Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое ток возбуждения синхронный двигатель

Что такое ток возбуждения синхронный двигатель

Синхронный двигатель не имеет принципиальных конструктивных отличий от синхронного генератора. Так же как и в генераторе, на статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле Фр , частота вращения в минуту которого n1 = 60f/p .

На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Ток возбуждения создает магнитный поток полюсов Ф m . Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюсы ротора (изо, в).
При этом ротор может вращаться только синхронно с полем, т. е. с частотой, равной частоте вращения поля статора. Таким образом, частота вращения синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Основным достоинством синхронных двигателей является возможность их работы с потреблением опережающего тока, т. е. двигатель может представлять собой емкостную нагрузку для сети. Такой двигатель повышает cos всего предприятия, компенсируя реактивную мощность других приемников энергии.
Так же как и в генераторах, в синхронных двигателях изменение реактивной мощности, т. е. изменение cos , достигается регулированием тока возбуждения. При некотором токе возбуждения, соответствующем нормальному возбуждению, cos = 1 . Уменьшение тока возбуждения вызывает появление отстающего (индуктивного) тока в статоре, а при увеличении тока возбуждения (перевозбужденный двигатель) — опережающего (емкостного) тока в статоре.

Достоинством синхронных двигателей даляется также меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент пропорционален напряжению сети в первой степени, тогда как у асинхронных — квадрату напряжения.
Вращающий момент синхронного двигателя создается в результате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный поток поля статора.
Синхронные двигатели выполняют преимущественно с явно выраженными полюсами, и работают они в нормальном режиме с опережающим током при cos = 0,8 .

Возбуждение синхронные двигатели получают либо от возбудителя, либо от сети переменного тока через полупроводниковые выпрямители.
Пуск в ход синхронного двигателя непосредственным включением его в сеть невозможен, так как при включении обмотки статора в сеть создается вращающееся магнитное поле, а ротор в момент включения неподвижен.

Поэтому для пуска в ход двигателя необходимо предварительно довести частоту вращения ротора до синхронной частоты или близкой к ней.

В настоящее время исключительное применение имеет так называемый асинхронный пуск синхронных двигателей, сущность которого заключается в следующем.

В полюсных наконечниках ротора синхронного двигателя уложена пусковая обмотка, выполненная в виде беличьего колеса, наподобие короткозамкнутой обмотки ротора асинхронной машины. Обмотка статора двигателя включается в трехфазную сеть, и пуск его производится так же, как и пуск асинхронных двигателей с короткозамкнутым ротором.
После того как двигатель разовьет частоту, близкую к синхронной (примерно 95%), обмотка возбуждения включается в ceть постоянного тока и двигатель входит в синхронизм, т. е. частота ротора увеличивается до синхронной.

При пуске в ход двигателя обмотка возбуждения замыкается на сопротивление, примерно в 10—12 раз большее сопротивление самой обмотки. Нельзя обмотку возбуждения при пуске в ход оставить разомкнутой или замкнуть накоротко.
Если при пуске в ход обмотка возбуждения окажется разомкнутой, то в ней будет индуктироваться очень большая эдс, опасная как для изоляции обмотки, так и для обслуживающего персонала.

Создание эдс большой величины объясняется тем, что при пуске в ход поле статора вращается с большой частотой относительно неподвижного ротора и с большой частотой пересекает проводники обмотки возбуждения, имеющей число витков.

Работа синхронной машины с потреблением из сети переменного тока дает возможность использовать ее в качестве компенсатора.
Компенсатором является синхронный двигатель, работающий без нагрузки и предназначенный для повышения соs предприятия.

Конструктивно компенсатор отличается от синхронного двигателя незначительно. Компенсатор не несет механической нагрузки, поэтому его вал и ротор легче, а воздушный зазор меньше, чем у двигателя.
Основным недостатком синхронных двигателей является потребность в источнике как переменного, так и постоянного тока.
Потребность в источнике постоянного тока для питания обмотки возбуждения синхронного двигателя делает его крайне неэкономичным при небольших мощностях.

Поэтому при малых мощностях синхронные двигатели с возбуждением постоянным током не находят применения и рассмотреть, на примере, мы их не сможем.

Электробезопасность

группа 2

Синхронные машины

Синхронные машины используются в качестве генераторов, двигателей и синхронных компенсаторов. Устанавливаемые на тепловых электростанциях генераторы приводятся во вращение паровыми турбинами и называются турбогенераторами. Синхронные генераторы гидроэлектростанций вращаются с помощью гидротурбин и носят название гидрогенераторов. Кроме электростанций, синхронные генераторы находят применение в установках, требующих автономного источника электроэнергии. Примерами могут служить автомобильные электрические краны, на которых синхронные генераторы приводятся во вращение двигателями внутреннего сгорания.

Трехфазные синхронные генераторы, двигатели и синхронные компенсаторы имеют в принципе одинаковое устройство.
Неподвижная часть машины, называемая статором, состоит из стального или чугунного корпуса, в котором закреплен цилиндрический сердечник статора. Для уменьшения потерь на перемагничивание и вихревые токи его набирают из листов электротехнической стали. В пазах сердечника статора уложена трехфазная обмотка , выполняемая так же, как и обмотка статора асинхронных двигателей. Сердечник статора в совокупности с обмоткой статора называется якорем машины. В подшипниковых щитах, прикрепленных с торцевых сторон к корпусу, либо в стояках, закрепленных на фундаменте, расположены подшипники, несущие вал вращающейся части машины — ротора, или индуктора . Синхронные генераторы гидроэлектростанций выполняют обычно с вертикальным расположением вала. На валу размещен цилиндрический сердечник ротора, выполняемый из сплошной стали. В пазах сердечника ротора уложена обмотка возбуждения, питаемая постоянным током. Для присоединения обмотки возбуждения к внешней электрической цепи на валу укрепляют два изолированных друг от друга и от вала контактных кольца, к которым пружинами прижимаются неподвижные щетки. Обмотка возбуждения служит для возбуждения основного магнитного поля машины.

Читать еще:  Асинхронный двигатель не развивает мощность причины

Питание обмотки возбуждения осуществляется от генератора постоянного тока (возбудителя), вал которого соединен с валом синхронной машины, от полупроводникового преобразователя переменного тока в постоянный либо от других источников постоянного тока.

Двухполюсные синхронные машины с неявно выраженными полюсами ротора изготовляют на частоты вращения 3000, 1500 и 1000 об/мин. Машины, предназначенные для работы с меньшими частотами вращения (750, 600, 500 об/мин и т. д.), имеют явно выраженные полюса, число которых тем больше, чем меньше частота вращения.

Если обмотку возбуждения генератора подключить к источнику постоянного тока, то магнитодвижущей силой обмотки будет создано основное магнитное поле, характеризуемое магнитным потоком. Так как катушки фаз обмотки якоря имеют одинаковые числа витков и смещены в пространстве относительно друг друга на 120 o , то при вращении магнитного поля в трех фазах будут индуктироваться три ЭДС, одинаковые по амплитуде и частоте, сдвинутые по фазе друг относительно друга также на угол 120 o .
Чтобы при постоянной частоте вращения ЭДС изменялись по закону, близкому к синусоидальному, магнитная индукция вдоль воздушного зазора, разделяющего магнитопроводы статора и ротора, должна быть распределена также примерно по синусоидальному закону. В машинах с явно выраженными полюсами это достигается за счет неодинакового воздушного зазора между сердечником статора и полюсными наконечниками, в машинах с неявно выраженными полюсами — за счет соответствующего распределения обмотки возбуждения по пазам сердечника статора.

Для получения стандартной частоты 50 Гц при различных частотах вращения синхронные генераторы изготовляются с разными числами пар полюсов. Так, турбогенераторы изготовляются в большинстве случаев на частоту вращения 3000 об/мин и имеют одну пару полюсов (р = 1). Изготовление турбогенераторов на наименьшее число пар полюсов и, соответственно, на наибольшую частоту вращения позволяет уменьшить габаритные размеры, массу и стоимость генераторов. Частота вращения гидрогенераторов определяется в основном высотой напора воды и для различных станций лежит в пределах от 50 до 750 об/мин, что соответствует числам пар полюсов от 60 до 4.

Если к обмотке якоря подключить приемник электрической энергии, то под действием ЭДС в фазах обмотки якоря и приемника появятся токи; генератор начнет отдавать приемнику электрическую энергию.

При работе генератора с нагрузкой магнитодвижущей силой трехфазной обмотки якоря возбуждается вращающееся магнитное поле якоря, характеризуемое магнитным потоком, частота вращения которого равна частоте вращения ротора. Взаимное расположение осей магнитных полей якоря и ротора при данной нагрузке генератора остается неизменным.

Под действием поля якоря результирующее поле генератора при изменении его нагрузки будет также изменяться, что оказывает влияние в конечном итоге на значение напряжения генератора. Воздействие поля якоря на результирующее поле машины называется реакцией якоря.

В результате взаимодействия магнитного потока и проводников обмотки возбуждения (или полюсов намагниченных сердечников якоря и ротора) на ротор действует электромагнитный момент, направленный у генератора против направления частоты вращения ротора и являющийся тормозящим.

Значение электромагнитного момента, интенсивность и характер действия реакции якоря зависят, кроме значения тока якоря, от характера сопротивления приемников. Объясняется это тем, что при изменении характера сопротивлений приемников изменяется взаимное расположение осей магнитных потоков.

При работе синхронной машины в качестве двигателя обмотка якоря подключается к источнику трехфазного тока, в результате возникает вращающийся магнитный поток Ф’. После разгона ротора до частоты вращения n , близкой к частоте вращения no поля якоря, его обмотка возбуждения подключается к источнику постоянного тока и возникает магнитный поток Ф». Благодаря взаимодействию магнитного потока Ф» и проводников обмотки ротора (или полюсов намагниченных сердечников якоря и ротора) возникает вращающий электромагнитный момент, действующий на ротор, и он втягивается в синхронизм, т. е. начинает вращаться с частотой вращения, равной частоте вращения n магнитного поля якоря.

Положение оси магнитного поля ротора относительно оси поля якоря и значение электромагнитного момента зависят от нагрузки двигателя. Так, при работе двигателя в режиме идеального холостого хода электромагнитный момент равен нулю. Некоторой механической нагрузке двигателя соответствует положение ротора, которому соответствует определенный вращающий момент.

Существенной особенностью синхронного двигателя (в отличие от асинхронного) является то, что вращающий момент возникает у него в том случае, когда частота вращения ротора п равна частоте вращения no магнитного поля якоря.
Объясняется это тем, что ток в обмотке возбуждения синхронного двигателя появляется не в результате электромагнитной индукции (как в обмотке ротора асинхронного двигателя), а вследствие питания обмотки возбуждения от постороннего источника постоянного тока.

Для получения различных частот вращения синхронные двигатели изготовляют с различными числами полюсов. При частоте частоты вращения будут 3000, 1500, 1000, 750 об/мин и т. д.

Синхронные машины

Если во вращающемся магнитном поле разместить на валу ротора магнит так, чтобы ось, соединяющая его полюса, была направлена вдоль вектора индукции магнитного поля, то вращающееся магнитное поле вовлекает во вращение магнит вместе с валом ротора, который вращается синхронно с магнитным полем. Однако для этого необходимо раскрутить ротор до скорости вращения поля (условие синхронизма). На ротор действует вращающий момент, и энергия тока превращается в механическую энергию электродвигателя, который получил название синхронного.

Синхронные машины используются в качестве источников электрической энергии (генераторов), электродвигателей и синхронных компенсаторов.

Синхронные генераторы гидроэлектростанций вращаются с помощью гидротурбин и носят название гидрогенераторов. Кроме электростанций синхронные генераторы находят применение в установках, требующих автономного источника питания.

Синхронные двигатели переменного тока используются с механизмами средней и большой мощности при редких пусках, требующих постоянной частоты вращения. К таким механизмам относятся компрессоры, вентиляторы, насосы и т.д.

Читать еще:  Шевроле круз щелчки при запуске двигателя

Синхронный компенсатор предназначается для улучшения коэффициента мощности электротехнических установок (компенсации индуктивной реактивной мощности).

Дополнительно по теме

Схема замещения синхронного двигателя и векторная диаграмма

Конструктивно синхронная машина состоит из статора и ротора. Статор аналогичен статору асинхронной машины, а ротор представляет собой постоянный магнит, поле которого создается обмоткой возбуждения, по которой пропускается постоянный ток. Питание обмотки возбуждения осуществляется через скользящий контакт между контактными кольцами и неподвижными щетками. Особенностью синхронной машины является возможность работы как в режиме двигателя, так и в режиме генератора.

Частота ЭДС переменного тока в синхронной машине зависит от частоты вращения ротора и числа пар полюсов, f1 = рn/60. Действующее значение ЭДС, индуцируемой в проводниках

Взаимодействие вращающегося поля статора и поля постоянного магнита ротора вызывает появление вращающего момента, вследствие чего ротор вращается в том же направлении, что и поле статора (n1=n). Скольжение синхронной машины равно нулю.

На рисунке Хс — синхронное индуктивное сопротивление; q — угол нагрузки

В соответствии со схемой уравнение имеет вид:

Характеристика зависимости момента двигателя от угла нагрузки имеет вид синусоиды и выражает работу как двигательного, так и генераторного режима.

С целью получения запаса устойчивости за номинальный момент синхронного двигателя принимается 0,5Мн, которому соответствует угол q=30°.

Важным преимуществом синхронного двигателя является способность регулировать потребляемую из сети реактивную мощность путем изменения тока возбуждения. Рассмотрим зависимости тока статора двигателя от тока возбуждения.

При перевозбуждении Iдв имеет емкостной характер, а при недовозбуждении — индуктивный. Таким образом, синхронный двигатель может быть использован в качестве компенсирующего устройства для регулирования реактивной мощности.

Характеристики имеют границу устойчивости, вдоль которой уменьшение тока возбуждения приведет к опрокидыванию двигателя или «выпаданию из синхронизма». Граница устойчивости соответствует режиму Мдв= Мген.

Недостатком синхронного двигателя является необходимость возбудителя для запуска, так как при равенстве синхронной частоты вращения поля статора и частоты вращения поля ротора пусковой момент отсутствует. Наиболее распространен асинхронный запуск. В этом случае на полюсах двигателя размещается короткозамкнутая обмотка. При пуске статор подключают к сети. Возникающее магнитное поле индуцирует в этой обмотке ЭДС и токи, в результате чего создается электромагнитный момент, как и у асинхронного двигателя. При этом обмотка возбуждения отключена от источника постоянного тока, но замкнута на активное сопротивление с целью уменьшения напряжения на ее зажимах при пуске. При достижении двигателем частоты вращения, близкой к синхронной, обмотка возбуждения переключается на источник постоянного тока. В этом случае говорят, что двигатель «втянулся в синхронизм».

Генераторный режим синхронной машины

Так как выражения электромагнитной мощности и момента у синхронной машины аналогичны и в двигательном и в генераторном режимах, то достаточно рассмотреть генераторный режим синхронной машины.

При работе синхронной машины в качестве генератора можно регулировать магнитный поток Фо и пропорциональную ему Ео, изменяя ток возбуждения.

Зависимость Ео=f(Iв) называется характеристикой холостого хода генератора.

Остаточная ЭДС у синхронного генератора равна 5-10 В.

Совпадение токов в проводниках по фазе с ЭДС будет только при активной нагрузке,

При включении статора на сопротивление нагрузки по обмотке пойдет ток, который создаст поле, вращающееся относительно статора и неподвижное относительно поля возбуждения основного потока ротора Фо. Совпадение токов в проводниках по фазе с ЭДС будет только при активной нагрузке, при индуктивной ток отстает на 90°, при емкостной опережает на 90°. Рост напряжения при емкостной нагрузке связан с подмагничивающим действием реакции якоря (статора), а снижение при индуктивной нагрузке — размагничиванием.

Упрощенное уравнение электрического состояния одной фазы синхронного генератора без учета поля рассеяния якоря имеет вид:

где Ео — ЭДС холостого хода.

Данному выражению соответствуют схема замещения (рис. а) и векторная диаграмма (рис. б). Из диаграммы следует, что Ео соответствует магнитному потоку ротора Фо, а напряжение U — результирующему магнитному потоку Ф. Отсюда следует, что в генераторном режиме Фо опережает Ф на угол q.

Основной режим работы генератора нагрузочный. Пренебрегая потерями в сопротивлении обмотки якоря, получим из векторной диаграммы значение cosy между напряжением и Еo:

С учетом этого выражения получим зависимость для определения электромагнитной мощности:

Момент равен отношению мощности к частоте вращения:

Выражение в скобках соответствует максимальному моменту Мmax, причем.

Зависимости электромагнитной мощности и момента синхронной машины при различных токах возбуждения показаны на рисунке.

В синхронном генераторе с активно-реактивной нагрузкой при определении электромагнитного момента необходимо учитывать фазовый сдвиг тока относительно магнитного потока или напряжения. Тогда выражение для момента

Синхронный генератор в качестве источника электрической энергии переменного тока включают в распределительную сеть параллельно. При параллельной работе генератора с системой большой мощности его частота и напряжение, а также угловая скорость должны оставаться неизменными при любых изменениях как нагрузки, так и тока возбуждения и момента первичного двигателя. Активную мощность, отдаваемую генератором в сеть, можно регулировать только изменением момента первичного двигателя, а реактивную — изменением тока возбуждения.

Синхронные двигатели

§ 103. СИНХРОННЫЕ ДВИГАТЕЛИ

Синхронный двигатель не имеет принципиальных конструктив­ных отличий от синхронного генератора. Так же как и в генера­торе, на статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле, число оборотов в минуту которого

На роторе двигателя помещена обмотка возбуждения, включае­мая в сеть источника постоянного тока. Ток возбуждения создает магнитный поток полюсов. Вращающееся магнитное поле, полу­ченное токами обмотки статора, увлекает за собой полюса ротора. При этом ротор может вращаться только с синхронной скоростью, т. е. со скоростью, равной скорости вращения поля статора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Читать еще:  Что такое свободно поршневой двигатель внутреннего сгорания

Основным достоинством синхронных двигателей является воз­можность их работы с потреблением опережающего тока, т. е. двигатель может представлять собой емкостную нагрузку для сети. Такой двигатель повышает соз j всего предприятия, компенсируя реактивную мощность других приемников энергии.

Так же как и в генераторах, в синхронных двигателях измене­ние реактивной мощности, т. е. изменение соs j, достигается регу­лированием тока возбуждения. При некотором токе возбуждения, соответствующем нормальному возбуждению, соsj=1. Уменьше­ние тока возбуждения вызывает появление отстающего (индуктив­ного) тока в статоре, а при увеличении тока возбуждения (пере­возбужденный двигатель) — опережающего (емкостного) тока в статоре.

Достоинством синхронных двигателей является также меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент про­порционален напряжению сети в первой степени, тогда как у асин­хронных— квадрату напряжения.

Вращающий момент синхронного двигателя создается в резуль­тате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный Поток поля статора.

Синхронные двигатели выполняют преимущественно с явно Сраженными полюсами, и работают они в нормальном режиме при опережающем соs j=0,8. Возбуждение синхронные двигатели получают либо от возбудителя, либо от сети переменного тока через полупроводниковые выпрямители.

Пуск в ход синхронного двигателя непосредственным включе­нием его в сеть невозможен, так как при включении обмотки статора в сеть создается вращающееся магнитное поле, а ротор в момент включения неподвижен, и следовательно, взаимодействия магнитных полей статора и ротора нет, т. е. двигатель не развивает вращающего момента. Поэтому для пуска в ход двигателя необхо­димо предварительно увеличить число оборотов ротора его до син­хронной скорости или близкой к ней.

В настоящее время исключительное применение имеет так на­зываемый асинхронный пуск синхронных двигателей, сущность ко­торого заключается в следующем. В полюсных наконечниках ро­тора синхронного двигателя укладывается пусковая обмотка, вы­полненная в виде беличьего колеса, наподобие короткозамкнутой обмотки ротора асинхронной машины.

Обмотка статора двигателя включается в трехфазную сеть, и пуск его производится так же, как и пуск асинхронных двигателей с короткозамкнутым ротором.

После того как двигатель разовьет скорость, близкую к син­хронной (примерно 95%), обмотка возбуждения включается в сеть постоянного тока и двигатель входит в синхронизм, т. е. скорость ротора увеличивается до синхронной.

При пуске в ход двигателя обмотка возбуждения замыкается на сопротивление, примерно в 10—12 раз большее сопротивления самой обмотки. Нельзя обмотку возбуждения при пуске в ход оста­вить разомкнутой или замкнуть накоротко. Если при пуске в ход обмотка возбуждения окажется разомкнутой, то в ней будет индук­тироваться очень большая э. д. с, опасная как для изоляции обмот­ки, так и для обслуживающего персонала. Создание э. д. с. боль­шой величины объясняется тем, что при пуске в ход поле статора вращается с большой скоростью относительно неподвижного рото­ра и с большой скоростью пересекает проводники обмотки возбуж­дения, имеющей большое число витков.

Если обмотку возбуждения замкнуть накоротко при пуске в ход, то двигатель при пуске под нагрузкой может развить скорость, близкую к половине синхронной, и войти в синхронизм не смо­жет.

Работа синхронной машины с потреблением из сети опере­жающего тока дает возможность использовать ее в качестве ком­пенсатора. Как выше было отмечено, синхронный двигатель для сети может являться конденсатором и повышать соs j всей энер­гоустановки, компенсируя реактивную мощность других приемни­ков энергии.

Повышение соs j снижает потребление реактивной мощности электроустановок предприятия и уменьшает стоимость электро­энергии.

Компенсатором является синхронный двигатель, работающий без нагрузки и предназначенный для повышения соs j предприятия. Таким образом, компенсатор является генератором реактив­ной мощности.

Конструктивно компенсатор отличается от синхронного двига­теля незначительно. Компенсатор не несет механической нагрузки, поэтому его вал и ротор легче, а воздушный зазор меньше, чем у двигателя.

Основным недостатком синхронных двигателей является по­требность в источнике как переменного, так и постоянного тока.

Потребность в источнике постоянного тока для питания обмот­ки возбуждения синхронного двигателя делает его крайне неэко­номичным при небольших мощностях. Поэтому при малых мощно­стях синхронные двигатели с возбуждением постоянным током не находят применения.

При малых мощностях в случае необходимо­сти получения постоянства скорости вращения (в устройствах автоматики, телемеханики, звуко­вого кино и т. и.) широко используют реактивные синхронные двигатели.

Ротор реактивного синхронного двигателя имеет явно выраженные полюса. При очень малых мощностях ротор делают цилиндрическим из алюминия, в который при отливке закладывают­ся стержни из мягкой стали, выполняющие функ­цию явно выраженных полюсов (рис. 132). Цилиндрическая форма ротора упрощает его обра­ботку и балансировку, а также снижает потери на трение о воздух при работе машины, что суще­ственно для двигателей очень малых мощностей.

В реактивных синхронных двигателях вращающий момент создается в результате стремления ротора ориен­тироваться в магнитном поле таким образом, чтобы магнитное со­противление для этого поля было наименьшим. Поэтому ротор будет всегда занимать такое положение в пространстве, при котором маг­нитные линии вращающегося магнитного поля статора замкнутся через сталь ротора, так что он будет вращаться вместе с магнитным полем статора.

Наряду с трехфазным широко используют и однофазные реак­тивные двигатели.

1. Поясните принцип работы синхронного генератора.

2. Каково устройство генератора с явно и неявно выраженными полюсами?

3. Объясните внешние и регулировочные характеристики синхронного гене­ратора.

4. Какие условия необходимо выполнить для включения синхронного гене­ратора в сеть?

5. Объясните принцип работы синхронного двигателя.

6. В чем состоит принцип работы реактивного двигателя?

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector