Vikupautomsk.ru

Выкуп Авто МСК
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выбор схемы пуска асинхронных и синхронных двигателей

Выбор схемы пуска асинхронных и синхронных двигателей

Выбор простой и надежной схемы пуска имеет большое значение для эксплуатации двигателей и синхронных компенсаторов. Наиболее распространенной в настоящее время является простейшая и вместе с тем наиболее надежная схема прямого пуска от полного напряжения сети, исключение составляют двигатели с очень тяжелыми условиями пуска или очень мощные двигатели и компенсаторы, вызывающие при пуске недопустимые снижения напряжения в сети.

В случаях, когда прямой пуск неприемлем, напряжение, подводимое к двигателю при пуске, снижается включением в цепь статора реактора или, в редких случаях, автотрансформатора. Конструкции всех асинхронных и синхронных двигателей предусматривают возможность асинхронного пуска. С этой целью у синхронных двигателей с частотой вращения до 1500 об/ мин на роторе в явно выраженных полюсах расположена пусковая обмотка в виде замкнутых стержней. Возможность асинхронного пуска турбодвигателей с частотой вращения 3000 об/мин обеспечивается прежде всего токами в бочке неявнополюсного ротора, а также медными клиньями, заложенными в пазы.

Выбор пускового реактора для синхронного двигателя и компенсатора принципиально не отличается от выбора реактора для асинхронного двигателя. Для синхронных двигателей большой мощности в ряде случаев целесообразно применение питания от отдельных трансформаторов (блок-трансформаторов) с мощностью блок-трансформатора, в большинстве случаев соответствующей мощности установленного двигателя. В этом случае за счет отказа от выключателя на стороне двигателя установка оказывается весьма простой. Только при частых тяжелых пусках может потребоваться увеличение мощности трансформатора по условию его нагрева.

Реакторный пуск и пуск при работе по схеме блока двигатель-трансформатор имеет неоспоримые преимущества перед пуском через автотрансформатор. Например, напряжение на двигателе или компенсаторе при пуске через постоянно включенные реактор и трансформатор по мере снижения пускового тока плавно возрастает, и в конце пуска это напряжение незначительно отличается от номинального.

Рис. Схемы прямого пуска синхронных электродвигателей с электромашинными возбудителями постоянного тока:
а — обмотка ротора глухо подключена к якорю возбудителя;
б — включена на разрядный резистор:
в — включена на якорь возбудителя через разрядный резистор.

Поэтому при реакторном пуске шунтирование реактора происходит практически без толчка (см., например, рис., б) в отличие от автотрансформаторного пуска, где приходится принимать специальные меры, усложняющие схему пуска, для ограничения толчка тока при переключении от пускового напряжения на полное напряжение сети.

Требования некоторых трансформаторных заводов об ограничении пускового тока, приводящие к завышению мощности блок-трансформатора, исходя из необходимости ограничения динамических усилий на обмотке, следует считать неоправданными. Согласно ГОСТ обмотка трансформатора должна выдерживать без повреждения токи короткого замыкания на выводах любой из его обмоток при номинальном напряжении на другой. Эти токи заведомо существенно больше токов при пуске двигателя, соизмеримого по мощности с трансформатором. Динамические усилия в трансформаторе, пропорциональные квадрату тока, получаются соответственно значительно меньшими гарантированных.

Практика применения схемы блоков трансформатор-двигатель вполне себя оправдала. При применении электромашинной системы возбуждения, как можно заключить из рассматриваемых выше процессов в этих системах при пуске двигателя (компенсатора), предпочтение следует отдавать схемам глухого подключения возбудителя к ротору двигателя (компенсатора), если это допустимо по условиям пуска. Сопротивление в цепи возбуждения возбудителя при этом должно быть подобрано таким образом, чтобы при номинальной угловой скорости напряжение на двигателе (компенсаторе), отключенном от сети, было равно напряжению сети или несколько больше.

Пуск двигателя (компенсатора) происходит следующим образом: включается главный выключатель, двигатель (компенсатор) разворачивается, возбуждается и втягивается в синхронизм плавно, без толчков и без вмешательства персонала или каких-либо элементов автоматики, дающих команду на возбуждение машины. Эта схема применима для двигателей и компенсаторов, как имеющих возбудитель на одном валу, так и питающихся от отдельно стоящего двигатель-генератора. В последнем случае пуск агрегата возбуждения должен осуществляться одновременно с пуском двигателя или компенсатора замыканием блок-контактов выключателя основного двигателя.

При прямом включении в сеть обмотки статора и глухоподключенном возбудителе схема пуска синхронной машины (рис. а) также проста, как и схема пуска асинхронного двигателя с короткозамкнутым ротором. Проведенные испытания и накопленный опыт эксплуатации вместе с тем показывают, что область применения схемы пуска синхронных двигателей с постоянно подключенным возбудителем ограничивается практически двигателями относительно небольшой мощности, — как правило, не свыше 2000 кВт. Схема непригодна для двигателей, запускающихся с нагрузкой выше 0,4-0,6 номинальной мощности, из-за провала в кривой асинхронного момента в области малых скольжений и малоэффективна для двигателей, у которых контактор возбуждения оказывается необходимым для гашения поля или осуществления схемы ресинхронизации. Например, проведенные исследования показали неприемлимость данной схемы на синхронных двигателях СДМ-20-49-60, 2000 кВт, применяемых для привода шаровых углеразмольных мельниц Ш-50 и Ш-50А на энергоблоках 300 МВт мощных тепловых электростанций. Кривая вращающего момента при пуске этих мельниц имеет резко выраженный пульсирующий характер, в результате чего на вал воздействует знакопеременная нагрузка.

Читать еще:  Что такое ход поршня в двигателе

При включении двигателя с глухоподключенным к ротору возбудителем кривая вращающего момента имеет особо неблагоприятный характер, поэтому успешный пуск таких агрегатов оказался возможным только по схеме с включением обмотки ротора на якорь возбудителя через разрядный резистор (рис. в). При прямом пуске механические усилия в лобовых частях обмотки статора асинхронных и синхронных двигателей и компенсаторов возрастают, но, как правило, за счет падения напряжения в сети оказываются меньше тех усилий, которые получаются при близких коротких замыканиях.

Большинство электродвигателей допустимо переводить на прямой пуск без дополнительного усиления креплений лобовых частей обмоток. Однако в отдельных случаях (большие кратности пускового тока при малых снижениях напряжения сети, слабое закрепление лобовых частей обмоток статора) такое усиление может потребоваться. С этой целью можно рекомендовать установку дополнительных дистанционных распорок и взаимную перевязку соседних лобовых частей в местах ранее установленных и дополнительных распорок.

Из практики эксплуатации известны многочисленные случаи применения прямого пуска для асинхронных двигателей с фазным ротором, переделанных на короткозамкнутые или пускаемые без реостата в цепи ротора, а также для двигателей, ранее пускавшихся от автотрансформатора или через реактор. Опыт подтвердил целесообразность перевода этих двигателей на прямой пуск. Пуск без нагрузки двухскоростных электродвигателей следует всегда производить на меньшей угловой скорости. Если необходима работа на большей угловой скорости, то следует после пуска двигателя на меньшей угловой скорости переключить вращающийся двигатель на большую угловую скорость. При таком пуске суммарные потери за время пуска будут иметь минимальное значение.

Пуск электродвигателя с фазным ротором

Пусковые свойства асинхронного двигателя зависят от особенностей его конструкции, в частности от устройства ротора.

Пуск асинхронного двигателя сопровождается переходным процессом машины, связанным с переходом ротора из состояния покоя в состояние равномерного вращения, при котором момент двигателя уравновешивает момент сил сопротивления на валу машины.

При пуске асинхронного двигателя имеет место повышенное потребление электрической энергии из питающей сети, затрачиваемое не только на преодоление приложенного к валу тормозного момента и покрытие потерь в самой асинхронном двигателе, но и на сообщение движущимся звеньям производственного агрегата определенной кинетической энергии. Поэтому при пуске асинхронный двигатель должен развить повышенный вращающий момент.

Для асинхронного двигателя с фазным ротором начальный пусковой момент, соответствующий скольжению sп= 1, зависит от активных сопротивлений регулируемых резисторов, введенных в цепь ротора.

Рис. 1. Пуск трехфазного асинхронного двигателя с фазным ротором: а — графики зависимости вращающего момента двигателя с фазным ротором от скольжения при различных активных сопротивлениях резисторов в цепи ротора, б — схема включения резисторов и замыкающих контактов ускорения в цепь ротора.

Так, при замкнутых контактах ускорения У1, У2, т. е. при пуске асинхронного двигателя с замкнутыми накоротко контактными кольцами, начальный пусковой момент Мп1 = (0,5 -1,0) Мном, а начальный пусковой ток Iп = (4,5 — 7) Iном и более.

Малый начальный пусковой момент асинхронного электродвигателя с фазным ротором может оказаться недостаточным для приведения в действие производственного агрегата и последующего его ускорения, а значительный пусковой ток вызовет повышенный нагрев обмоток двигателя, что ограничивает частоту его включений, а в маломощных сетях приводит к нежелательному для работы других приемников временному понижению напряжения. Эти обстоятельства могут явиться причиной, исключающей использование асинхронных двигателей с фазным ротором с большим пусковым током для привода рабочих механизмов.

Читать еще:  Двигатель внешнего сгорания своими руками чертежи

Введение в цепь ротора двигателя регулируемых резисторов, называемых пусковыми, не только снижает начальный пусковой ток, но одновременно увеличивает начальный пусковой момент, который может достигнуть максимального момента Mmax (рис. 1, а, кривая 3), если критическое скольжение двигателя с фазным ротором

sкр = (R2′ + Rд’) / (Х1 + Х2′) = 1,

где Rд’ — активное сопротивление резистора, находящегося в фазе обмотки ротора двигателя, приведенное к фазе обмотки статора. Дальнейшее увеличение активного сопротивления пускового резистора нецелесообразно, так как оно приводит к ослаблению начального пускового момента и выходу точки максимального момента в область скольжения s > 1, что исключает возможность разгона ротора.

Необходимое активное сопротивление резисторов для пуска двигателя с фазным ротором определяют, исходя из требований пуска, который может быть легким, когда Мп = (0,1 — 0,4) Mном, нормальным, если Мп — (0,5 — 0,75) Мном, и тяжелым при Мп ≥ Мном.

Для поддержания достаточно большого вращающего момента двигателем с фазным ротором в процессе разгона производственного агрегата с целью сокращения длительности переходного процесса и снижения нагрева двигателя необходимо постепенно уменьшать активное сопротивление пусковых резисторов. Допустимое изменение момента в процессе разгона M(t) определяется электрическими и механическими условиями, лимитирующими пиковый предел момента М > 0,85Ммах, момент переключения М2 > > Мс (рис. 2), а также ускорение.

Рис. 2. Пусковые характеристики трехфазного асинхронного двигателя с фазным ротором

Переключение пусковых резисторов обеспечено поочередным включением контакторов ускорения Y1, Y2 соответственно в моменты времени t1, t2 отсчитываемые с момента пуска двигателя, когда в процессе разгона вращающий момент М становится равным моменту переключения М2. Благодаря этому на протяжении всего пуска все пиковые моменты получаются одинаковыми и все моменты переключения равны между собой.

Поскольку вращающий момент и ток асинхронного двигателя с фазным ротором взаимно связаны, то можно при разгоне ротора установить пиковый предел тока I1 = (1,5 — 2,5) Iном и ток переключения I2, который должен обеспечить момент переключения М2 > Мc.

Отключение асинхронных двигателей с фазным ротором от питающей сети всегда выполняют при цепи ротора, замкнутой накоротко, во избежание появления перенапряжений в фазах обмотки статора, которые могут превысить номинальное напряжение этих фаз в 3 — 4 раза, если цепь ротора в момент отключения двигателя окажется разомкнутой.

Квазичастотный метод управления при плавном пуске асинхронных двигателей

Мы работаем
по всей России

Устройства мягкого пуска (УМП) для асинхронных двигателей являются дешевым и надежным решением для подавляющего большинства механизмов, не требующих регулирования скорости вращения. Достоинства применения УМП очевидны. Однако есть и недостатки. Снижение пускового момента двигателя является главным препятствием к применению УМП. В условиях так называемого «тяжелого пуска» возникает реальная возможность того, что УМП не справится со своей функцией. На практике приходится завышать пусковые токи, что всегда вызывает повышенный нагрев двигателя, а иногда приводит к выходу из строя самого УМП или даже двигателя. В результате такие механизмы приходится оснащать дорогостоящими преобразователями частоты. Однако сегодня на смену классическому фазовому регулированию в УМП приходит новый алгоритм управления, позволяющий объединить преимущества частотного управления и дешевизну УМП. Это квазичастотное управление.

Что же такое квазичастотное управление?

Под квазичастотным управлением понимают особый алгоритм прореживания управляющих импульсов, поступающих на силовые тиристоры, что позволяет формировать в обмотках двигателя ток пониженной частоты. Снижение частоты тока приводит к повышению вращающего момента. Данным методом можно сформировать лишь частоты 7,14 Гц, 12,50Гц и 16,67 Гц. Как видно одним квазичастотным способом невозможно разогнать двигатель до номинальной скорости. Наилучший результат дает комбинация классического и квазичастотного способа.

Рис. 1. Классический пуск Рис. 2. Квазичастотный пуск

На рисунке 1 представлена осциллограмма тока (желтая линия) при классическом запуске при нулевой скорости. Синяя линия – датчик момента. Для сравнения на рисунке 2 представлена осциллограмма тока при квазичастотном алгоритме (частота 7,14Гц) при тех же прочих условиях. Хотя формы токов существенно отличаются, действующее значение тока практически одинаково для обоих режимов. При этом датчик момента фиксирует более чем вдвое больший момент при квазичастотном пуске!

Читать еще:  Что такое оппозитный двигателях субару форестер

Какими дополнительными преимуществами обладает квазичастотный пуск?

Кроме повышенного вращающего момента на низких скоростях устройство плавного пуска с квазичастотным способом управления позволяет осуществлять некоторые тормозные режимы. Эффективность торможения зависит от скорости двигателя и снижается по мере ее роста. На номинальной скорости тормозной момент отсутствует, однако уже при скорости 50-60% от номинальной тормозной эффект довольно существенен. Таким образом, устройсво мягкого пуска с квазичастотным алгоритмом позволяет полностью отказаться от устройства динамического торможения на некоторых механизмах.
Алгоритм квазичастотного управления позволяет осуществлять реверс двигателя на частоте 25 Гц без переключения чередования фаз питающего напряжения.

На сегодняшний день метод квазичастотного управления позволяет получить наибольший пусковой момент при наименьшем токе.

На предприятии НПП «РУМИКОНТ» реализована возможность комбинирования квазичастотного алгоритма и фазового управления с ограничением тока на заданном уровне и применяется в устройствах плавного пуска асинхронных двигателей.

Система управления плавного пуска с квазичастотным управлением реализована на базе контроллера «ПРОТОН».

Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник»

С помощью снижения пускового момента и ограничения пускового тока используют метод пуска асинхронного двигателя переключение «звезда – треугольник». В первый момент пуска, напряжение к статорным обмоткам подключается по схеме «звезда» (Y). Как только двигатель разгоняется, его питание включается по схеме «треугольник» (∆).

Некоторые трехфазные двигатели на низкое напряжение с мощностью выше 5 кВт рассчитывают на напряжение 400 В при включении по схеме «треугольник» (∆) или на 690 В при включении по схеме «звезда» (Y). Такая схема включения дает возможность производить пуск двигателя при меньшем напряжении. При пуске двигателя по схеме «звезда – треугольник» удается уменьшить пусковой ток, до 1/3 от тока прямого пуска от сети. Пуск по схеме «звезда – треугольник» особенно подходит для механизмов с большими маховыми массами, когда нагрузка набрасывается уже после разгона двигателя до номинальной скорости.

Недостатки пуска асинхронного двигателя переключением «звезда – треугольник»

При пуске двигателя переключением «звезда – треугольник» происходит также снижение пускового момента, приблизительно на 33%. Данный метод можно использовать только для трехфазных асинхронных двигателей, которые имеют возможность подключения по схеме «треугольник». В таком варианте существует опасность переключения на «треугольник» при слишком низкой частоте вращения, что вызовет рост тока до такого же уровня, что и ток при «прямом» пуске DOL.

Во время переключения со «звезды» на «треугольник» асинхронный электродвигатель может быстро снизить скорость вращения, для увеличения которой также потребуется резкое увеличение тока. На рисунке показана схема запуска двигателя с помощью пускателей KM1, KM2, KM3. Пускатель KM1,КМ2 включает электродвигатель по схеме «звезда». Через время, отведенное на запуск и выход двигателя на 50% номинальной скорости, отключается пускатель КМ2 и включается КМ3, переключая двигатель на «треугольник».


Пусковой момент и ток при пуске переключением «звезда – треугольник» значительно ниже, чем при прямом пуске.

Сравнение способа прямого пуска DOL и пуска с переключением «звезда – треугольник»

В данных диаграммах показаны пусковые токи для насоса, с трехфазным асинхронным двигателем мощностью 7,5 кВт методом прямого пуска (DOL) и пуска переключением «звезда – треугольник», соответственно. На рисунке видно, что способ прямого пуска DOL отличается большими пусковыми токами, но который через некоторое время уменьшается и становится постоянным.

Способ пуска переключением «звезда – треугольник» отличается меньшими низким пусковыми токами. Однако, в момент запуска при переходе от «звезды» к «треугольнику» происходят скачки токов. Во время пуска по схеме «звезда», через (t = 0,3 с), величина тока снижается. Однако, во время переключения со «звезды» на «треугольнику», через время t = 1,7 с, величина тока достигает уровня пускового тока при прямом пуске. Более того, скачок тока может стать ещё больше, так как во время переключения на двигатель не подаётся напряжение и двигатель теряет скорость перед подачей полного напряжения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector