Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блоки управления

Блоки управления

Драйвер шагового двигателя SMD-8.0DIN

SMD-8.0DIN является драйвером шаговых двигателей нового поколения, поддерживает два режима управления и показывает отличную динамику и высокий момент на больших скоростях. Блок предназначен для работы с шаговыми двигателями с током фазы до 8.0 А в биполярном режиме. Крепление драйвера на стандартную DIN рейку облегчает его размещение в условиях производства.

Способы управления шаговым двигателем:

  • Импульсное управление положением
  • Аналоговое управление скоростью

Дополнительные возможности:

  • Встроенный тормозной резистор для работы с высокоинерционной нагрузкой
  • Возможность подключения внешнего тормозного резистора
  • Автоматический переход между токовым (с более высоким моментом и лучшей динамикой) и вольтовым (с более плавной и тихой работой) режимами управления фазами
  • Дробление шага до 1/128
  • Выбор значения тока удержания 70% или 100%
  • Возможность инвертирования сигнала Enable

Принципиальное отличие этого драйвера от предыдущих исполнений — новая конструкция и улучшенная схемотехника, которые обеспечивают очень быстрый разгон и сохранение значительного крутящего момента на высоких скоростях. Разгон до скоростей 1000 об/мин и более может осуществляться за доли секунды. Рабочая скорость более 4000 об/мин с поддержанием крутящего момента, достаточного для выполнения полезной работы теперь доступна для большинства моделей шаговых двигателей.

Технические характеристики драйвера шагового двигателя SMD-8.0DIN
Напряжение питания24. 48В
Режимы дробления шага1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128
Максимальный ток фазы двигателя8,0А

Размеры драйвера шаговых двигателей SMD-4.2

В зависимости от поставленной задачи блок управления может использоваться в одном из двух режимов управления — импульсное управление положением для решения задач позиционирования, управление скоростью аналоговым сигналом — для задач поддержания и регулирования скорости.

В режиме импульсного управления положением есть возможность инверсии сигнала разрешения EN.

Драйвер SMD-8.0DIN предусматривает два варианта коммутации обмоток шагового двигателя:

  • Токовое регулирование — при дроблении шага от 1 до 1/16
  • Вольтовое регулирование — при дроблении шага от 1/32 до 1/128

При токовом режиме управления контролируется максимальный ток, подаваемый на фазу двигателя. Для управления в этом режиме можно использовать любой шаговый двигатель с установкой максимального тока в настройках контроллера. Этот режим управления характеризуется большим крутящим моментом, высокой скоростью вращения, но ограничен максимальной величиной дробления до 1/16 от основного углового шага ШД.

Вольтовый режим управления характеризуется большей плавностью хода и возможностью дробления шага двигателя до 1/128 от величины основного углового шага. Однако, скорость и крутящий момент на выходном валу двигателя в этом режиме управления ниже по сравнению с токовым режимом. Режим вольтового управления может использоваться только с теми шаговыми двигателями, список параметров которых сохранен в памяти блока.

Драйверы шаговых двигателей

Наша компания предлагет драйверы шаговых двигателей для управления ШД с широким диапазоном максимального тока обмотки, различными вариантами дробления шага и конструктивного исполнения.

Мы рады предложить нашим клиентам высококачественные промышленные цифровые драйверы для шаговых двигателей от ведущих мировых разработчиков и производителей устройств управления двигателями — Geckodrive Inc. (США) и Leadshine (Китай).

Драйвер шагового двигателя Geckodrive G201X

Максимальный ток обмотки ШД — 7 А
Нaпряжение питания — 18 .. 80 В
Режим рабoты — микрoшаг (1/10 шага)
Функции морфинга и подавления резонанса

Драйвер шагового двигателя Geckodrive G210X

Максимальный ток обмотки ШД — 7 А
Нaпряжение питания — 18 .. 80 В
Режимы — целый шаг, 1/2, 1/5 и 1/10 шага
Функции морфинга и подавления резонанса

Драйвер шагового двигателя Geckodrive G250X

Миниатюрный встраиваемый драйвер
Максимальный ток обмотки ШД — 3.5 А
Нaпряжение питания — 15 .. 50 В
Режим рабoты — микрoшаг (1/10 шага)
Функции морфинга и подавления резонанса

Цифровой драйвер шагового двигателя Leadshine DM2282

Максимальный ток обмотки ШД — 8.2 А
Напряжение питания — 80 .. 220 В (АС)
Режимы работы — микрошаг до 1/512
Функции подавления резонанса и вибраций
Интегрированная защита драйвера

Драйвер шагового двигателя A15

Миниатюрный маломощный драйвер
Максимальный ток обмотки ШД — 1.5 А
Нaпряжение питания — 10 .. 27 В
Режимы — целый шаг, 1/2, 1/4 и 1/16 шага
Функции защиты от КЗ и переполюсовки

Драйвер коллекторного серводвигателя G320X

Максимальный ток двигателя — до 20 А
Напряжение питания — 18 .. 80 В
Квадратурный энкодер
Цифро-аналоговый ПИД-регулятор

Драйвер шагового двигателя Geckodrive G203V

Максимальный ток обмотки ШД — 7 А
Нaпряжение питания — 18 .. 80 В
Режим рабoты — микрoшаг (1/10 шага)
Функции морфинга и подавления резонанса
Интегрированная защита драйвера

Драйвер шагового двигателя Geckodrive G213V

Максимальный ток обмотки ШД — 7 А
Нaпряжение питания — 18 .. 80 В
Режимы — целый шаг, 1/2, 1/5 и 1/10 шага
Функции морфинга и подавления резонанса
Интегрированная защита драйвера

Управление шаговыми двигателями

Мы предлагаем Вашему вниманию драйверы для шаговых двигателей от ведущих мировых разработчиков и производителей устройств управления двигателями — Geckodrive Inc. (США) и Leadshine (Китай).

Мощным цифровым драйверам Leadshine DM2282 нет равных для управления высокомоментными шаговыми двигателями серий FL110STH и FL130BYG.

Драйверы шаговых двигателей GeckoDrive

Основной модельный ряд драйверов GeckoDrive представлен четырьмя драйверами: G201X, G210X, G203V и G213V. Все данные драйверы предназначены для управления биполярными шаговыми двигателями с максимальным рабочим током фазы до 7 Ампер при напряжении питания до 80 Вольт.

Драйвер G210X работает в режимах целого шага, а также в режимах 1/2, 1/5 и 1/10 шага. Драйвер G201X работает только в режиме микрошага 1/10. (Часто этого вполне достаточно).

Также есть два драйвера с большим количеством встроенных защит — G203V и G213V (защита от короткого замыкания, от случайного изменения полярности напряжения питания, от превышения напряжения питания, от перегрева и т.д.)

Преимущества драйверов GeckoDrive

Основными функциональными преимуществами драйверов Geckodrive является:

  • подавление низкочастотных вибраций;
  • компенсация среднечастотного резонанса;
  • «морфинг» формы тока в фазах шагового двигателя в зависимости от частоты вращения;
  • адаптивная рециркуляция тока при простое двигателя;

Также следует отметить, что при всем этом функциональном разнообразии драйверы имеют миниатюрные габариты и малый вес (100 г).

Аппаратная функция компенсации среднечастотного резонанса и подавления низкочастотных вибраций является главным ноу-хау компании Geckodrive, и на сегодняшний день драйверы Geckodrive являются единственными в мире драйверами шаговых двигателей без обратной связи по положению ротора, в которых полноценно реализована эта функция.

В комплексе с микрошаговым управлением данная функция обеспечивает качественное и плавное вращение ротора шагового двигателя в широком диапазоне рабочих частот — от единиц Гц до десятков кГц, тем самым позволяя добиться от двигателя превосходной динамики и высоких скоростей вращения. Таким образом, проблемы, связанные с пропуском шагов на низких частотах и срывом вращения на средних частотах, больше не актуальны для пользователей драйверов Geckodrive.

Читать еще:  Шаговый двигатель холостого хода ситроен ксара

Другим преимуществом драйверов Geckodrive является функция «морфинга» – плавного изменения формы тока в фазах шагового двигателя в зависимости от частоты вращения ротора. С увеличением скорости, драйвер плавно переходит из микрошагового режима с синусоидальной формой тока в фазах шагового двигателя к полношаговому режиму с прямоугольной формой тока. Следует отметить, что несмотря на изменение режима управления, драйвер точно осуществляет позиционирование ротора двигателя и никаких «проскоков» шагов не возникает.

Известно, что микрошаговый режим отлично подходит для низких скоростей вращения шаговых двигателей, но с увеличением скорости двигатель в данном режиме не может обеспечить достаточный крутящий момент, что приводит к срыву вращения. Использование функции «морфинга» позволяет увеличить крутящий момент шагового двигателя на средних и высоких скоростях до 30%.

Во всех драйверах Geckodrive используется функция адаптивной рециркуляции тока в обмотках шагового двигателя, которая позволяет без потери выходного крутящего момента на валу двигателя уменьшить нагрев его корпуса как при вращении, так и в статическом режиме. Кроме того, благодаря данной функции корпус самого драйвера при работе на токах до 4 Ампер не нагревается больше чем на 40°, и, соответственно, не требует принудительного охлаждения.

В дополнение к данной функции в драйверах реализован режим автоматического уменьшения рабочего тока в обмотках шагового двигателя при простое. Данный режим дополнительно уменьшает нагрев как самого двигателя, так и драйвера, и позволяет значительно сократить потребляемую приводом мощность в статическом состоянии.

Схема подключения шагового двигателя

Схемы подключения шаговых двигателей к биполярным драйверам (на примере драйверов GeckoDrive) вы можете посмотреть на страничке

Нюансы биполярного и униполярного подключения мы выделили в отдельную страничку:

Мы рекомендуем вам ознакомиться с материалами этой статьи. Она поможет вам правильно пользоваться каталогом.

Важно знать, что для двигателей, имеющих более четырех выводвов, в каталоге приводятся «униполярные» параметры — ток фазы для униполярного подключения, статический ужерживающий момент при униполярном подключении, сопротивление и индуктивность обмотки для этого типа подключения ШД.

Для биполярных двигателей возможна только биполярная схема подключения ШД, поэтому все параметры в каталоге приводатся для этого типа подключения.

Крутящий момент униполярного двигателя, подключенного по биполярной схеме (например, для двигателей серии FL57STH76, подключенных без использования центральных отводов каждой обмотки), будет равен крутящему моменту биполярного двигателя того же габарита.

Документация

Драйвер для шагового двигателя

Simscape / Электрический / Электромеханический / Reluctance & Stepper

Описание

Блок Stepper Motor Driver представляет драйвер для шагового двигателя. Это создает последовательности импульсов, A и B, требуемый управлять двигателем. Этот блок инициирует шаг каждый раз, когда напряжение в порте ENA повышается выше значения параметров Enable threshold voltage.

Если напряжение в порте REV меньше чем или равно значению параметров Reverse threshold voltage, импульсный A приводит импульсный B 90 градусами. Если напряжение в порте REV больше значения Reverse threshold voltage, импульсный B приводит импульсный A 90 градусами, и моторное направление инвертируется.

В начальный момент времени импульсный A положителен, и импульсный B отрицателен.

Если вы устанавливаете параметр Stepping mode на Half stepping , блок Stepper Motor Driver может произвести выходные формы волны, требуемые для того, чтобы наполовину продвинуться. В этом режиме между полными шагами существует промежуточное состояние, на которых только приводится в действие один из A или полуобмоток B. В результате размер шага является половиной полного размера шага шагового двигателя. На половине шагов закорачиваются обмотки, которые не приводятся в действие. Это аппроксимирует эффект вольного диода, соединенного через обмотки.

Усредненный режим

Если вы устанавливаете параметр Simulation mode на Averaged , и для блока Stepper Motor Driver и для блока Stepper Motor , соединенного с ним, затем не симулированы отдельные шаги. Это может быть хорошим способом ускорить симуляцию. Averaged режим принимает, что внешний контроллер обеспечивает спрос на уровень шага. Этот спрос на уровень шага определяется из напряжения, примененного между портами ENA и REF на блоке Stepper Motor Driver путем умножения этого напряжения значением параметра Step rate sensitivity. Направление вращения установлено портом REF таким же образом что касается Stepping режим.

Averaged режим должен передать спрос на уровень шага и также информацию об амплитуде выходного напряжения с блоком Stepper Motor . Для этого спрос на уровень шага применяется как эквивалентное напряжение через порты A+ и A-. Так же информация об амплитуде выходного напряжения передается путем применения установившегося напряжения через порты B+ и B- со значением, равным параметру Output voltage amplitude.

Допущения и ограничения

Использовать Averaged режим, блок Stepper Motor Driver должен быть непосредственно соединен с блоком Stepper Motor , также запускающимся в Averaged режим.

При изменении от Stepping к Averaged режим и назад, необходимо будет изменить восходящие блоки, которые предоставляют входные напряжения блоку Stepper Motor Driver . Один способ достигнуть этого легко состоит в том, чтобы использовать подсистемы варианта Simulink ® .

Комплектующие для станков с ЧПУ и систем автоматизации

Драйверы 3-х фазных шаговых двигателей

По сравнению со стандартными 2х фазными шаговыми двигателями, 3х фазные ШД обладают рядом преимуществ. 3х фазные ШД выдают более равномерный момент при вращении, ротор меньше вибрирует, ниже уровень шума. Также эти ШД способны ускорятся и тормозить лучше чем 2х фазные ШД. У 3х фазных ШД рабочий момент лучше сохраняется на высоких оборотах. Поэтому 3х фазные ШД рекомендуется применять в оборудовании, если необходима высокая точность позиционирования, низкий уровень вибрации и шума. Кроме этого упрощается проводка оборудования, поскольку для управления 3х фазным ШД необходимо 3 провода, а не 4, как у 2х фазного ЩД.

Если Вы не нашли в нашем ассортименте необходимый товар — обязательно свяжитесь с нами. Возможно товар находится в пути или мы доставим Вам его под заказ в кратчайшие сроки.

Драйвер 3DM580, код ER-00010135

Драйвер трехфазного шагового двигателя Leadshine 3DM580 50В/8А/500кГц для 3х фазных двигателей 3PL42 и 3PL57. 16 режимов деления шага от 1:2 до 1:512. Оптоизолированные входы управления STEP, DIR, ENABLE. Выбор режима работы STEP/DIR или CW/CCW. Настройка драйвера с ПК через RS232, автонастройка под ШД. Компенсация резонанса и определение останова ротора ШД. Защита от КЗ обмоток ШД, от обратной ЭДС ШД, режим удержания ротора ШД.

  • Документация
    • Эксплуатация
Читать еще:  Греется двигатель газ 3307 причины

Драйвер 3DM683, код ER-00010143

Драйвер трехфазного шагового двигателя Leadshine 3DM683 60В/8.3А/500кГц для 3х фазных двигателей 3PL57 и 3PL86. 16 режимов деления шага от 1:2 до 1:512. Оптоизолированные входы управления STEP, DIR, ENABLE. Выбор режима работы STEP/DIR или CW/CCW. Настройка драйвера с ПК через RS232, автонастройка под ШД. Компенсация резонанса и определение останова ротора ШД. Защита от КЗ обмоток ШД, от обратной ЭДС ШД, режим удержания ротора ШД.

  • Документация
    • Эксплуатация

Драйвер 3DM2283, код ER-00010144

Драйвер трехфазного шагового двигателя Leadshine 3DM2283

220В/11.7А/200кГц. Деления шага от 1:2 до 1:512. Оптоизолированные входы управления STEP, DIR, ENABLE. Выбор режима работы STEP/DIR или CW/CCW. Настройка драйвера с ПК через RS232, автонастройка под ШД. Компенсация резонанса и определение останова ротора ШД. Защита от КЗ обмоток ШД, от обратной ЭДС ШД, режим удержания ротора ШД.

  • Документация
    • Эксплуатация

Драйвер YKD3606M, код ER-00010147

DSP драйвер трехфазного шагового двигателя Yako YKD3606M 60В/5.9А/300кГц для 3х фазных двигателей 3PL57 и 3PL86. 16 режимов деления шага от 1:2 до 1:200. Оптоизолированные входы управления STEP, DIR, ENABLE. Защита от КЗ обмоток ШД, от обратной ЭДС ШД, датчик температуры, режим удержания ротора ШД половинным током.

  • Документация
    • Эксплуатация

Драйвер YKD3608MH, код ER-00010148

DSP драйвер трехфазного шагового двигателя Yako YKD3608MH

80В/6А/300кГц для 3х фазных двигателей 3PL86. 16 режимов деления шага от 1:2 до 1:200. Оптоизолированные входы управления STEP, DIR, ENABLE. Защита от КЗ обмоток ШД, от обратной ЭДС ШД, датчик температуры, режим удержания ротора ШД половинным током.

  • Документация
    • Эксплуатация

Драйвер YKD3722M, код ER-00012221

DSP драйвер трехфазного шагового двигателя Yako YKD3722M

220В/7А/400кГц для 3х фазных двигателей 3PL110 и 3PL130. 16 режимов деления шага от 1:2 до 1:200. Оптоизолированные входы управления STEP, DIR, ENABLE. Защита от КЗ обмоток ШД, от обратной ЭДС ШД, режим удержания ротора ШД половинным током. Питание от сети переменного тока

  • Документация
    • Эксплуатация

Драйверы 3-х фазных шаговых двигателей имеют следующие особенности:

  • 16 режимов деления шага;
  • оптоизолированные входы управления STEP, DIR, ENABLE;
  • выбор режимов работы STEP/DIR и CW/CCW;
  • автонастройка параметров под шаговый двигатель;
  • настройка драйвера с ПК через RS232;
  • компенсация резонанса и определение останова ротора ШД;
  • датчик температуры;
  • защита от КЗ обмоток ШД, от обратной ЭДС ШД, режим удержания ротора ШД.

Трехфазные шаговые двигатели обладают рядом важных преимуществ перед стандартными двухфазными ШД:

  • более равномерный момент при вращении;
  • более низкий уровень шума и вибрации ротора;
  • лучшие характеристики разгона и торможения;
  • лучшее сохранение рабочего момента на высоких оборотах.

Приводы, построенные на основе трехфазных ШД, показывают стабильную и качественную работу, обеспечивают высокий крутящий момент.

Сфера применения драйверов трехфазных ШД не отличается от сферы применения драйверов обычных ШД за тем исключением, привод на базе трехфазных двигателях обеспечивает большую плавность перемещений, больший рабочий момент и меньший уровень шума.

Как правильно выбрать

При выборе драйвера трехфазного ШД необходимо учитывать следующие параметры:

  • сила тока, которую драйвер может обеспечить;
  • напряжение питания;
  • наличие опторазвязанных входов;
  • наличие механизмов защиты;
  • наличие компенсации резонанса;
  • используемые режимы работы;
  • режимы деления шага;
  • дополнительные функции.

С этим товаром покупают:

Драйверы шаговых двигателей A4988 и DVR8825

В статье мы разберем режимы управления вращением шаговых двигателей. Подробно рассмотрим подключение драйвера A4988.

Шаговые моторы имеют три режима управления вращением: полношаговый, полушаговый и микрошаговый.

Во время полношагового режима шаговые моторы для поворота мотора на 360 градусов делают 200 шагов, во время полушагового — 400, а во время микрошагового возможно делить шаг на 4, 8 и даже 16 частей. Техника управления микрошаговым режимом сложна, поэтому многие производители станков ЧПУ (CNC) и качественных 3D принтеров стали изготавливать специальные контроллеры для управления шаговыми двигателями, часто называемых драйверами шаговых моторов. Ещё их называют StepStick.

Функционирование специальных контроллеров управления (драйверов шаговых двигателей) происходит следующим образом: вначале напряжение питания поступает на шаговый двигатель, затем на логическую часть драйвера шаговика, после этого задается направление вращения и команда (ШАГ) по управляющим контактам на двигателе. Во время команды (ШАГ) шаговый мотор получает необходимое напряжение, которого достаточно для передвижения ротора на один микрошаг (полушаг или шаг) – это зависит от предварительных установок, заданных заранее специальными перемычками на RAMPS 1.4.

Зачастую у продаваемых контроллеров шаговых двигателей (например: RAMPS 1.4) предустановлен режим микрошага 1/16. Чтобы регулировать подаваемое на шаговый мотор напряжение питания, на котроллере RAMPS 1.4 установлен специальный переменный резистор. Он является важным элементом, поскольку шаговики могут быть под 8V, 4V, 12V и д.р.

Для платы RAMPS 1.4 выпускают два вида драйверов A4988 и DVR8825. Они отличаются током, выдаваемым на шаговый двигатель и минимальным микрошагом.

И не только. Выпускаются несколько других драйверов шаговых двигателей, которые могут быть использованы в качестве альтернативы. Например, у драйвера шагового двигателя Pololu A4988 Black Edition производительность на 20% выше. Есть также большая версия драйвера на A4988, которая имеет защиту от обратной мощности на главном входе питания, а также встроенной 5 В и 3.3 В стабилизаторы напряжения, которые устраняют необходимость в покупке отдельного питания для логики и двигателей. Платы на DRV8825 предлагают на около 50% более высокую производительность в более широком диапазоне напряжений и с несколькими дополнительными функциями, в то время как платы на DRV8834 работают с двигателями с напряжением питания от 2.5 В. Любую из этих плат можно использовать в качестве драйвера во многих приложениях.

Рассмотрим драйвер A4988.

Характеристики драйвера A4988

  • Максимальный ток 2 A
  • Минимальный микрошаг 1/16 шага

Величина тока регулируется подстроечным резистором на драйвере. Вращение по часовой стрелке — повышение тока. Вращение против часовой стрелки — понижение величины тока.

Установка микрошага производится перемычками установленными на RAMPS 1.4

Схема драйвера A4988

Подключение драйвера A4988

Для работы с драйвером A4988 необходимо питание логического уровня (3 — 5.5 В), подаваемое на выводы VDD и GND, а также питание двигателя (8 — 35 В) на выводы VMOT и GND. Чтобы обеспечить необходимый потребляемый ток (при пиковых до 4 А), необходимо поставить конденсаторы для гальванической развязки как можно ближе к плате.

Читать еще:  Двигатели ауди 100 45 кузов технические характеристики

Внимание: В плате используются керамические конденсаторы с низким эквивалентным последовательным сопротивлением, что делает её уязвимой для индуктивно-ёмкостных скачков напряжения, особенно если питающие провода длиннее нескольких сантиметров. В некоторых случаях, эти скачки могут превысить максимально допустимое значение (35 В для A4988) и повредить плату. Одним из способов защиты платы от подобных скачков является установка большого (не меньше 47 мкФ) электролитического конденсатора между выводом питания (VMOT) и землёй близко к плате.

При правильном подключении, через Pololu A4988 можно управлять четырёх-, шести- и восьми- проводными шаговыми двигателями.

Внимание: Соединение или разъединение шагового двигателя при включённом драйвере может привести к поломке двигателя.

Установка микрошага

У шаговых двигателей обычно установлена конкретная величина (например 1,8° или 200 шагов на оборот), при которой достигается полный оборот в 360°. Микрошаговый драйвер, такой как A4988 позволяет увеличить разрешение за счёт возможности управления промежуточными шагами. Это достигается путём возбуждения обмоток средней величины тока. Например, управление мотором в режиме четверти шага даст двигателю с величиной 200-шагов-за-оборот уже 800 микрошагов при использовании разных уровней тока.

Разрешение (размер шага) задаётся комбинациями переключателей на входах (MS1, MS2, и MS3). С их помощью можно выбрать пять различных шагов, в соответствии с таблицей ниже. На входы MS1 и MS3 переключателя установлены 100 кОм подтягивающие на землю резисторы, а на MS2 — 50 кОм, и если оставить их не подключёнными, двигатель будет работать в полношаговом режиме. Для правильной работы в режиме микрошага необходим слабый ток (см. ниже), который обеспечивается ограничителями по току. В противном случае, промежуточные уровни будут некорректно восприниматься, и двигатель будет пропускать микрошаги.

Обычно для домашних 3D принтеров и станков ЧПУ используются драйверы A4988 с микрошагом 1/16. Для этого все перемычки на плате RAMPS 1.4 должны быть установлены на свои гнезда.

Входы управления

Каждый импульс на входе STEP соответствует одному микрошагу двигателя, направление вращения которого зависит от сигнала на выводе DIR. Обратите внимание, что выводы STEP и DIR не подтянуты к какому-либо конкретному внутреннему напряжению, поэтому вы не должны оставлять эти выводы плавающими при создании приложений. Если вы просто хотите вращать двигатель в одном направлении, вы можете соединить DIR непосредственно с VCC или GND. Чип имеет три различных входа для управления состоянием питания: RST, SLP и EN. Обратите внимание, что вывод RST плавает; если вы его не используете, вы можете подключить его к соседнему контакту SLP на печатной плате, чтобы подать на него высокий уровень и включить плату.

Ограничение тока

Для достижения высокой скорости шага, питания двигателя, как правило, гораздо выше, чем это было бы допустимо без активного ограничения тока. Например, типичный шаговый двигатель может иметь максимальный ток 1 А с 5 Ом; сопротивлением обмотки, отсюда максимально допустимое питание двигателя равно 5 В (U=I*R). Использование же такого двигателя с питанием 12 В позволит повысить скорость шага. Однако чтобы предотвратить повреждение двигателя, необходимо ограничить ток до уровня ниже 1 А.

Драйвер A4988 поддерживает активное ограничение тока, которое можно установить подстроечным потенциометром на плате.

Один из способов установить предельный ток — подключить драйвер в полношаговый режим и измерять ток, протекающий через одну обмотку двигателя без синхронизации по входу STEP. Измеренный ток будет равен 0,7 части предельного тока (так как обе обмотки всегда ограничиваются примерно на 70% от текущей настройки предельного тока в полношаговом режиме). Учтите, что при изменении логического напряжения Vdd, на другое значение, изменит предельный ток, поскольку напряжение на выводе «ref» является функцией Vdd.

Еще один способ установить предельный ток – измерить напряжение на выводе «ref» и вычислить полученное ограничение тока (резисторы SENSE равны 0,05 Ом). Напряжение вывода доступно через металлизированное сквозное отверстие (в кружке на шёлкографии печатной платы). Ограничение тока относится к опорному напряжению следующим образом:

Current Limit = VREF × 2,5

Например: опорное напряжение равно 0,3 В, предельный ток 0,75 А. Как упоминалось выше, в режиме полного шага, ток через катушки ограничен 70% от текущего предела, поэтому, чтобы получить полный шаг тока катушки в 1 А, текущий предел должен быть 1 A / 0,7 = 1,4 А, что соответствует VREF 1,4 A / 2,5 = 0,56 В. Смотрите спецификацию A4988 для получения дополнительных сведений.

Примечание: Ток обмотки может сильно отличаться от тока источника питания, поэтому не следует измерять ток на источнике питания, чтобы установить ограничение тока. Подходящим местом для измерения тока является одна из обмоток вашего шагового двигателя.

Величину тока на драйвере шагового мотора настроить и опытным путём. Необходимо устроить прогон 3D принтера на высокой скорости по всем координатам. Оптимальным считается, когда шаговые двигатели уже не гудят и ещё не пропускают шаги.

Внимание: При регулировке тока подстроечным резистором на драйвере A4988. Вращение по часовой стрелке — повышение тока. Вращение против часовой стрелки — понижение величины тока.

Максимально допустимый ток подаваемый на обмотку, у микросхемы A4988 равен 2 A. Фактический ток, который можно подать на плату, зависит от качества охлаждения микросхемы. Плата разработана с учётом отвода тепла от микросхемы, но при токе выше 1 A на обмотку необходим теплоотвод или другое дополнительное охлаждение.

Внимание: плата драйвера может нагреться так, что можно получить ожог, задолго до того как перегреется сама микросхема. Будьте осторожны при обращении с платой и со всеми подключёнными к ней устройствами.

Обратите внимание, что ток, измеренный на источнике питания, как правило, не соответствует величине тока на обмотке. Так как напряжение, подаваемое на драйвер, может быть значительно выше напряжения на обмотке, то, соответственно, измеряемый ток на источнике питания может быть немного ниже, чем ток на обмотке (драйвер и обмотка в основном работают в качестве переключаемого источника с пошаговым понижением питания). Кроме того, если напряжение питания намного выше необходимого двигателю уровня для достижения требуемого тока, то скважность будет очень низкой, что также приводит к существенным различиям между средним и RMS током (среднеквадратичное значение переменного тока).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector