут автоматически переходить в генераторный режим, что обусловило их применение в троллейбусах и трамваях, где часты остановки, а двигатель должен обладать мягкой механической характеристикой.

Рис. 7.23. Механические характеристики двигателя с параллельным возбуждением в двигательном и генераторном режимах

Рис. 7.24. Схема включения двигателя с параллельным возбуждением в режиме динамического торможения (а), скоростные и механические характеристики при торможении (б)

Динамическое торможение. При динамическом (реостатном) торможении двигателя с параллельным возбуждением обмотка якоря отключается от сети и к ней присоединяется реостат /?д (рис. 7.24, о). При этом машина работает в генераторном режиме и создает тормозной момент. Однако выработанная электрическая энергия гасится в реостате. Ток якоря при торможении

прямо пропорционален частоте вращения п, вследствие чего скоростные характеристики I=f(n)—прямые, проходящие через начало координат (рис. 7.24, б).

Тангенс угла наклона характеристик у в масштабе равен сопротивлению в цепи якоря:

В процессе торможения по мере уменьшения скорости постепенно уменьшают Ял, плавно или ступенями, чтобы поддержать средний ток якоря, а следовательно, и тормозной момент на заданном уровне. При очень больших частотах вращения в режиме торможе-

нчя приходится уменьшать ток возбуждения, чтобы ЭДС машины Е не превзошла допустимого значения

Механические характеристики в тормозном режиме при постоянном магнитном потоке имеют тот же вид, что и скоростные характеристики, только масштаб по оси абсцисс меняется в соответствии с формулой М — счФ1а (рис 7 24, б)

При ослабленном поле (при уменьшенном токе возбуждения) характеристики остаются линейными, но увеличивается угол их наклона При л «О тормозной

момент равен нулю Следовательно, для того чтобы якорь был заторможен в неподвижном состоянии, реостатное торможение должно быть дополнено другим, например механическим

Двигатель с последовательным возбуждением может работать в режиме динамического торможения, но при переводе его в этот режим нужно переключить провода, подводящие ток к обмотке возбуждения (рис 7 25) Это необходимо для того, чтобы при изменении направления тока в якоре при переходе из двигательного режима в генераторный направление тока в обмотке возбуждения оставалось неизменным (от б к а, рис 7 25) и создаваемая этой обмоткой МДС Fв совпадала по направлению с МДС FOCT от остаточного магнетизма В противном случае генераторы с самовозбуждением размагничиваются

Построение тормозных характеристик поясняется рис 7 26, а. Если в цепь машины включено добавочное сопротивление /?д, то установившийся режим работы соответствует точке пересечения

Рис 7 25 Изменение схемы при переводе двигателя последовательного возбуждения (а) в режим динамического торможения (б)

Рис 7 26 Характеристики n=f(la) при реостатном торможении двигателя последовательного возбуждения и их построение

Рис. 7.27. Схема включения двигателя с параллельным возбуждением в режиме электромагнитного торможения и его механические характеристики

вольт-амперной характеристики сопротивления (2# + /?д) с характеристикой E—f(IB), которая близка к характеристике холостого хода. При Пх это точка аь при п2 — точка а2 и т. д. При некоторой критической скорости, когда вольт-амперная характеристика сопротивления совпадает с начальным прямолинейным участком характеристики E=f(la), машина размагничивается и ток становится близким к нулю. По координатам точек а, а2 и т. д. можно построить зависимость n—f(Ia); эти скоростные характеристики являются нелинейными (рис. 7.26, б).

Механические характеристики строятся на основании скоростных характеристик и моментной — М= =/(/о), они также нелинейны.

Электромагнитное тормо жение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление вращения, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении

направления вращения двигателя, путем переключения проводов, подводящих ток к обмотке якоря (рис. 7.27, а) или к обмотке возбуждения. Чтобы ограничить ток в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление /?д. Регулирование тока Ia=(U+E)/(I,R+RA), т. е. тормозного момента М, осуществляют изменением Ra (рис. 7.27, б) или ЭДС (тока возбуждения /„).

С энергетической точки зрения рассматриваемый способ торможения невыгоден, так как машина потребляет как механическую, так и электрическую энергию, которые гасятся в обмотке якоря и включенном в ее цепь реостате. Но при этом способе можно получать большие тормозные моменты при низких частотах вращения и даже при п = 0, поскольку в этом случае ток Ia= U/ (2/? + /?д).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector