Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вибрация в автомобиле и экспертиза для установления ее причины

Вибрация в автомобиле и экспертиза для установления ее причины.

При движении автомобиля и при работе его узлов и агрегатов возникают вибрации – механические колебания как транспортного средства в целом, так и его отдельных элементов. Отдельные точки автомобиля, или автомобиль целиком при этом совершают возвратно-поступательные и возвратно-вращательные движения. Положение, скорость и ускорение каждой колеблющейся точки периодически изменяются. Появление вибрации в эксплуатации и установление ее причины одно из направлений автотехнической экспертизы. Устранить недостаток в виде вибрации не так просто, как иногда кажется специалистам сервисной станции. Предлагаем небольшой ликбез для тех, кому это может потребоваться в работе. Поехали…

Основные источники вибраций в автомобиле :

Детали и узлы, совершающие вращательные движения (илл.1)

Центр вращения (точка O) таких деталей не абсолютно точно совпадает с центром масс (точка m). При этом возникает сила, направленная от центра F=mRω 2 , где m – масса вращающегося тела, R – расстояние между центром масс и вращения, ω – угловая скорость. Поскольку тело вращается, вектор силы тоже вращается, из-за чего возникают периодически действующие по осям X и Y силы, вызывающие вибрацию по этим осям. Это явление имеет место быть на валах двигателя, трансмиссии, шестернях, колесах (дисбаланс колеса, наверное, известен всем) и п. т. Добиться абсолютной балансировки любой вращающейся детали или узла невозможно – можно лишь уменьшить дисбаланс до того уровня, что позволяют технологии. В большинстве случаев этого оказывается вполне достаточно. И значительная вибрация будет являться признаком неисправности.

Поршневой двигатель внутреннего сгорания ДВС является источником достаточно интенсивной вибрации. Помимо вращающихся деталей и узлов, описанных в предыдущем пункте, в поршневом двигателе вибрации возникают по следующим причинам:

Поршни двигателя совершают возвратно-поступательные движения и шатуны совершают сложные плоскопараллельные движения. Их скорость и ускорение непрерывно изменяются. На иллюстрации 2 показан график ускорений поршня за один полный оборот коленчатого вала, а на схемах ниже стрелками показаны направления скоростей и ускорений поршня и шатуна при различных углах поворота коленчатого вала. Длинна стрелки пропорциональна величине скорости, либо ускорения. Представленные зависимости справедливы для постоянной частоты вращения коленчатого вала (ω=const). Когда поршень или шатун движутся с ускорением, на двигатель передается сила направленная в противоположную ускорению сторону и численно пропорциональная ускорению и массе ускоряющейся детали: F=m * a . Забегая вперед отметим, что добиться абсолютной балансировки инерционных сил в поршневом ДВС невозможно, но некоторые технические решения, позволяют снизить общие инерционные силы и, соответственно, вибрации. Самое простое – применение противовесов на коленчатом валу. На одноцилиндровых двигателях это позволяет снизить вибрации в вертикальном направлении, но добавляет в боковом. На многоцилиндровых двигателях (иллюстрация 3) инерционные силы от ускорений поршней и шатунов складываются и, в какой-то степени, компенсируют друг друга. В двигателях различных конфигураций (различного числа и расположения цилиндров) степень этой компенсации различна.

Очень хорошие показатели по сбалансированности имеют двигатели конфигураций R6 (рядный 6-цилиндровый), V12. Двигатель конфигурации R4 достаточно уравновешен, как и V8. Двигатели конфигураций V6 и R5 имеют несколько худшие показатели уравновешенности. Но ввиду требований компоновки и унификации двигатели конфигурации V6 получили широкое распространение. Кстати, на коленчатых валах многоцилиндровых двигателей тоже стоят противовесы. Назначение которых – несколько снизить нагрузку коленчатого вала и его опор инерционной силой от ускорений отдельно взятого поршня и шатуна – коленчатый вал не является абсолютно жестким. Существует еще один способ снизить вибрации от инерционных сил – применение балансирных валов. В двигателе устанавливается вал, центр тяжести которого не совпадает с центром вращения (как на илл. 1). Балансирные валы вращаются синхронно с коленчатым валом и создаваемая ими инерционная сила направлена в противоположную сторону от гасимой им инерционной силы. Инерционные силы, возникающие в ДВС, с увеличением частоты вращения коленчатого вала ДВС увеличиваются в квадратичной степени. Заметные вибрации от неуравновешенности двигателя возникают только на достаточно высоких оборотах. На сравнительно тихоходных моделях двигателей конфигураций V6, к примеру, балансирные валы не применяются, а на быстроходных версиях двигателей R4 применяются, хотя при прочих равных R4 более уравновешен, чем V6.

При осуществлении рабочих процессов поршневого двигателя силы, действующие на поршень со стороны газообразной среды в рабочей камере, неравномерны. Как известно, за полный цикл работы поршневого ДВС энергия к поршню подводится лишь на такте рабочего хода, то есть на протяжении половины оборота коленчатого вала за два его полных оборота. Но даже во время такта рабочего хода давление в рабочей камере двигателя подводится неравномерно. На иллюстрации 4 показана диаграмма давлений в рабочей камере цилиндра поршневого двигателя. Синим цветом отмечен участок диаграммы на такте рабочего хода. Передаточная характеристика от поршня к коленчатому валу немного позволяет сгладить неравномерность в начале хода поршня от верхней мертвой точки. Но в общем и целом неравномерность силы, действующей на поршень и неравномерность момента подводимого к коленчатому валу создает весьма заметную вибрацию. Способов снижения данной вибрации в основном два: увеличение момента инерции маховика (массы при сохранении диаметра) и увеличение количества цилиндров. Увеличение момента инерции маховика негативно сказывается на динамике автомобиля – для разгона необходимо раскрутить еще больший маховик. Многоцилиндровые двигатели сложнее и дороже в производстве, по-этому многоцилиндровые двигатели применяются на автомобилях высокого уровня комфорта, а также двигателях больших размеров – судовых, тепловозных, стационарных установок и прочее.

Как видно, полностью избавится от вибраций в поршневом двигателе внутреннего сгорания невозможно. Но можно значительно снизить уровень вибрации передаваемый от двигателя на кузов автомобиля. Это достигается путем закрепления двигателя на кузове не жестко, а через виброизолирующие опоры – подушки двигателя.

Движение по неровной поверхности и колебания на упругих элементах подвесок

Движение автомобиля по неровной поверхности вызывает колебания транспортного средства. Поверхность движения автомобиля не является абсолютно ровной — на ней присутствуют как макро, так и микронеровности. В подвеске автомобиля применяются упругий элемент, благодаря которому при наезде на неровность значительно снижается сила передаваемая на кузов. В тоже время связка из подрессоренной массы автомобиля и упругих элементов подвески представляет собой маятник, который может совершать колебания. Пневматические шины автомобиля также являются упругими элементами. При наезде на неровности малой высоты такая неровность в значительной степени гасится шиной. С точки зрения колебаний, автомобиль за счет упругих элементов подвески и упругих свойств шин может колебаться во всех возможных направлениях, но наибольшие параметры колебаний будут только у двух типов (илл. 5) – вертикальных и продольно-угловых. Причем у транспортных средств с малой колесной базой и большой высоты центра тяжести ярче будут выражены продольно-угловые, а у длинных и низких они будут заметно меньше вертикальных. Для гашения колебаний на упругих элементах подвески в подвеску встраивают также демпфирующий элемент – амортизатор, который препятствует колебанию автомобиля на упругих элементах подвески. Но амортизатор также увеличивает силы, передаваемые на кузов при наезде на неровности. Для обеспечения приемлемых показателей как сил, передаваемых на кузов при наезде на неровности, так и гашения колебаний подрессоренной части автомобиля на упругих элементах подвески характеристику амортизатора делают несимметричной – сила сопротивления на ходе отбоя больше силы сопротивления на ходе сжатия.

Но есть еще одна причина, которая заставляет конструкторов применять более жесткие упругие элементы и амортизаторы – крены кузова при движении автомобиля в повороте. По-этому жесткости упругих элементов подвески и силы сопротивления амортизаторов подбираются таким образом, чтобы обеспечить приемлемый уровень комфорта и управляемости.

Источников вибрации в автомобиле достаточно. Но в чем же негативная сторона вибраций с физической точки зрения? Это, во-первых, периодически действующая сила, которая прикладывается к деталям автомобиля, нагружает их. Повышенный уровень вибрации вызывает дополнительное нагружение деталей, сокращение их ресурса, а в некоторых случаях и разрушение. Периодически действующая сила может привести к усталостному разрушению, так как происходит многократное нагружение деталей. Ускорение, действующее на пассажиров и груз для них также не полезно, так как вызывает силу, догружающую их.

Во-вторых, существует такое физическое явление, как резонанс, при котором имеет место быть значительное увеличение амплитуды колебаний колебательной системы, если присутствует источник вибрации с частотой близкой к частоте собственных колебаний системы. Простейший пример резонанса механических колебаний – качели. Заметьте, амплитуда колебаний качелей (отклонение их от равновесия) будет расти только в том случае, если их качать с определенной частотой. Попробуйте их покачать слишком быстро или слишком медленно – ничего не выйдет. По сути все детали и сборочные единицы являются колебательными системами, разница только в параметрах колебаний. Качели колеблются с малой частотой, струна скрипки – со значительно большей. Даже лежащий без дела болт тоже колебательная система – есть масса, материал обладает упругими свойствами. Только частоты, при которых болт будет периодически удилиняться-укорачиваться или его шляпка будет шевелится из стороны в сторону лежат в области ультразвука и амплитуды его колебаний будут иметь сверхмалый линейный размер. Но многие компоненты автомобиля имеют собственные частоты колебаний близкие к частотам на которых вибрирует двигатель. Можно вспомнить много случаев из практики. Вот один из них: при вращении двигателя с частотой около 2500-3000 об/мин панель салона вибрировала и издавала дребезжащий звук. Причина вибрации – отсутствие крепления в одном из предусмотренных мест. Причина дребезжания – периодические удары панели о место крепления.

Читать еще:  Акцент хендай дергается двигатель на малых оборотах

Испытания любой техники проводят, в том числе и для того, чтобы выявить возможные колебания элементов по причине резонанса. Расчетным путем просчитать на резонанс все не представляется возможным даже для современных вычислительных средств.

При воздействии вибрации на человека происходит тоже самое – возможен резонанс с органами человека. По-этому действующие стандарты в области безопасности труда регламентируют вибрационные ускорения в зависимости от их частоты. Наиболее жесткие требования к вибрациям с частотой около 10 Гц – близко к этой частоте находятся резонансные частоты внутренних органов. Говоря проще – если в автомобиле имеет место быть вибрация кузова с частотой 10 Гц, то органы людей, находящихся в автомобиле входят в резонанс и колеблются, что не только дискомфортно, но и опасно для здоровья и жизни.

Вибрационные испытания являются непростой задачей. Они требуют специального оборудования. При обработке результатов требуется привлечение достаточно сложного математического аппарата. Специалисты «Априори-Эксперт» обладают оборудованием и специальными познаниями, необходимыми для проведения вибрационных исследований как в рамках диагностики неисправностей ТС, так и судебной автотехнической экспертизы.

Специалист Александр (ник на форуме Sancho )

Диагностика поршневых компрессоров и двигателей внутреннего сгорания

Практически все поршневые машины относятся к оборудованию возвратно-поступательного действия. При этом каждый полный цикл работы такого оборудования включает в себя несколько временных фаз (интервалов), физические процессы в которых существенно отличаются. Например, это впуск рабочей смеси в цилиндр, ее горение, выпуск отработанных газов в двигателе внутреннего сгорания. На вибрационную картину работы поршневого двигателя накладываются специфические импульсные воздействия от работы системы газораспределения, а также динамическая неуравновешенность механической системы при перемещении масс (шатунно-поршневая группа, рабочая смесь). Не менее сложные вибрационные процессы происходят в поршневых компрессорах, особенно многоступенчатых. Все это приводит к тому, что большинство методов проведения измерений и алгоритмы диагностики, применяемые для оборудования непрерывного действия, например, насосов, вентиляторов, мало пригодны для поршневых машин. Необходимы другие подходы, учитывающие специфику возникновения вибрационных процессов в машинах возвратно-поступательного действия.

Средства вибрационного контроля и диагностики могут быть эффективно применены для анализа состояния поршневых машин возвратно-поступательного действия, но это возможно только с использованием специфических приборов и алгоритмов виброконтроля, технические и алгоритмические требования к которым мы попробуем изложить.

Синхронная многоканальная регистрация информации

Абсолютно обязательным условием для проведения вибрационной диагностики поршневых машин (ПМ) является применение многоканального синхронного считывания вибросигналов. Количество необходимых каналов контроля вибрации зависит от типа диагностируемого оборудования, но даже для «самого простого поршневого компрессора» каналов не бывает меньше четырех, лучше восемь.

Реальная расстановка вибродатчиков на поршневом компрессоре выглядит примерно следующим образом. На каждом цилиндре поршневого компрессора устанавливается от одного до трех вибродатчиков, один крепится непосредственно на самом цилиндре и 1 — 2 устанавливаются на клапанных коробках. Для небольших компрессоров, с малыми линейными размерами, на цилиндре достаточно установить один вибродатчик. Также один вибродатчик обычно устанавливается вертикально на крейц-копфе цилиндра так, чтобы было можно контролировать величину вертикального зазора между поверхностями скольжения. Для контроля состояния коренных подшипников один вибродатчик, как минимум, устанавливается в зоне расположения подшипника. При такой схеме расстановки вибродатчиков одним восьмиканальным прибором можно одновременно контролировать состояние двух-четырех цилиндров одного компрессора.

Диапазон регистрируемых частот

Необходимо определиться с частотным диапазоном вибродатчиков, которые необходимо использовать при диагностике поршневых машин. Значение верхней границы регистрируемых частот обычно определяется размерами и массой элементов конструкции диагностируемого оборудования. В данном случае для поршневых машин большая часть собственных резонансных частот элементов компрессора находится в диапазоне от сотен герц до нескольких килогерц, что определяется массой и размерами элементов компрессоров. Отсюда следует, что для диагностики состояния поршневых машин следует применять обычные вибродатчики. Граничная частота в 5 килогерц вполне достаточна для диагностики. Это достаточно понятно и не требует больших пояснений.

Более сложным вопросом является выбор нижней граничной частоты регистрации вибросигналов. Рабочая частота вращения роторов поршневых компрессоров составляет, обычно, единицы герц, поэтому ряд специалистов, занимающихся диагностикой ПМ, утверждают, что необходимо применять низкочастотные вибродатчики с нижней граничной частотой в доли герца. На самом деле это утверждением ошибочно. В первую очередь определимся с тем, что регистрирует вибродатчик, установленный на компрессоре, что же является существенным для проведения диагностики. В основном это динамические удары при изменении направления движения масс, удары в механизме газораспределения, вибрационные процессы при прохождении через клапана рабочего газа и т. д. Особенно четко нужно понимать то, что регистрируется, в основном, не столько сам удар, сколько его затухающий «отклик» в тех или иных элементах компрессора. Под словом «отклик» мы понимаем свободные резонансные колебания в элементах после динамического удара. Говоря совсем просто, мы регистрируем колебания «рельса» после удара по нему молотком. Мы уже отмечали выше, что собственные резонансные частоты элементов компрессора составляют минимум сотни герц. Поэтому логичным является заключение, что нижняя граничная частота вибродатчиков для диагностики поршневых компрессоров должна быть не выше этого значения. Далее следует несколько парадоксальный вывод, что для диагностики поршневых машин пригодны любые датчики (в вопросе ограничения нижней граничной частоты). Такой вывод объясняется тем, что серийно датчиков с граничной частотой менее 10 герц не выпускает ни одна компания, если конечно этот датчик не предназначен для «экзотических» приложений.

Учет фазовых диаграмм работы оборудования

Для проведения корректного диагностирования поршневых машин по вибросигналам необходимо жестко синхронизировать сигналы с положением коленчатого вала и знать фазовую диаграмму работы оборудования. Это необходимо делать для того, чтобы точно выделять в полном исходном сигнале временные зоны, соответствующие тем или иным фазам работы оборудования. Например, если проводится диагностика состояния выпускного клапана первого цилиндра, то из всего сигнала необходимо выделить и использовать только тот участок времени, когда именно этот клапан находится в открытом состоянии. Нет необходимости подробно пояснять, что ошибка в определении этого интервала времени может привести к получению полностью недостоверного диагностического заключения.

Наиболее точно синхронизировать вибросигналы с положением коленчатого вала можно, если использовать фазовый отметчик той или иной конструкции. Для некоторых типов поршневых машин удается достаточно хорошо синхронизировать сигналы без использования отметчика, по некоторым характерным ударам, четко выделяемым на графиках. В любом случае, заниматься диагностикой поршневых машин нельзя, пока не будет известна фазовая диаграмма работы с точностью до нескольких угловых градусов. Если центробежный насос можно, с приемлемой достоверностью, диагностировать без подробного знания конструкции, то для поршневых машин этот «трюк» не проходит. «С наскока» поршневые машины не диагностируются, всегда сначала нужно знакомится с технической документацией, а уж сама диагностика будет (может быть) только потом.

Длительность непрерывной регистрации вибросигналов

Данный вопрос также является очень важным. Это объясняется тем, что для диагностики того или иного элемента конструкции из общего графика вибрационных процессов берется абсолютно конкретный временной участок, соответствующий данной фазе работы поршневой машины. Для реализации достоверной диагностики необходимо иметь «зарегистрированными» не менее 2 — 3 полных циклов работы оборудования. Только в этом случае можно быть уверенным, что процесс является повторяющимся и пригодным для диагностики. Для тихоходных поршневых машин это время бывает достаточно существенным. Например, при частоте вращения коленчатого вала в 300 оборотов в минуту три оборота вала занимают половину секунды. Если мы приняли решение, что верхняя граничная частота вибрации составляет 5 килогерц, то получаемое количество отсчетов вибрации в каждом канале, за половину секунды, составит более 6000. Если от количества отсчетов в сигнале (достаточно специфический термин виброанализа) перейти к другому, более понятному пользователям параметру прибора, к максимальному количеству линий в спектре, то мы получим, что это число равняется 3200. Каждый (!) канал прибора при многоканальной регистрации должен иметь такое максимальное количество линий в спектре. В ином случае, при меньшем значении спектрального разрешения, заниматься диагностикой поршневых машин с таким прибором, по меньшей мере, несерьезно.

Перечень дефектов, диагностируемых при помощи виброанализаторов

Здесь мы приведем перечень тех дефектов, которые нам удалось диагностировать в поршневых компрессорах различного типа при помощи восьмиканальных приборов «Атлант-8» и «Диана-8» производства нашей компании. Все эти дефекты были подтверждены при вскрытии с достоверностью 70 — 80%, что является высоким показателем. Выявленные дефекты (и способы диагностирования) электродвигателей и опорных подшипников качения и скольжения мы здесь не приводим, здесь информация только по компрессорам.

Кривошипно-шатунный механизм — увеличенный зазор в шатунном подшипнике и в поршневом пальце. Анализ этих дефектов производится по временным графикам вибросигналов на подшипниках, крейц-копфах и цилиндрах. Необходимо достаточно точно выявить те моменты времени, когда шатун изменяет направление своего движения. За один оборот это делается четыре раза — два раза в направлении движения поршня и два раза в поперечном направлении. Интересно, что первая смена движения происходит всегда через 180 градусов, а вторая нет, что связано с соотношением длин шатуна и эксцентриситета крепления шатуна на коленчатом валу, но мы не будем здесь пояснять этого подробно из-за недостатка места. Если на графиках вибрации будут удары при смене движения шатуна вдоль цилиндра, то увеличенный зазор возможен в двух точках соединения — на коленчатом валу и в крейц-копфе. Если же удары происходят только в моменты смены поперечного движения шатуна, то это, как правило, соответствует увеличенным зазорам только в шатунных подшипниках на коленчатом валу. Каждый удар на графике, обычно, хорошо виден и представляет первичный удар с последующими затухающими колебаниями. Наиболее информативным является значение амплитуды первого импульса, хотя и частота свободных колебаний и скорость их затухания несут в себе определенную диагностическую информацию.

Читать еще:  Газель 406 двигатель инжектор заводится и глохнет

Крейц-копф — увеличенный зазор. Дефект диагностируется по сигналу с вибродатчика, установленному вертикально на корпусе крейц-копфа. Диагностика этого дефекта достаточна проста и не требует пояснения. Необходимо только отметить, что в этом вибросигнале есть полезная информация об остаточном ресурсе работы данного цилиндра. По мере износа поршневых колец поршень опускается вниз и спектральный состав вибросигнала изменяется. Опытному диагносту это может сказать много интересного.

Цилиндр — пониженная компрессия, повышенный износ уплотнений и рабочих поверхностей. В диагностике этого дефекта существенную помощь может оказать спектральный анализ, необходимо только правильно выбрать временные участки, где скорость движения поршня не меняется во много раз. Очень полезно для этого регистрировать динамику изменения давления на выходе цилиндров.

Выпускной клапан — износ, нарушение фаз газораспределения. В процессе прохождения газа через клапан происходит интересный процесс. На графике изменения вибрации присутствуют колебания с примерно одинаковой амплитудой, но с центральной (нулевой) линией, наклоненной к оси времени. Видимо, это связано с процессом перемещения масс сжатого рабочего газа. Диагностическая информация сосредоточена в месте (во времени) и длине этого участка, частично в амплитуде (может и частоте) этих колебаний и угле наклона нулевой линии.

Из этого перечня хорошо видно, что вибрационные методы диагностики позволяют выявлять наиболее важные дефекты поршневого оборудования, причем наиболее важными являются методы контроля формы колебаний.

Алгоритмы и программы для диагностики поршневых машин

Иные принципы работы поршневого оборудования, отличающиеся от принципов работы вращающихся машин непрерывного действия, автоматически подразумевают применение специфических методов и алгоритмов диагностики.

Наиболее важной и достоверной является диагностика ПМ по форме вибросигналов в размерности виброускорения. Именно этот метод позволяет выявить временные фазы работы оборудования и четко выделить временные границы, в рамках которых диагностируется тот или иной дефект. Далее возможно применение других методов вибрационной диагностики, которые будут анализировать вибросигналы на выделенных интервалах времени. В некоторых случаях это спектральный анализ, в других модальный или вайвлет — анализ. Все зависит от типа выявляемого дефекта. Хочется еще раз подчеркнуть, что эти методы применяются к вибросигналам на отдельных, строго ограниченных интервалах времени. Если, например, взять спектр от всего вибросигнала, то локальные признаки дефекта будут «размазаны» (уменьшены) в десятки раз, и вероятнее всего будут потеряны. Все это мы показали выше при описании диагностики конкретных дефектов.

Несколько замечаний по поводу создания автоматизированных систем диагностики поршневых машин. При создании нашего диагностического программного обеспечения «Атлант» мы планировали вставить в него модуль автоматизированной диагностики поршневых машин. В процессе реализации этой задачи мы столкнулись с очень большим усложнением алгоритмического языка описания дефектов, слишком велика оказалась зависимость достоверности получаемых диагностических заключений от особенности конструкции каждого типа оборудования. Было принято решение создавать алгоритмы диагностики для каждого конкретного типа оборудования отдельно, по мере появления таких задач, без универсализации.

Нам известны случаи создания и использования сотрудниками отечественных и зарубежных компаний систем автоматизированной диагностики поршневых машин, причем базирующихся на стандартных методах вибрационной диагностики. Это обычный спектральный анализ и диагностика на основе использования спектра огибающей всего вибросигнала. Авторы этих систем утверждают о приемлемой точности получаемых результатов. На наш взгляд эти заявления являются спорными, т. к. обычные методы никак не учитывают специфику работу поршневого оборудования. Вероятнее всего эти методы дают приемлемые по точности диагностические заключения на поздних стадиях развития дефектов, что, может быть, оправдано для стационарных систем вибрационного мониторинга и диагностики, работающих непрерывно, где они и были применены.

Приборы для проведения диагностики поршневых машин

В соответствии со всем вышеизложенным для проведения вибрационной диагностики поршневых машин возможно преимущественное использование многоканальных анализаторов вибросигналов на основе компьютеров. Это оборудование компаний «Мера», «Л-кард» и прибор «Атлант-8» нашего производства. Для этой же цели неплохо подходит компактный микропроцессорный прибор «Диана-8» нашего производства. Он обладает всеми необходимы техническими параметрами.

Многоканальные приборы других компаний, известные нам, малопригодны для этих целей, т. к. не позволяют регистрировать выборки вибросигналов необходимой длительности.

Вибродиагностика дефектов поршневых машин

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

К диагностируемым в процессе эксплуатации крупным агрегатам с узлами возвратно-поступательного действия следует отнести, прежде всего, поршневые компрессоры и двигатели внутреннего сгорания. В разделе настоящего обзора, посвященном общим вопросам вибродиагностики агрегатов с узлами вращения, отмечалось, что наличие в агрегате возвратно-поступательных узлов ограничивает те ее возможности, которые дает обнаружение по высокочастотной вибрации микроударов в узлах трения. Причина – рабочие ударные нагрузки в узлах возвратно-поступательного действия, маскирующие реакцию вибрации на микроудары. Следствие – переход на диагностирование по вибрации развитых дефектов с анализом формы сигналов путем осциллографирования составляющих сигнала вибрации, возбуждаемой цилиндропоршневой группой, клапанами и инжекторами.

Естественно, что некоторые из общих вибрационных признаков состояния вращающегося оборудования, получаемые при спектральном анализе вибрации, сохраняют свою эффективность и в диагностике агрегатов с возвратно-поступательными узлами.

Вибродиагностика поршневых машин с количеством цилиндров более одного, как правило, включает в себя решение трех задач разного уровня:

  • диагностика неидентичности рабочих процессов в разных цилиндрах,
  • диагностика дефектного узла,
  • диагностика дефекта в конкретном узле.

Для решения первой задачи используется особенность функционирования многоцилиндровых машин, крутящий момент которых формируется из сдвинутых во времени импульсных моментов каждого цилиндра. Соответственно, при изменении величины момента одного из цилиндров относительно других, на коленчатый вал и корпус машины начинает действовать пульсирующий момент, увеличивающий ее тангенциальную (поворотную) вибрацию. При двухтактной работе цилиндра эта частота совпадает, а при четырехтактной она оказывается в два раза ниже частоты вращения коленчатого вала.

Цилиндры поршневых нагнетателей обычно работают по двухтактной схеме, и обнаружить рост тангенциальной вибрации на частоте вращения просто лишь при креплении нагнетателя к фундаменту на упругих опорах, когда радиальная и поворотная вибрация машин на частоте вращения хорошо разделяется. В двигателях внутреннего сгорания чаще используется четырехтактная схема, при которой источником вибрации двигателя на половине частоты вращения, могут быть только нарушениях в работе одного из цилиндров. Поэтому эффективный мониторинг состояния двигателей сгорания и при упругом, и при жестком креплении двигателя реализуется простейшими виброанализаторами, способными измерять спектр вибрации и определять ее величину на частоте вращения коленчатого вала и на ее субгармонике (половине частоты вращения). Необходимо только количественно задать порог на уровень вибрации с частотой в половину оборотной или на ее отношение к уровню оборотной вибрации для конкретной частоты вращения двигателя. Порог опасности может составлять около 5% (по вибоускорению).

Решить вторую задачу – определения дефектного цилиндра можно путем сравнения широкополосных спектров вибрации цилиндров, измеряя их, например, в одних и тех же точках на крышках разных цилиндров. Если причина в работе клапанов — изменения в их работе можно обнаружить, сравнивая с эталоном по группе одинаковых машин широкополосные спектры вибрации опор вращения коленчатых валов. Контролировать состояние турбин высокого давления можно по широкополосным спектрам вибрации их опор вращения.

Первые две задачи – это задачи выявления дефектной машины и, предварительно, дефектного узла, необходимые для принятия решения о проведении работ по дефектации, а далее – по наладке или ремонту.

Диагностика, требуемая для наладки двигателей внутреннего сгорания – клапанов и топливной аппаратуры – более сложная и требует совместного анализа формы рабочих процессов и импульсной вибрации. Из рабочих процессов – это их индикаторная диаграмма, из вибрационных – импульсная вибрация крышек цилиндров и топливных трубок. Типичный сигнал импульсной вибрации с объемного датчика вибрации топливной трубки дизеля приведен на рис.15.12, на котором (в угловых координатах) показаны ключевые моменты функционирования топливной системы.

Рис.15.12 Объемные колебания топливопровода одного из цилиндров дизеля в угловых координатах вала.

Следующий и более сложный вопрос – диагностика износа механических элементов цилиндропоршневой группы — колец, подшипников коленчатого вала, кривошипно-шатунных узлов. В многоцилиндровых поршневых нагнетателях, где работа клапанов определяется давлением в цилиндре, интегральную оценку износа каждого цилиндра можно производить по временным задержкам срабатывания клапанов в разных цилиндрах. При этом дефектный клапан, если таковой есть, выделяется по форме импульсной вибрации, регистрируемой при его открывании и закрывании, а также по интервалу между моментами открытия и закрытия.

В дизеле клапанный механизм жестко связан с распределительными валами, угол срабатывания клапанов зависит от состояния (износа) собственно клапанов и распределительного вала и практически не зависит от износа подшипников коленчатого вала и шатунно-кривошипного механизма. Поэтому оценку их износа пытаются проводить по форме и сдвигу во времени ударного импульса, возникающего при реверсе поршня перед подачей топлива в цилиндр.

Читать еще:  Двигатель ваз 2106 почему нет компрессии

Schaeffler представляет экспертные ремонтные решения INA для систем двигателя

21.08.17 / Пресс-релизы

«Мы всегда стремимся предложить нашим клиентам наиболее широкий ассортимент продукции, поэтому постоянно адаптируем его к потребностям рынка и стараемся исключить любые сложности для заказчиков, – Сосредоточившись на системах двигателя, под одним брендом нам удалось собрать решения для четырех ключевых механизмов двигателя внутреннего сгорания».

Сегодня основные усилия разработчиков автомобилей направлены на сокращение потребления топлива и объема выбросов CO2, а также на повышение комфорта при вождении. Уменьшение размеров двигателя и создание гибридных систем помогают достичь этих целей. Но эти разработки влекут за собой новые задачи для независимого рынка автозапчастей. Ремонтные решения для станций техобслуживания должны обеспечивать простой и профессиональный ремонт сложных систем современного автомобиля. Преимущество бренда INA – в его экспертном опыте в разработке комплексных систем и в интеллектуальных ремонтных решениях для ключевых механизмов двигателя: привода ГРМ, привода вспомогательных агрегатов, системы охлаждения двигателя и системы привода клапанов ГРМ.

Эффективное снижение вибрации в приводе вспомогательных агрегатов

Для независимого рынка автозапчастей Schaeffler Automotive Aftermarket предлагает широкий выбор как отдельных компонентов, так и ремонтных решений для технического обслуживания и ремонта привода вспомогательных агрегатов. В ассортимент компании входит INA FEAD Kit – уникальное ремонтное решение для привода вспомогательных агрегатов. «Благодаря 40-летнему опыту работы на независимом рынке автозапчастей мы идеально подбираем необходимые для ремонта компоненты, поэтому станциям техобслуживания больше не требуется долго искать и подбирать детали для решения стоящей перед ними задачи. Вместо этого мы предлагаем готовое ремонтное решение, включающее в себя все необходимые для ремонта компоненты, что также позволяет исключить вероятность последствий неправильной замены». Комплект INA FEAD KIT поставляется с клиновым ремнем, натяжными и обводными роликами, а также всеми необходимыми крепежными элементами. В зависимости от типа и характера использования автомобиля ремонтное решение может также включать в себя шкив генератора с обгонной муфтой INA (OAP), демпфер крутильных колебаний или водяной насос. Каждый из этих компонентов также поставляется по отдельности, например, ролики, шкивы или водяные насосы. Таким образом, INA FEAD KIT – это ремонтное решение для замены всех компонентов, работающих под действием больших нагрузок. Оно уменьшает вибрацию и повышает комфорт при вождении.

Schaeffler – единственный на независимом рынке автозапчастей конвейерный поставщик, предлагающий демпферный шкив коленвала, предназначенный для дополнительного гашения вибраций. Благодаря этой технологии ременные приводы работают более тихо и плавно и продлевается срок службы самого приводного ремня.

Специалисты по приводу ГРМ

Schaeffler – один из крупнейших конвейерных поставщиков систем цепного привода и их отдельных компонентов. На независимом рынке автозапчастей компания предлагает полный ассортимент продукции для ременного привода, цепного привода, системы привода клапанов ГРМ и соответствующих ремонтных комплектов. Номенклатура продукции постоянно адаптируется к потребностям рынка. Например, в связи с увеличением доли цепных приводов в современных автомобилях Schaeffler расширил ассортимент соответствующих ремонтных решений для независимого рынка автозапчастей.

В производственную номенклатуру компании также входят компоненты привода клапанов ГРМ — гидравлические и электрические регуляторы фаз газораспределения, непосредственно клапаны, толкатели клапанов, коромысла распредвала (рокеры), штанги, компенсаторы клаппаного зазора, а также комплекты распредвала INA KIT и комплекты регуляторов фаз газораспределения.

Почему вазовские моторы постоянно трясет — экспертный разбор

Для начала разберемся, только ли тольяттинские двигатели неуравновешенн ы или это беда всех моторов.

Любой поршневой двигатель внутреннего сгорания генерирует вибрации в широком частотном диапазоне. Это не газовая турбина и не электродвигатель, где идеально отбалансированный ротор вращается с высокой частотой.

Вибрации можно разделить на три типа.

  1. Вибрации, от которых нельзя избавиться никакими техническими ухищрениями.
  2. Вибрации, вызванные неточным изготовлением деталей и узлов. Такие вибрации можно уменьшить, повысив допуски изготовления компонентов.
  3. Вибрации, вызванные неисправностями мотора.

Особенности ДВС

Любой четырехцилиндровый четырехтактный двигатель не сбалансирован. Казалось бы: два поршня идут вниз, два вверх, все уравновешено. Но остаются нескомпенсированными силы инерции второго порядка, которые пытаются сотрясать весь мотор вверх-вниз с частотой, вдвое превышающей частоту вращения коленвала. Для борьбы с этим явлением придумана схема с двумя балансировочными валами, вращающимися в противоположные стороны вдвое быстрее коленчатого вала. Эти валы своими колебаниями позволяют полностью компенсировать колебания от неуравновешенности шатунно-поршневой группы. Примером может быть ниссановский мотор MR20DE, который встречается на популярных у нас кроссоверах X-Trail и Qashqai.

Почему же вазовские мотористы не используют это решение? Дело в том, что такие системы ставят на двигатели с рабочим объемом от 2 литров. У такого мотора масса поршня с шатуном в сборе оказывается достаточно большой. Если же рабочий объем меньше, то и диаметр поршня и длина шатуна тоже меньше — как и общий вес деталей. Вследствие этого и вибраций меньше. Самый большой серийно выпускающийся в Тольятти двигатель имеет рабочий объем 1,8 л. Поэтому балансировочных валов здесь нет.

Культура производства

Никакой ручной сборки, обкатки, а потом разборки и промеров, как это делают в компании Rolls-Royce, на ВАЗе, конечно, не практикуют. Но и откровенного конвейерного брака, как иногда бывало в 90-е годы прошлого века, уже не увидишь. Однако всегда есть шанс того, что какому-то двигателю достанутся детали с неудачным совпадением допусков.

Дело в том, что разница в весе между двумя одинаковыми поршнями или шатунами из одной партии может достигать нескольких граммов. У большинства иномарок с двигателем рабочего объема 1.6–1.8 л допустимая разница не превышает трех граммов. А реально укладывается в 1–2 г. Хочется верить, что подобных допусков сегодня придерживаются и на ВАЗе. Но даже если и так — представьте, что самому тяжелому из комплекта поршню достанется еще и самый тяжелый шатун. Тогда разница между поршнем и шатуном в сборе одного из цилиндров будет значительно отличаться от массы этих деталей в другом цилиндре. Отсюда и повышенные вибрации.

Поэтому при ремонте с заменой деталей шатунно-поршневой группы хороший моторист постарается убрать разницу в весе ремонтных деталей. Для этого с поршня или шатуна удаляется небольшой слой металла с таким расчетом, чтобы все детали «подтянуть» по весу к самой легкой. Горе-мастер не обратит на это внимания и в результате может увеличить вибрацию собранного мотора.

Впрочем, от самого АВТОВАЗа на этом этапе уже ничего не зависит. А могут ли пересмотреть допуски деталей шатунно-поршневой группы на конвейере? Вполне. И это наверняка даст положительный эффект. Вот только нельзя забывать о том, что культура производства моторов на ВАЗе находится сегодня на среднем уровне и в целом соответствует ценовому диапазону выпускаемых автомобилей. Чем строже допуски, тем дороже в итоге конечный продукт. Готовы ли покупатели вазовских машин платить больше? Едва ли.

Качество комплектующих

Предложений на рынке запасных частей для вазовских моторов пруд пруди, гораздо больше, чем для иномарок. И это понятно: в рейтингах продаж АВТОВАЗ лидирует. Неудивительно и то, что среди прорвы запчастей масса поддельной или недостаточно качественной продукции. А это, в свою очередь, также влияет на вибронагруженность силового агрегата. Повышенные вибрации могут быть спровоцированы дефектами вспомогательных агрегатов, приводимых ремнем, или некондиционным маховиком, а также ведущим и ведомым диском сцепления. А еще в ходе эксплуатации добавить вибраций способен шкив коленчатого вала, особенно если у него начал расслаиваться резиновый демпфер. Очень часто на вазовских моторах вибрацию вызывают неисправные датчики массового расхода воздуха.

Заметно возрастают вибрации, когда есть недостатки в работе одного цилиндра — двигатель «троит». Вот несколько самых распространенных причин.

  • Перебои в искрообразовании. Возможные виновники — свеча, катушка, высоковольтный провод.
  • Перебои в подаче топлива (неисправна/засорилась форсунка).
  • Подсос неучтенного воздуха в один из цилиндров из-за негерметичной прокладки впускного трубопровода.
  • Низкая компрессия в одном из цилиндров. Может быть вызвана недостаточным уплотнением поршня в цилиндре, негерметичностью клапанного механизма или прокладки ГБЦ.

Все вибрации силового агрегата призваны компенсировать резинометаллические опоры. С этой задачей они справляются до тех пор, пока сами исправны. А при выходе из строя могут усиливать вибрации.

Вообще, надо отметить, что на форумах любителей Лады многие страницы посвящены вибрации и троению двигателей. Причем специалисты в дилерском центре чаще всего неисправности не усматривают — почти всегда ссылаются на плохой бензин. Доля истины в этом есть. Во-первых, во многих регионах качество топлива ощутимо хуже, чем в столице. Во-вторых, многие не от хорошей жизни заправляются на «левых» АЗС в надежде сэкономить. И такая экономия очень часто «вылезает боком».

В целом же вазовские двигатели по уровню вибраций лишь немного проигрывают аналогичным моторам иномарок в том же ценовом сегменте.

  • Шесть самых надежных двигателей (из тех, что еще продаются) мы собрали в этой публикации.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector