Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие бывают дизели

Какие бывают дизели

В последние годы растет интерес автомобилестроителей к дизельным двигателям. Сейчас почти все крупные фирмы оснащают ими часть своих легковых моделей. О грузовых машинах, автобусах, фургонах и говорить не приходится: на подавляющем большинстве западноевропейских, японских американских стоят дизели. Все значительнее их доля и в производстве наших грузовиков и автобусов. В ряде стран практически не встретишь такси с бензиновым двигателем, хотя автомобиль с дизелем дороже и тяжелее, более дымен и шумен, у него хуже скоростные и динамически качества.

Но все эти недостатки дизеля «искупаются» тем, что он потребляет меньше топлива, которое вдобавок часто стоит дешевле бензина. Так не идет ли дело к постепенному вытеснению бензинового мотора? Нет. При выборе типа двигателя решающее значение имеют условия эксплуатации, в первую очередь годовой пробег: чем он больше — тем быстрее покрывается разница в цене автомобилей с дизелем и бензиновым мотором. Так, в некоторых странах более высокие затраты на приобретение автомобиля с дизелем компенсируются уже за 20 тысяч километров: после этого эксплуатация дизельного автомобиля становится выгоднее. Отсюда и предпочтение дизелям для такси, грузовиков, автобусов, фургонов: все они имеют большие годовые пробеги.

Конечно, в разных странах величина «компенсирующего» пробега колеблется. Она зависит от разницы цен на дизельное топливо и бензин, а также от налоговой политики. Поэтому и доля легковых автомобилей с дизелями в разных странах неодинакова.

Предкамерный дизель. Объем предкамеры — 20-40% от общего объема камеры сгорания; степень сжатия — 20-21.

Чтобы разобраться, почему дизельный двигатель экономичнее бензинового, надо сравнить особенности их конструкции и рабочие процессы. Как известно, в двигателях обоих типов после такта сжатия сгорает смесь топлива с воздухом. В бензиновом эта смесь приготавливается в карбюраторе или во впускной трубе, куда топливо впрыскивается форсункой, и воспламеняется в камере сгорания от искры.

Таким образом, в цилиндр бензинового двигателя всасывается смесь топлива с воздухом. В дизеле всасывается чистый воздух, а в конце такта сжатия, когда температура сжатого воздуха становится достаточно высокой, в камеру сгорания впрыскивается топливо. Здесь оно должно успеть распылиться, смешаться с воздухом и воспламениться. На эти процессы в дизеле отведен очень короткий промежуток времени: он соответствует повороту коленчатого вала на 20-40° против почти 360° в бензиновом. При этом надо учесть, что вал вращается с частотой 4500-4800 об/мин: на таких оборотах работают современные дизели легковых автомобилей. Становится ясно, что их топливная аппаратура должна удовлетворять весьма высоким требованиям. Здесь мы подошли к самому сложному этапу создания дизельного двигателя — к организации его рабочего процесса.

Итак, за очень короткий отрезок времени топливо необходимо впрыснуть в камеру сгорания и смешать с воздухом, а для этого — тонко распылить. Если капли топлива будут слишком крупными, они не успеют сгореть за отводимое им для этого время. Несгоревшее топливо вылетит в выхлопную трубу в виде темного дыма, а также напомнит о себе повышенным расходом. Но недостаточно хорошо распылить топливо: его, как уже говорилось, нужно тщательно перемешать с воздухом, чтобы обеспечить полное сгорание. Для этого используют разные методы. В основном они сводятся к завихрению воздуха, в который и подают топливо. Организовать интенсивное движение воздуха в цилиндре оказывается не так просто. В современных двигателях для этого, например, камеру сгорания разделяют на несколько частей, обычно на две. Такие камеры называют двухполостными. При этом одна часть является основной, а другая — дополнительной. В последней и происходит интенсивное перемешивание топлива с воздухом и его воспламенение.

Вихрекамерный дизель. Объем вихревой камеры — 50-80% от общего объема камеры сгорания; степень сжатия — 20-23.

Дело в том, что при сжатии давление воздуха в основной камере сгорания нарастает быстрее, чем в дополнительной, поэтому воздух перетекает из основной в дополнительную камеру. В автомобильных двигателях в основном применяют два варианта дополнительных камер. В первом она представляет собой тело вращения. Воздух подается в нее вдоль оси вращения, а топливо впрыскивается навстречу воздуху. При этом происходит интенсивное перемешивание топлива с воздухом и воспламенение. Такие двигатели называют предкамерными (форкамерными). Камеры другого типа имеют форму сферы, куда воздух подводится по каналу (или каналам), направление которого касательно к сферической поверхности. При этом в дополнительной камере происходит интенсивное вращательное движение воздуха, а топливо впрыскивается (в большинстве случаев) перпендикулярно к направлению движения воздуха. При этом также происходит интенсивное перемешивание топлива с воздухом и воспламенение. Эти двигатели называют вихрекамерными. В результате воспламенения резко повышается давление в дополнительной камере, и горящие газы перетекают в основную, где и происходит их догорание и расширение, то есть рабочий ход. Как вихрекамерные так и предкамерные двигатели надежны в работе, обладают неплохой экономичностью и требуют сравнительно невысокого (120-150 кгс/см2/12-15 МПа) давления впрыска. Это очень важно: создаются условия для использования сравнительно простой топливной аппаратуры, в частности, одно дырчатых форсунок. Практически все выпускаемые в настоящее время дизели легковых автомобилей являются вихрекамерными или предкамерными.

Другой тип дизелей — с камерой сгорания, образованной полостью между днищем поршня и головкой цилиндра (при положении поршня в верхней мертвой точке). Такие камеры называют однополостными, поскольку они представляют собой единый объем, в который и впрыскивают топливо, и вот почему сами дизели именуют также двигателями с непосредственным впрыском топлива. Основной объем камеры сгорания здесь образует, как правило, выемка в днище поршня.

Дизель непосредственным впрыском топлива. Степень сжатия — 13-18.

У однополостных камер при одинаковом с двухполостными объеме меньше площадь поверхности, через которую тепло, образовавшееся в процессе сгорания, уходит в охлаждающую среду. У них не теряется энергия на перекачивание газа из одной полости в другую.

Благодаря этому дизели с непосредственным впрыском имеют более высокий КПД и, следовательно, лучшую (примерно на 15%) экономичность, чем вихрекамерные и предкамерные.

Для организации рабочего процесса с непосредственным впрыском необходимо решить уже известные нам задачи подать топливо в камеру сгорания достаточно тонко его распылить и хорошо перемешать с воздухом.

Качество распыливания и «дальнобойность» топливного факела обеспечивают более высоким, чем при разделенных камерах, давлением впрыска (200—1500 кгс/см2 /20—150 МПа), а для равномерного распределения топлива по объему форсунки делают с несколькими (пятью—семью) отверстиями. Аппаратура, рассчитанная на большее давление, несколько сложнее и дороже, чем для предкамерных и вихрекамерных дизелей.

Дизель с пленочным смесеобразованием. Степень сжатия — 13-18.

Но процесс, давно освоенный на двигателях среднего и большого литража (грузовиков, тракторов, судов), оказывается непросто осуществить на моторе со сравнительно малым объемом камеры сгорания и цилиндра. В однополостной камере одновременно воспламеняется больший объем смеси, чем в разделенной, быстрее нарастает давление газов, а значит, и нагрузки на детали шатунно-поршневой группы. Такую работу двигателя называют жесткой. Она сопровождается повышенным шумом. Из-за высоких нагрузок поршни, шатуны коленчатый вал приходится делать более массивными, поэтому двигатель получается тяжелее. Из-за этих недостатков он неприемлем для легкового автомобиля.

Разработаны такие однополостные камеры, где перемешивание топлива с воздухом и его воспламенение происходит не во всем объеме одновременно. Часть топлива направляется на стенку камеры и растягивается воздухом в тонкую пленку. По мере испарения оно подхватывается воздушными вихрями и последовательно вводится в очаг сгорания. Вначале воспламеняется небольшое количество топлива; благодаря этому давление нарастает постепенно и дизель работает мягче. Если на стенки направляется почти все впрыскиваемое топливо, смесеобразование называют пленочным, если часть его — объемно-пленочным.

Но для легковых автомобилей достигнутая таким путем экономичность еще недостаточна. Поэтому ищут новые способы организовать турбулентное движение воздуха в камере: устанавливают по два впускных клапана на цилиндр, создают новые типы форсунок и распылителей — специально для малолитражных дизелей. Вместо четырехцилиндровых двигателей предлагают трехцилиндровые: у них больше объем одного цилиндра (при равном суммарном) значит, легче организовать рабочий процесс Задача создания малолитражного двигателя с непосредственным впрыском, конечно, будет решена, но потребует немалых усилий.

Познакомившись с особенностями конструкции дизелей, вернемся к вопросу о том, почему они более экономичны, чем бензиновые двигатели. Тут несколько причин. Основные — различия в системах регулирования и величинах степени сжатия.

Сравнение топливной экономичности легковых автомобилей с различными двигателями: 1 — типичный бензиновый; 2 — бензиновый с улучшенным рабочим процессом; 3 — вихрекамерный дизель; 4 — дизель с непосредственным впрыском.

Регулирование работы дизеля (изменение его мощности) осуществляется увеличением или уменьшением подачи топлива в цилиндр. Работа бензинового двигателя регулируется прикрытием или открытием дроссельной заслонки карбюратора. 3десь необходимо напомнить, что сжатие воздуха в цилиндре дизеля или рабочей смеси в бензиновом двигателе начинается при давлении ниже атмосферного, то есть при некотором разрежении. Оно возникает в результате того, что во время всасывания впускной клапан и впускной тракт оказывают значительное сопротивление потоку смеси или воздуха. Поэтому когда поршень находится в нижней мертвой точке перед тактом сжатия в цилиндре — разрежение. В итоге фактическая степень сжатия всегда ниже геометрической (той, которая должна быть, если бы сопротивление впускного тракта равнялось нулю и сжатие начиналось с давления, равного атмосферному). У бензинового двигателя очень большое сопротивление создает дроссельная заслонка. Когда она прикрыта, то есть водителю не нужна полная мощность двигателя, разрежение в цилиндре достаточно велико, оно даже используется например, для работы усилителя тормозов. При этом действительная степень сжатия намного ниже геометрической, указанной в технической характеристике. А именно от степени сжатия прежде всего зависят мощность и экономичность двигателя. Вот на этих, так называемых частичных режимах и выигрывает дизель: у него нет дроссельной заслонки и фактическая степень сжатия меньше отличает от геометрической. Вдобавок у дизеля она выше по условиям сгорания — 18—23, тогда как у бензинового не превышает, как правило, 10. Чтобы получить практически такие высокие степени сжатия, необходимо изготовлять детали кривошипно-шатунного механизма, полости в поршне и головку блока дизеля с большой точностью, а это требует дополнительных производственных затрат, что сказывается на стоимости двигателя. На нее оказывает влияние и топливная аппаратура она сложнее, требует очень высокой точности изготовления и потому дорога.

Читать еще:  Что такое удельный расход топлива авиационного двигателя

Таким образом, дизельные двигатели более экономичны, но и более дороги, чем бензиновые. Существенно и то, что регулировка и ремонт дизельной аппаратуры (насосов, форсунок) требуют большой точности и трудовых затрат и возможны только в специально оборудованных мастерских и СТО. Целесообразность применения дизелей зависит от условий эксплуатации автомобилей, на которых они установлены. И выбор того или иного типа двигателя диктуется в основном экономическими расчетами.

Разумеется, мы смогли коснуться лишь основных проблем, связанных с этим выбором. Более подробно конструктивные особенности различных двигателей освещены в специальной литературе.

П. Белов, В. Бурячко, Е Акатов. Двигатели армейских машин. Ч. 1. М., Воениздат, 1971.

Двигатели внутреннего сгорания Теория поршневых и комбинированных двигателей. Под ред. А. Орлина, М. Круглова, 4-е изд. М., Машиностроение, 1983.

И. Ленин, К. Попык, О. Малашкин и др. Автомобильные и тракторные двигатели (теория, системы питания, конструкции и расчет). М., Высшая школа, 1969.

А. Орлин, В. Алексеев, Н. Костыгов и др. Устройство и работа поршневых и комбинированных двигателей. 2-е изд. М., Машиностроение, 1970.

Дизельные двигатели

Прогресс дизеля за последние десятилетия впечатляет. Из нерасторопного работяги, он превратился в мощного атлета, готового потеснить бензиновых снобов, став новым эталоном современного двигателя. Какой путь проделали дизельные моторы, чем они отличается от бензиновых, и какие задачи они ставили перед инженерами, мы и постараемся выяснить.

История моторов с воспламенением от сжатия, началась в конце 19-века. Именно тогда, Рудольф Дизель загорелся идеей создания эффективного двигателя, коэффициент полезного действия которого смог бы превысить 10-12%, то есть показатель паровых машин. С конструкцией и принципом работы будущего мотора Дизель определился достаточно быстро: это двигатель внутреннего сгорания с воспламенением топлива от высокой температуры сжимаемого газа. Однако в процессе создания рабочего экземпляра возникли трудности: высокое давление и температура в камере сгорания мотора приводили к прогоранию поршней, поломкам газораспределительного механизма, а иногда и к взрывам. В итоге на доработку и придание агрегату достаточной надежности ушло несколько лет. Но 1897 году цель, наконец, была достигнута: огромный пятитонный двигатель, развивал 20лс при 173об/мин и обладал КПД в 26%. Даже перспективный двигатель Отто с принудительным зажиганием обеспечивал всего 20%!

Отчего же дизельные моторы получились настолько экономичнее? У этого есть две фундаментальные причины.

Первая заключается в более высокой степени сжатия дизельных двигателей: от 13 до 25 против 12 у лучших бензиновых представителей. Эти цифры не стоит недооценивать, ведь от них зависит КПД мотора: чем они выше, тем в большей степени расширяются раскаленные отработавшие газы, и, соответственно, тем полнее их тепловая энергия преобразуется в механическую. Поэтому, если сравнивать современные дизельные и бензиновые моторы, то первые способны усвоить 38-50% процентов теплоты, выделившейся при сгорании топлива, а вторые – лишь 25-38%.

Возникает резонный вопрос: а что же мешает поднять степень сжатия бензиновых моторов? Мешает детонация, то есть самопроизвольное воспламенение топливно-воздушной смеси от сильного нагрева при излишне большом сжатии. При этом мало того, что сгорание происходит не в тот момент, когда нужно, так еще оно сопровождается чрезвычайно резким нарастанием давления в цилиндре, что приводит к стукам, перегреву и высокой токсичности выхлопа.

То ли дело дизель, в котором поднятие степени сжатия лишь увеличивает надежность воспламенения впрыскиваемого топлива: ведь чем горячее будет воздух в цилиндре – тем быстрее оно испарится и тем скорее начнется процесс сгорания. Хотя, конечно, пределы совершенству есть и здесь. Только обусловлены они уже требованиями к чистоте отработавших газов, да механической прочностью элементов двигателя.

Но помимо степени сжатия есть и второе не менее важное обстоятельство – это низкое сопротивление впускной системы дизеля. Ведь, в отличие бензинового мотора, ему не требуется “перекрывать кислород” дроссельной заслонкой — управление мощностью в дизеле осуществляется простым дозированием впрыскиваемого горючего: нужна большая отдача – подаем больше топлива. А уж насколько избыточно количество воздуха в цилиндре – дело десятое, главное чтобы его хватало для окисления.

С бензиновым же мотором такой трюк не пройдет: если воздуха окажется слишком много, то есть концентрация паров бензина в нем будет очень низкой, то от искры смесь просто не вспыхнет. Из-за этого и приходится ставить на впуске заслонку, регулирующую расход воздуха, и, опосредованно, количество подаваемого топлива. А потому, при небольших нагрузках, например, в толчее пробок, бензиновые автомобили тратят силы на всасывание воздуха сквозь едва приоткрытую дроссельную заслонку, создавая огромное разряжение во впускном коллекторе. “Дыхание” же дизеля всегда свободно!

Влияние этого фактора на общую экономичность оценить легко. Сравним цифры расхода дизельных и бензиновых моторов одного объема. Например, BMW 320d и 320i. В городском цикле, когда нагрузка на двигатель невелика, дизель экономичнее почти в два раза: 6.8 л/100км против 11,3 л/100км! Неудивительно, ведь на его стороне и высокая степень сжатия, и низкие потери во впускной системе. А вот в загородном режиме, на скорости, когда нагрузка на мотор побольше, дроссельная заслонка открыта сильнее, и бензиновому двигателю становится полегче дышать, у дизеля остается только один козырь – степень сжатия. В результате и тает его преимущество в расходе топлива: лишь 4.7л/100км против 5,9 л/100км.

Впрочем, в начале 20 века все эти тонкости не особо волновали автопроизводителей. Нефть стоила дешево, и от двигателя требовалась простота конструкции и изготовления, а не чудеса экономичности. И, конечно, дизели с их сложными механизмами подачи топлива пришлись не ко двору. Правда, благодаря большому ресурсу и неприхотливости к качеству горючего эти моторы все же нашли применение в сельской технике, грузовом автотранспорте. Пригодились они и военным – ведь баки с соляркой не так пожароопасны, как плещущийся за спиной бензин, готовый взорваться от любой искры. Первый же легковой автомобиль на тяжелом топливе – Mercedes-Benz 260D — появился лишь в 1936 году, а к 1970-ому общее число выпущенных дизельных легковушек едва превысило 100 тысяч.

В общем, так бы и пылился этот двигатель на задворках автомобилестроения, если бы не подскочившие в 70-ых годах цены на нефть. И тогда на пути массовой дизелизации осталась только одна преграда – низкая мощность дизельных моторов. А от этого, как известно, существуют два средства: расширение диапазона допустимых оборотов коленчатого вала и увеличение развиваемого крутящего момента.

Но первый вариант оказывается неэффективным – высокие обороты лишь углубляют и без того насущную для дизеля проблему нехватки времени на смесеобразование. Ведь чтобы топливо активно испарялось, оно должно впрыскиваться при температуре воздуха в цилиндре не менее 500C, то есть почти в конце такта сжатия. При 5000об/мин это означает, что на испарение распыленных частиц топлива и дальнейшую химическую подготовку к воспламенению отводится не более одной тысячной секунды!

Не терпит суеты и процесс сгорания: за резким первоначальным всплеском следует растянутый период догорания, продолжающийся уже на такте расширения. Разумеется, торопить мотор в таких условиях — это в буквальном смысле слова выбрасывать горючее в трубу.

Поэтому сделать дизель мощнее можно только за счет увеличения крутящего момента. А для этого нужно развить как можно большее давление в цилиндрах, то есть сжечь больше топлива. Но опять незадача: приготовленная наспех горючая смесь дизеля отличается значительной неравномерностью распределения топлива по объему. Из-за этого во время сгорания в смеси может возникать локальная нехватка воздуха, в результате которой часть топлива не сгорает, а разлагается под воздействием высокой температуры.

Приходилось видеть, как дизельные автомобили дымят под нагрузкой? Та сажа, что они выбрасывают и есть продукт крекинга, то есть разложения несгоревшего топлива. Но это лишь визуальный эффект, а есть еще и сугубо практический в виде снижения мощности, увеличения расхода и вредных выбросов.

Как же с этим бороться? Можно так плотно заполнять цилиндры воздухом, чтобы его гарантированно хватало для сгорания даже в зонах максимальной концентрации топлива. Однако процесс распыления горючего оказался столь несовершенен, что возросшие требования к количеству воздуха не смог удовлетворить даже наддув с интеркулером, в результате чего турбодизели проигрывали в крутящем моменте даже атмосферными бензиновым моторам!

Таким образом задача увеличения мощности дизеля естественно свелась к процессу оптимизации смесеобразования, в котором решающее значение имеет давление впрыска. Разумеется, поначалу топливные насосы не могли им похвастать, из-за чего приходилось прибегать к различным ухищрениям, улучшающим распыление горючего. Например, воспользоваться завихрением сжимаемого воздуха, как было сделано вихрекамерных дизелях. Или поделить камеру сгорания на две части и использовать для смесеобразования энергию газа, перетекающего из одной половины камеры (предкамеры, где начинался процесс сгорания) в другую вследствие предварительного сгорания части топлива.

Все эти решения позволяли немного снизить требования к давлению впрыска, но в то же время отличались увеличенными тепловыми и гидравлическими потерями вследствие сложной и большой поверхности камеры сгорания. Это, конечно, вело и к ухудшению топливной экономичности моторов.

Однако в начале 90-ых годов появились системы, позволившие поднять давление до 1500бар, что положило конец массовому производству вихрекамерных и предкамерных дизелей, заменив их более экономичными моторами с непосредственным впрыском.

Читать еще:  Ваз 16 клапанный двигатель какой объем

С этого момента и началась увлекательная погоня дизеля за бензиновым конкурентом. Системы питания common rail, сверхбыстрые пьезоэлектрические форсунки, рекордные давления впрыска – и спустя всего 15 лет дизельные моторы сравнялись по мощности с бензиновыми! Правда, в этом споре дизелю дана существенная фора – турбонаддув. Но и предел совершенствования еще не исчерпан — на походе системы впрыска под давлением в 2000 бар, а за ними еще более эффективные схемы. Так что можно быть уверенным – победное шествие дизеля продолжится.

Степень сжатия дизельного двигателя — что это такое?

  • Степень сжатия дизельного двигателя — что это такое?
  • Изучаем теорию – что происходит внутри камеры сгорания
  • Степень сжатия на практике – как это происходит
  • Изменение степени сжатия – как улучшить показатели

В этой статье речь пойдет об процессах, происходящих внутри камер сгорания мотора. Наверное, большинство из Вас имеет хотя бы общее приставление о принципе работы двигателя, но дело в том, что данный элемент не является универсальным устройством и на сегодняшний день выделяют несколько его видов: бензиновый, дизельный, газовый, газодизельный, роторно-поршневый.

Еще до недавнего времени, наиболее распространенными были первых два варианта, но с ростом цен на соответствующие топливо, довольно большое количество автолюбителей, перевели свои автомобили на газовое потребление.

Однако, говорить о том, что газ полностью вытеснил бензин и дизельное топливо, конечно же не приходится, а значит информация касающееся работы таких моторов не будет лишней. Говоря конкретнее, речь пойдет о процессе сжатия, которое происходит внутри камеры сгорания конкретно дизельного двигателя. Начнем с теоретической стороны этого вопроса.

  • Изучаем теорию – что происходит внутри камеры сгорания
  • Степень сжатия на практике – как это происходит
  • Изменение степени сжатия – как улучшить показатели

Изучаем теорию – что происходит внутри камеры сгорания

Давайте же посмотрим каким образом дизтопливо заставляет мотор работать. Весь процесс деятельности дизельного двигателя можно разделить на четыре взаимосвязанных этапа (четырехтактная система): этап впрыска (впуска), этап сжатия, этап расширения (его еще называют «рабочий ход»), этап выпуска отработанного газа. Повторение, раз за разом, такого цикла обеспечивает движение автомобиля. Но сегодня мы не будем детально разбирать каждый этап и сосредоточим свое внимание в основном лишь на процессе сжатия.

В теории, степень сжатия характеризуется соотношением объемов пространства над рабочим поршнем, в процессе прохождения им нижней и верхней мертвой точки. Иными словами, данное понятие выражает разницу давления в камеры сгорания, когда топливо впрыскивается в цилиндр, соответственно относится исключительно к поршневым двигателям, обладающими такой камерой. Степень сжатия чем то схоже с понятием «компрессии», некоторые их даже путают, хотя на деле они совершенно разные.

Компрессия характеризуется размеренностью давления и ее можно измерить в Атмосферах, Барах или Паскалях, чего нельзя сказать про степень сжатия, так как это величина относительная, представляющая собой соотношение объема полного цилиндра и объема камеры сгорания. Данный параметр не меняется на протяжении всего строка службы двигателя и чаще всего его указывают в технических характеристиках.

Практически измерить степень сжатия невозможно, но многие автолюбители прибегают для этого к математическим расчетам (например 10:1). Оптимальным соотношением для дизельных двигателей считается 18-22:1, при котором мотор способен работать наиболее эффективно. Со степенью сжатия напрямую связано качественное использование дизельного топлива, ведь чем выше поднимается давление в камере (повышается сжатие), тем меньше расходуется топливо, что совсем не означает снижение мощности, даже наоборот — она может увеличиваться.

Степень сжатия на практике – как это происходит

Как мы уже знаем, работа двигателя стает возможной благодаря воспламенению образующейся смеси паров топлива и воздуха. Такая горючая смесь расширяется, толкая поршень, который, в свою очередь, вращает каленной вал. Давление в камере при этом значительно возрастает и двигатель совершает один такт работы.

Если степень сжатия возрастает — увеличивается и сила давления на поршень, заставляя мотор совершать больше полезной работы. На дизельных двигателях, для большей эффективности использования высокой степени сжатия, не используют дроссельную заслонку.

Вместо этого, мощность мотора регулируется количеством топлива, которое впрыскивается в цилиндр. Это способствует сильному сжатию воздуха в цилиндре, даже при низкой мощности (например когда в камеру сгорания впрыскивается незначительное количество топлива), при чем выделяется достаточное количество тепла для воспламенения и очень обедненной смеси.

Однако, увеличив степень сжатия Вы не всегда сможете добиться увеличения мощности. В случае, когда статистическая степень сжатия находится близко к пределу детонации для конкретно используемого топлива, то продолжение возрастания сжатия способно ухудшить надежность и мощность двигателя.

Казалось бы, что происходящие процессы должны влиять на безопасность окружающих, так как получающаяся смесь обладает повышенной взрывоопасностью, но на практике практически ничто и никогда не взрывается, как же так? Все дело в том, что в камеру сгорания топливо впрыскивается после того как в ней сжимается чистый воздух, при чем общее количество топлива в топливно-воздушной смеси не меняется, а за счет большого количества воздуха оно сгорает со значительно высоким уровнем коэффициента полезного действия.

Сегодня производители практически сняли с производства дизельные двигатели, имеющие низкую степень сжатия, так как в условиях нынешней рыночной экономики все большее количество людей стремятся к накоплению денежных средств, а расход большего количества топлива никак этому не способствует. Их место заняли высокооборотные дизельные двигатели с возможностью большей степени сжатия. Также практически исчезло из рынка низкооктановое топливо, так как потребность в нем отпала вместе с ограничением выпуска моторов для которых оно было предназначено.

Изменение степени сжатия – как улучшить показатели

Понятно, что смесь, попадающая в камеру сгорания должна равномерно гореть сопровождая процесс движения поршня вниз и ни в коем случае не взрываться, ведь только при соблюдении подобного условия, можно говорить про максимально эффективный расход топлива и равномерное изнашивание деталей поршневой системы. Проблема состоит в скорости, с которой такая смесь сгорает, так как это происходит быстрее, чем поршень успевает пройти свой путь.

В этом кроется главная сложность увеличения степени сжатия, встающая на пути водителей, задавшихся этой целью. В такой ситуации, увеличение давления повлияет на самопроизвольное возгорание смеси (преждевременное воспламенение), когда поршень еще не успел полностью завершить начатую фазу сжатия. Энергия, при этом, образует ненужное сопротивление и попусту растрачивается.

Еще одной проблемой можно назвать выделение слишком большого количества энергии, что приводит к взрыву (детонации). О том, какие последствия может иметь это явление говорить, лишний раз, не приходится.

Как видите, увеличение степени сжатия не только сложный, но и опасный процесс, тем не менее находятся смельчаки, которые все же решаются на это. Делается это двумя основными способами:

Устанавливается более тонкая прокладка двигателя, но так как при этом клапана и поршни могут столкнуться, необходимо все тщательно рассчитать. Возможен, также, вариант установки новых поршней с большими углублениями для клапанов. Нужно учитывать и тот факт, что при применении данного способа, нужно будет заново настраивать фазы газораспределения, которые непременно изменятся.

Растачиваются цилиндры двигателя, при чем поршни нужно будет заменить. Такой метод не только повышает степень сжатия, но и увеличивает рабочий объем двигателя. Благодаря соотношению прежнего объема камеры (он не меняется) и увеличеного объема цилиндра в большую сторону меняется степень сжатия.

Повысив степень сжатия, Вы не всегда можете получить желаемую прибавку в мощности. Чем под большую степень сжатия двигатель настроен изначально, тем меньшей будет прибавка. Другими словами, повышение мощности Вашего автомобиля, с изначальным показателем сжатия 8 будет более эффективным, чем у Вашего соседа, обладающим двигателем с аналогичным показателем в 13.

Если самостоятельно страшно вносить какие либо изменения в работу двигателя, а увеличить общую мощность автомобиля все-таки хочется, на помощь Вам придет альтернативный вариант повышения давления в камере сгорания и называется он «турбо-нагнетатель». Установив на транспортное средство такое устройство, объем камеры сгорания не изменится, но мощность существенно увеличится (иногда на 50% от изначальных показателей).

Еще одним преимуществом данного изобретения является относительная легкость монтажа, не требующее вмешательства специалистов, а значит не придется совершать лишние растраты. Правда, многие автолюбители все же предпочитают обращаться в сервисные центры, что может самое верное решение.

Принцип работы всех нагнетателей базируется на подачи большего количества воздуха и горючего на впуске, при чем объем камеры сгорания не меняется. Благодаря этому, при сгорании увеличивается количество энергии и возрастает мощность двигателя.

Как бы не хотелось увеличить степень сжатия дизельного двигателя своего автомобиля, всем автолюбителям стоит учитывать и дополнительную нагрузку на детали, которая возрастает вместе с увеличением количества энергии тепла. В следствии этого быстрее изнашиваются клапаны, прогорают поршни и выходит из строя система охлаждения. Также, несмотря на то, что турбонадув можно установить самостоятельно, демонтировать его, даже профессионалы не всегда смогут Вам помочь, а в особо тяжелых случаях двигатель может просто взорваться, причем страховка тут уже не поможет.

Так что, стоит или не стоит вмешиваться в предусмотренную производителем конструкцию мотора — решать Вам, но всегда помните о возможных последствиях. Тем более, на многих, выпускаемых сегодня, автомобилях устанавливают интеркулеры, позволяющие увеличивать наполнение цилиндров до 20%, что также значительно повышает мощность.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Все про компрессию и степень сжатия дизельного двигателя

Двигатель внутреннего сгорания (бензиновый, дизельный) является сложным устройством, состоящим из множеств механизмов и систем.

Читать еще:  Что такое максимальное напряжение двигателя постоянного тока

Взаимодействие их между собой позволяет преобразовывать энергию, возникающую при сгорании топливно-воздушной смеси во вращательное движение кривошипно-шатунного механизма с дальнейшей передачей вращения на трансмиссию.

Основная работа по преобразованию энергии происходит внутри цилиндро-поршневой группы, а именно в цилиндрах.

Преобразование энергии зависит от многих факторов, среди которых степень сжатия двигателя и компрессия. Особенно эти критерии важны в дизельных силовых установках, поскольку воспламенение горючей смеси в цилиндрах таких моторов происходит в результате ее нагрева за счет сжатия.

Понятие степени сжатия

Зачастую эти понятия путают между собой или объединяют в один термин. В действительности это два разных термина, и характеризуются они по-разному.

Сначала разберем все о степени сжатия дизельного мотора.

Соотношение объема цилиндра двигателя в момент нахождения поршня в нижней мертвой точке (НМТ) к объему камеры сгорания в момент, когда поршень достигает верхней мертвой точки и есть степень сжатия двигателя.

Данное соотношение указывает на разницу давления, возникающую в цилиндре двигателя в тот момент, когда в цилиндр поступает топливо.

В технической документации, идущей вместе с дизельной силовой установкой, степень сжатия указывается в виде математического соотношения, к примеру — 18:1 .

Для дизельного агрегата самой оптимальной степень сжатия варьируется в диапазоне от 18:1 до 22:1 . Именно при таких показателях у этого двигателя достигаются максимальные показатели эффективности.

Как все работает

У дизельного мотора при такте сжатия, когда поршень движется к ВМТ, объем в цилиндре быстро сокращается. В этот момент в камере сгорания находиться только воздух, он-то и сжимается, данный процесс называется тактом сжатия.

При подходе поршня к ВМТ, воздух сжимается на указанную в документации степень сжатия, в камеру сгорания под давлением подается топливо.

Смесь из топлива и воздуха из-за воздействия на нее высокого давления воспламеняется, значительно увеличивая давление внутри камеры, поршень в этот момент проходит ВМТ .

Образовавшееся в результате сгорания топливовоздушной смеси высокое давление начинает давить на днище поршня, заставляя его двигаться к НМТ .

Посредством шатуна поступательное движение поршня преобразовывается во вращательное движение колен. вала.

В данном случае давление, возникшее в результате воспламенения смеси, заставляет двигаться поршень к НМТ называется рабочим ходом. Рабочий ход является одним из тактов работы цилиндро-поршневой группы.

При такте сжатия как раз и важна степень сжатия. Чем она выше, тем более легче воспламениться горючая смесь и в более полной мере она сгорит, обеспечив большее давление.

При хорошем показателе степени сжатия дизельный мотор будет обеспечивать больший выход мощности при меньшем количестве сгораемого топлива.

Однако у дизельных силовых установок не зря имеется диапазон степени сжатия, за который выходить не рекомендуется.

Степень сжатия меньше 18:1 приводит к снижению мощностного показателя установки, при этом потребление топлива увеличивается.

Но и чрезмерная степень сжатия у мотора тоже сказывается нехорошо на двигателе, особенно дизельном. За счет увеличенных нагрузок, которые испытывают цилиндропоршневая группа, их ресурс очень быстро сокращается.

Увеличение сверх нормы степени сжатия может привести к прогоранию поршня, изгибу шатуна.

В некоторых случаях увеличение данного показателя приводит к взрыву силовой установки без возможности последующего восстановления.

ВАЖНО ЗНАТЬ : Степень сжатия у водородных двигателей значительно больше.

Возможность замера степени сжатия

Проверить степень сжатия дизельного агрегата в гаражных условиях практически невозможно. Поскольку нужно проводить некоторые замеры, которые сделать очень сложно.

Одним из таких замеров является выяснение объема в цилиндре при нахождении поршня в ВМТ.

Далее нужно знать некоторые параметры силовой установки, часть из которых можно узнать из тех. документации, но некоторые узнать довольно сложно.

Для вычисления степени сжатия потребуется знать объем камеры сгорания, поскольку между блоком цилиндров находиться прокладка, то нужно знать ее толщину и диаметр поршневого отверстия в ней, ход поршня и диаметр цилиндра.

Имея все эти данные, а также произведя замеры объема в цилиндре, можно математическим путем провести вычисления степени сжатия.

Способы повышения показателя

Замерить степень сжатия на дизельном двигателе сложно, а вот изменить данный показатель в лучшую сторону – можно.

Есть несколько способов увеличения показателей степени сжатия на дизельном агрегате.

Уменьшаем камеру сгорания двигателя.

Самым простым способом увеличения данного показателя является уменьшение камеры сгорания.

Поскольку степень сжатия – это соотношение объема цилиндра к объему камеры сгорания, то изменив объем одного можно поменять и сам показатель соотношения.

Уменьшить объем камеры сгорания можно несколькими путями.

Первое, что можно сделать – это заменить прокладку между блоком и головкой двигателя на более тонкую, за счет этого и измениться объем камеры сгорания.

Дополнительно можно провести торцевание головки блока цилиндров. В этом случае с головки блока снимается слой металла, из-за чего и уменьшается камера сгорания.

Использование турбированного нагнетателя.

Вторым способом изменения данного показателя является увеличение давления в камере сгорания.

Применение такого устройства, как турбинный нагнетатель, он же турбонаддув, позволяет увеличить степень сжатия.

В дизельных силовых установках, не имеющих данного устройства, воздух, требуемый для создания горючей смеси, подается за счет разрежения в цилиндре, возникающего при такте впуска.

При такой подаче воздуха в цилиндры высокое давление на такте сжатия обеспечить в полной мере невозможно, поскольку количество воздуха получатся ограниченным.

При использовании нагнетателя воздух в цилиндры подается принудительно. Это обеспечивает подачу большего количества воздуха, и как следствие большего давления в цилиндре при такте сжатия.

Часто на дизельных моторах, помимо нагнетателя применяется еще одно устройство – интеркулер. Он также позволяет увеличить давление в цилиндре, но по несколько иному принципу, чем нагнетатель.

В задачу интеркулера входит охлаждение воздуха перед подачей его в цилиндры. Приводит это к тому, что при охлаждении плотность воздуха увеличивается, а значит и давление в цилиндре будет выше.

Это основная информация, что касается степени сжатия. Перейдем к компрессии.

Понятие компрессии

Компрессия – это показатель давления в цилиндрах двигателя. Измеряться данный показатель может в нескольких величинах – кг/см кв., Барах, Атмосферах, Паскалях.

Особое внимание заслуживает компрессия дизельного двигателя, так как данный показатель очень важен в дизельных моторах. У дизеля компрессия должна быть порядка 22 Атм., хотя на разных двигателях может быть и больше, при этом значительно.

Высокая компрессия в цилиндрах дизеля должна обеспечиваться потому, что воспламенение горючей смеси производится именно из-за высокого давления.

Если данный показатель на дизеле будет значительно меньше нормы, запуск мотора – затруднителен или невозможен.

Компрессия дизельного двигателя в цилиндре достигается путем сжатия воздуха поршнем при такте сжатия. Но полной герметичности внутри цилиндра добиться просто невозможно, всегда будет утечка воздуха.

Воздух частично может прорываться через изношенные компрессионный кольца, когда они уже не могут обеспечить должное прилегание к цилиндру, часть воздушной массы может выходить из цилиндра через неплотное прилегание клапанов к седлам.

Если говорить в общем, то показатель компрессии указывает на состояние двигателя.

Сильное несоответствие компрессии двигателя от заданных норм всегда указывает на сильный износ механизмов силовой установки. Поэтому измерение компрессии входит в комплекс диагностических работ двигателя.

Как замерить компрессию

В отличие от степени сжатия провести замеры компрессии двигателя не особо сложно. Для проведения данных работ достаточно иметь компессометр или компрессограф.

Принцип действия этих двух приборов одинаков, разница лишь в выводе информации.

У компрессометра значение давления указывается на шкале манометра.

У компрессографа же информация о давлении в цилиндре заносится на какой-либо носитель информации или же просто на бумагу.

Последовательность проверки компрессии в дизельном двигателе такова:

  1. С одного цилиндра снимается форсунка, на ее место устанавливается прибор;
  2. Затем производится проворот коленвала стартером и записывается полученный результат;
  3. После проверяется компрессия во всех остальных цилиндрах;
  4. Затем значения, полученные во всех цилиндрах, сверяются.

У неизношенного двигателя компрессия должна соответствовать или хотя быть близкой к номинальному значению, указанному в документации. Разбежность в показателях на разных цилиндрах тоже должна быть одинаковой, допускается незначительные отличия.

От чего зависит компрессия

Как уже сказано, компрессия дизельного двигателя, и не только его, а всех силовых установок, зависит от состояния цилиндро-поршневой группы и газораспределительного механизма.

Но помимо этого компрессия двигателя еще и зависит от количества оборотов коленвала. Чем ниже его обороты, тем больше времени у воздуха, находящегося внутри цилиндра найти место, где он может выйти из нее.

Поэтому при замере компрессии важно проследить о том, чтобы стартер обеспечил хотя бы минимальных 200-250 оборотов коленчатого вала в минуту. Иначе показания компрессометра не будут соответствовать реальному значению этого показателя.

Это конечно, не все факторы, влияющие на компрессию, но перечисленные являются одними из основных.

Особенности запуска дизельного двигателя

Но высокая компрессия дизельного двигателя, которой обеспечивается работоспособность силовой установки, играет не на руку легкости пуска.

Конечно, если двигатель хорошо прогреется, стартеру не составит труда обеспечить должные обороты коленвала, и как следствие должное давление в камере сгорания и запуск силовой установки.

У холодного же мотора появляется несколько дополнительных факторов, усложняющих запуск. Одним из таких факторов является повышенное трение между узлами и механизмами у холодного двигателя, поскольку масляной прослойки между ними нет.

А если к данному фактору у дизельной установки добавить еще и слабую компрессию, из-за которой воспламенение рабочей смеси затруднительно, поскольку давления в камере сгорания недостаточно, то пуск мотора очень затруднителен.

Поэтому чем ниже температура и слабее компрессия дизельного двигателя, тем меньше шансов его запустить.

И это еще не рассмотрена такая особенность дизельного топлива, как парафинированние его при низких температурах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector