Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Обмотка — возбуждение — двигатель — постоянный ток

Обмотка возбуждения двигателей постоянного тока всех размеров работает удовлетворительно и за переломом кривой насыщения, обеспечивая этим меньшую чувствительность момента к изменениям напряжения возбуждения и больший удельный момент двигателя. Если в приборной следящей системе используются двигатели с возбуждением от постоянного магнита, то необходимо предусмотреть хорошую компенсацию, чтобы предупредить размагничивание магнитов от внезапных перемен направления сигнала. На рис. 7 — 30 показан типовой серводвигатель с возбуждением от постоянного магнита. Характерные кривые для этой машины показаны на рис. 7 — 29 при двух значениях напряжения. Конструкция полюсов этой машины состоит из отливки Alnico VI в форме кругового кольца, которое полностью охватывает якорь. [1]

Производится измерение сопротивления обмотки возбуждения двигателя постоянного тока . Для измерения применены: магнитоэлектрический вольтметр со шкалой на 150 делений, с пределом измерения 15 в, и такой же амперметр с пределом измерения 0 3 а. Сопротивление цепи вольтметра составляет 5000 ом. [2]

При обрыве цепи обмотки возбуждения двигателя постоянного тока с параллельным возбуждением исчезнет ток возбуждения и, следовательно, магнитный поток, создаваемый им. [3]

При обрыве цепи обмотки возбуждения двигателя постоянного тока с параллельным возбуждением исчезнет ток возбуждения и, следовательно, магнитный поток, создаваемый им. Останется лишь магнитный потек остаточного намагничивания, который составляет не более 3 — 5 % номинального потока. [4]

Что произойдет при обрыве обмотки возбуждения двигателя постоянного тока с параллельным возбуждением, если он работает: а) с номинальным моментом на валу Мс Мном; б) вхолостую. [5]

Например, условия охлаждения обмотки возбуждения двигателя постоянного тока параллельного возбуждения практически остаются неизменными и при остановке двигателя, а условия охлаждения якоря при остановке сильно ухудшаются. По этой причине двигатель постоянного тока, рассчитанный для длительного режима на неизменные условия охлаждения, при повторно-кратковременном режиме будет использоваться нерационально: при предельном допустимом нагреве обмотки якоря и коллектора обмотка возбуждения будет нагреваться значительно ниже допустимой температуры. [6]

Защита от перенапряжения на обмотке возбуждения двигателя постоянного тока требуется при ее отключении от источника питания. В этом режиме вследствие быстрого спадания тока возбуждения и тем самым магнитного потока в обмотке возникает значительная ( до нескольких киловольт) ЭДС самоиндукции, которая может вызвать пробой ее изоляции. [8]

Что произойдет при обрыве цепи обмотки возбуждения двигателя постоянного тока с параллельным возбуждением, если он работает: а) с номинальным моментом на валу McAia; б) вхолостую. [9]

Одновременное изменение тока в якоре и обмотке возбуждения двигателя постоянного тока не изменяет его направления вращения. Это свойство используется в коллекторных двигателях переменного тока, где ток с частотой сети одновременно изменяет свое направление в обеих обмотках. [10]

В отдельных случаях, например при питании обмоток возбуждения двигателя постоянного тока от постороннего источника или при очень большой частоте пусков двигателя с ко-роткозамкнутым ротором, может возникнуть необходимость проверки условий нагрева отдельно для этих частей двигателя. [12]

К ним относятся защиты от перенапряжения на обмотке возбуждения двигателя постоянного тока , от повышения напряжения в системе преобразователь — двигатель, от превышения скорости ЭП, от затянувшегося пуска синхронных двигателей и ряд других. [13]

Тэ [ ъ / Гв — электромагнитная постоянная времени обмотки возбуждения двигателя постоянного тока ; LB — индуктивность обмотки возбуждения. [14]

Расчет электрических цепей постоянного и переменного тока

Пример Двигатель постоянного тока с параллельным возбуждением (рисунок 25) работает в номинальном режиме, потребляет ток из сети Iном = 102 А при напряжении Uном = 220 В. Сопротивление обмотки возбуждения Rв = 32 Ом. ПротивоЭДС, которая индуцируется в обмотке якоря, Е = 214,9 В.

Определить: 1) ток в обмотке якоря Iя; 2) сопротивление обмотки якоря Rя.

Дано: Uном= 220 В, Iном = 102 А, Rв = 32Ом, Е = 214,9 В.

Определить: Iя, Rя.

Решение 1 Ток в обмотке якоря Iя можно определить по двум формулам:

откуда Iя = Iном — Iв или

Вторая формула для решения не подходит, так как не известно Rя. Схемы замещения пассивного четырехполюсника Ранее было установлено, что любой пассивный четырехполюсник однозначно характеризуется тремя независимыми коэффициентами.

Читать еще:  Электрическая схема электронного блока управления двигателем

Чтобы воспользоваться первой формулой, нужно предварительно определить ток в обмотке возбуждения Iв.

2 Зная значение Rв, вычислим ток в обмотке возбуждения:

Iв = U/Rв = 220/32=6,87 А,

Iя = Iном — Iв = 102 — 6,87 = 95,13 А.

3 По второй формуле для Iя определим сопротивление обмотки якоря Iя = (U — E)/Rя,

Rя = (U — E)/Iя =(220 — 214,19)/95,13 = 0,05 Ом.

Для закрепления знаний методики решения задач рекомендуется решить задачи.

Двигатель постоянного тока с параллельным возбуждением имеет следующие данные: сопротивление обмотки якоря Rя = 0,2 Ом; сопротивление обмотки возбуждения Rв = 40 Ом; КПД генератора η =0,95; ток возбуждения Iв = 5А, ток в нагрузке I= 95 А.

Определить: 1) электродвижущую силу генератора Е; 2) напряжение на зажимах генератора U; 3) ток в обмотке якоря Iя; 4) полезную мощность генератора Р2; 5) мощность первичного двигателя Р1, затрачиваемую на работу генератора.

Ответ: Е = 220 В; Iя = 100 А; Р2 = 19000 Вт, Р1 = 20000 Вт; U = 220 В.

Задача 8 Двигатель постоянного тока с параллельным возбуждением имеет следующие данные: 1) напряжение сети, питающей двигатель, U= 300 В; 2) ток в обмотке якоря Iя = 100 А; 3) сопротивление обмотки якоря Rя = 0,1 Ом, обмотки возбуждения Rв = 50 ; 4) коэффициент полезного действия двигателя η = 0,9.

Определить: 1) противоЭДС Е, наводимую в обмотку якоря при работе двигателя; 2) токи: нагрузки I и в обмотке возбуждения Iв; 3) мощности: полезную на валу двигателя Р2 и потребляемую из сети Р1.

Ответ: Е= 290 В; Iв = 6А; I = 6 А; I = 106 А; Р1 = 31800 Вт; Р2 = 28620 Вт.

5.8. Какая из схем позволяет осуществить реверсирование двигателя? Объясните почему?

5.9. Трехфазный асинхронный двигатель с короткозамкнутым ротором питается от сети с Uл=200 В, f=400 Гц. Номинальные данные двигателя: Рн=400 Вт, nн=7360 об/мин, cosjн=0,78, КПД=75%. Найдите номинальный ток двигателя, номинальное скольжение и номинальный момент на валу ротора.

Ответ: Iн=2 А, sн=0,08, Мн=0,52 Н×м.

5.10. Для асинхронного двигателя с короткозамкнутым ротором постройте механическую характеристику, если: Uн=380 В, Iн=146 А, nн=735 об/мин, cosjн=0,85, КПД=92,1%, Мmax/Мн=2,5.

5.11. Асинхронный двигатель с короткозамкнутым ротором имеет следующие данные: Рн=4,5 кВт, nн=1440 об/мин, Мmax/Мн=2,2, Мп/Мн=1,9. Найдите скольжение в момент пуска, пусковой и максимальный моменты. Как изменятся моменты при уменьшении напряжения сети на 5%.

Ответ: sн=1, Мп=56,7 Н×м, Мmax=65,7 Н×м.

Генератор постоянного тока с параллельным возбуждением, имеющий сопротивление обмотки якоря Rя = 0,1 Ом и сопротивление обмотки возбуждения Rв = 60 Ом, нагружен внешним сопротивлением R= 4 Ом. Напряжение на зажимах машины U = 220 В.

Структурная схема выпрямителя состоит из трех основных частей: трансформатора, вентилей (диодов) и фильтра. Кроме того, может применятся стабилизатор напряжения.

Пример Для питания постоянным током потребителя мощностью Pd = Вт при напряжении Ud = 100 B необходимо собрать схему однополупериодного выпрямления, подобрав диоды, технические данные которых приведены в таблице 2.

Пример Для питания постоянным током потребителя мощностью Рd = 800 Вт при напряжении Ud = 150 B необходимо собрать мостовую схему двухполупериодного выпрямления, подобрав диоды, технические данные которых приведены в таблице 2. Начертить схему выпрямителя.

Электродвигатели постоянного тока и их характеристики

В зависимости от способа соединения обмотки якоря и обмотки возбуждения различают двигатели параллельного, последовательного и смешанного возбуждения.

Двигатель параллельного возбуждения. До включения рубильника Р (рис. 157) необходимо поставить сопротивление пускового реостата R2 на максимум и сопротивление регулировочного реостата R1 на нуль. После включения в сеть якорь двигателя начнет вращаться, и по мере увеличения частоты вращения сопротивление пускового реостата постепенно уменьшают.

Рабочие характеристики двигателя (рис. 158, а) выражают зависимость частоты вращения п, вращающего момента М, тока 1 и к. п. д. т] от развиваемой двигателем полезной мощности Р2 при неизменном напряжении сети. Частота вращения якоря двигателя п = (U — — — 1Ягя)/(СФ).

При постоянном напряжении U ток возбуждения двигателя не меняется, но магнитный поток с увеличением нагрузки немного уменьшается из-за реакции якоря. С другой стороны, с увеличением нагрузки возрастает ток 1я и внутреннее падение напряжения Uя = 1ягя. Уменьшение магнитного потока увеличивает частоту вращения якоря, а увеличение падения напряжения в обмотке якоря уменьшает ее. У двигателя параллельного возбуждения преобладает последняя причина, поэтому частота его вращения с увеличением нагрузки от нуля до номинальной уменьшается на 5-10%.

Читать еще:  В чем измеряется тяга авиационного двигателя

Полезная мощность, развиваемая двигателем, Р2=М2пп/60, тогда вращающий момент М = 30Р2І (пп).

При постоянной частоте вращения двигателя п вращающий момент М был бы прямо пропорционален мощности Р2 и зависимость M=f(P2) имела бы вид прямой, проходящей через начало координат. В действительности частота вращения двигателя с увеличе нием нагрузки немного снижается и машина имеет момент холостого хода М. Следовательно, кривая M=f(P2) отклоняется от прямой вверх и начинается с ординаты М. Увеличение тока практически пропорционально полезной мощности двигателя Р2. С увеличением нагрузки к.п.д. двигателя быстро растет и достигает предельного значения 0,8-0,9 при нагрузке, близкой к PJ2, оставаясь в дальнейшем почти постоянным. Чтобы с увеличением нагрузки частота вращения двигателя была постоянной, следует уменьшить магнитный поток двигателя, уменьшая ток возбуждения регулировочным реостатом.

Регулировочная характеристика выражает зависимость тока возбуждения 1в от тока якоря 1я (рис. 158, б) при постоянном напряжении U и частоте вращения п, т. е. 1в 1 (/я) при U — const и п ¦ — const. Эта характеристика показывает, как следует регулировать ток возбуждения, чтобы при различных нагрузках частота вращения двигателя оставалась неизменной.

Электродвигатели параллельного возбуждения применяют в тех случаях, когда при переменной нагрузке требуется, чтобы частота вращения оставалась постоянной и была возможность ее плавной регулировки. Электродвигатель параллельного возбуждения типа СЛ-571К применяют в автоматических шлагбаумах, ограждающих железнодорожные переезды со стороны автомобильных дорог. Такой двигатель имеет номинальную мощность 95 Вт при напряжении 24 В и токе 7 А, частота вращения якоря двигателя 2200 об/мин.

Двигатель последовательного возбуждения (рис. 159). Обмотка возбуждения OB, обмотка якоря Я и пусковой реостат R соединены последовательно. Запуск двигателя последовательного возбуждения следует осуществлять с нагрузкой, которая должна быть не менее 20-25% номинальной вследствие того, что ток возбуждения 1в равен току якоря 1я. При холостом ходе или малых нагрузках потребляемый ток небольшой, следовательно, незначителен и магнитный по ток Ф, а частота вращения двигателя п — U — 1яя + гъ)/(СФ) достигает опасного значения. Во избежание разноса при внезапной разгрузке для этих двигателей применяют зубчатую передачу или непосредственное соединение вала двигателя с рабочим механизмом.

Рабочие характеристики двигателя последовательного возбуждения (рис. 159, б) имеют две особенности при увеличении нагрузки: резко снижается частота вращения п — U — 1яя 4 1^/(СФ); и резко увеличивается вращающий момент М = СМ/ЯФ = См/яСм1/я = = См2/1, где Сы1 — коэффициент пропорциональности магнитного потока и тока до насыщения стали, а постоянный коэффициент См2 =

Свойства двигателей последовательного возбуждения развивать большие вращающие моменты, приблизительно пропорциональные квадрату тока при малых частотах вращения якоря и, наоборот, малые вращающие моменты при больших частотах вращения обусловливают их применение в подъемных механизмах, электровозах и тепловозах. Частоту вращения двигателя последовательного возбуждения обычно регулируют реостатом, включенным параллельно обмотке возбуждения.

Двигатели последовательного возбуждения типа МСП устанавливают в стрелочных электроприводах, предназначенных для дистанционного управления стрелками при электрической, диспетчерской и горочной централизации. Электрические характеристики этих двигателей приведены в табл. 10.

Электродвигатели типа МСП — двигатели закрытого типа, двухполюсные реверсивные, работают в повторно-кратковременном режиме. Для реверсирования имеют две обмотки возбуждения OBI и ОВ2 (рис. 160). При включении первой обмотки якорь двигателя вращается в прямом направлении, а при включении второй обмотки — в обратном. Электродвигатели типа МСП-0,1 устанавливают в электроприводах, предназначенных для перевода стрелок легких типов. В новых разработках эти двигатели не применяют. Электродвигатели типов

Двигатели постоянного тока

Двигателями постоянного тока называются электрические машины постоянного тока, преобразующие электрическую энергию в механическую.

В двигателе магнитные поля создаются полюсами обмотки возбуждения и обмоткой якоря, по которым пропускается ток. При пропускании через них постоянного тока, якорь машины придет во вращение. Направление вращения якоря определяется правилом левой руки. При этом, если изменить направление тока в якоре или в обмотке возбуждения, то направление вращения двигателя также изменится.

Читать еще:  Двигатель hyundai avante какое масло заливать

При работе электродвигателя его якорь с обмоткой, вращаясь в магнитном поле, создаваемом магнитами полюсов, пересекает силовые магнитные линии магнитного потока полюсов и, следовательно, согласно закону электромагнитной индукции, в обмотке якоря индуктируется э. д. с. Направление этой э. д. с. обратно направлению тока, текущего в обмотке якоря (определяется по правилу правой руки), ввиду чего она называется обратной э. д. с. или противоэлектродвижущей силой (п. э. д. с.).

Необходимо заметить, что во время пуска двигателя противоэлектродвижущая сила будет равна нулю и ток якоря может достигнуть недопустимо большого значения, так как сопротивление обмотки якоря незначительно. Поэтому в момент пуска в цепь якоря последовательно вводят дополнительное сопротивление—пусковой реостат, выполняющий роль дополнительного сопротивления при пуске во избежание разрушения обмотки якоря. С началом вращения якоря нарастает п. э. д. с., снижающая величину тока в якоре, поэтому по мере раскручивания двигателя (с увеличением числа оборотов двигателя), сопротивление пускового реостата постепенно уменьшают и совсем выключают, как только двигатель разовьет номинальное число оборотов, так как в этом случае обмотка якоря перегрузки испытывать не будет.

Электродвигатели постоянного тока, так же как и генераторы, в зависимости от способа включения обмоток возбуждения и якоря подразделяются на двигатели:

  • с независимым возбуждением;
  • с последовательным возбуждением или сериесные;
  • с параллельным возбуждением или шунтовые;
  • смешанного возбуждения или компаундные;

На судах морского флота электродвигатели постоянного тока последовательного возбуждения с легкой параллельной обмоткой применяются для привода в действие палубных механизмов (брашпилей, шпилей, лебедок, кранов), где требуется большой вращающий момент при пуске. Электродвигатели постоянного тока параллельного возбуждения применяются для привода механизмов, у которых необходимо иметь постоянное число оборотов независимо от их нагрузки и у которых не требуется наличие большого пускового момента (вспомогательные механизмы и насосы, обслуживающие главные двигатели и судовые системы, станки и т. д.).

Электродвигатели постоянного тока смешанного возбуждения применяются для привода в движение механизмов, требующих большого пускового момента и сохранения постоянного числа оборотов, а также имеющих значительный маховой момент (палубные механизмы, рулевые приводы, валоповоротные устройства и др.).

Наиболее широкое распространение эти двигатели получили за свои положительные качества, к которым можно отнести:

  • большой пусковой момент;
  • способность выносить значительную перегрузку;
  • допустимость регулировки числа оборотов в широких пределах;
  • сохранение постоянного числа оборотов при изменяющейся нагрузке.

По конструктивному выполнению электродвигатели делятся на электродвигатели с горизонтальным валом и электродвигатели с вертикальным валом.

По типу защиты от воздействия внешней среды электродвигатели бывают такие же, как и генераторы:

  • открытые;
  • защищенные;
  • брызгозащищенные;
  • водозащищенные;
  • герметические;
  • взрывобезопасные;

Процессы управления электродвигателями постоянного тока сводятся в основном к выполнению следующих операций:

  • пуску в ход электродвигателя;
  • остановке;
  • торможению;
  • реверсированию и регулированию скорости вращения электродвигателя

Эти операции могут быть выполнены вручную, автоматически или полуавтоматически при помощи соответствующей аппаратуры управления (пусковые и регулировочные реостаты, электрические и механические тормозные устройства и др.).

Пусковые реостаты устанавливают для ограничения силы пускового тока. Число оборотов электродвигателя регулируют изменением напряжения на зажимах якоря или изменением магнитного потока, создаваемого обмоткой возбуждения (т. е. изменением силы тока возбуждения электродвигателя при помощи регулировочного реостата). Для быстрой остановки электродвигателей необходимо применять торможение. Торможение электродвигателей постоянного тока может быть механическим и электрическим.

Механическое торможение осуществляется при помощи колодочных, ленточных и дисковых тормозов.

Электрическое торможение может быть произведено или в виде полезного торможения, при котором двигатель обращается в генератор и возвращает электрическую энергию в сеть, или же в виде реостатного торможения, при котором электрическая энергия превращается в тепловую, выделяющуюся в реостате.

Изменить направление вращения электродвигателя постоянного тока можно двумя способами: изменением направления тока в полюсных обмотках возбуждения, оставив направление тока в обмотке якоря без изменения; изменением направления тока в обмотке якоря, оставив без изменения направление тока в полюсных обмотках возбуждения. Если одновременно изменить направление тока и в обмотке якоря, и в обмотке возбуждения, то направление вращения двигателя не изменится.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector