Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Оценка качества работы тепловозного дизеля

Оценка качества работы тепловозного дизеля

Рубрика: 7. Машиностроение

Опубликовано в

Дата публикации: 01.02.2019

Статья просмотрена: 60 раз

Библиографическое описание:

Балагин, Д. В. Оценка качества работы тепловозного дизеля / Д. В. Балагин, О. В. Балагин, Р. Ю. Якушин, В. Д. Новоселова. — Текст : непосредственный // Актуальные вопросы технических наук : материалы V Междунар. науч. конф. (г. Санкт-Петербург, февраль 2019 г.). — Санкт-Петербург : Свое издательство, 2019. — С. 35-38. — URL: https://moluch.ru/conf/tech/archive/324/14807/ (дата обращения: 30.08.2021).

В статье рассмотрен метод оценки качества работы тепловозных дизелей автономных локомотивов при помощи тепловизионной диагностики.

Ключевые слова: тепловизор, инфракрасное излучение, дизель, диагностирование, тепловой баланс, градиент, математическая модель.

В настоящее время отечественной и зарубежной промышленностью освоена большая номенклатура инфракрасных термометров, тепловизоров и пирометров, которые практически безинерционны, работают в реальном масштабе времени, позволяют измерять температуру от — 40 до 3000 о С [1]. Они обеспечивают непрерывное, быстрое и безопасное измерение температуры объектов, которые двигаются, имеют очень высокую температуру или находятся в труднодоступном месте. Приборы обладают высокой оптической разрешающей возможностью (погрешность 0,01 о С) и широким набором функций.

При тепловой диагностике основным источником информации о температурном поле и его градиентах служит инфракрасное излучение. Сложность процессов, формирующих тепловые поля узлов и деталей подвижного состава, требует разработки адекватных математических моделей физических процессов, характеризующих различного рода взаимодействия составных частей подвижного состава не только друг с другом, но и с внешними системами.

Подвижной состав генерирует собственное инфракрасное излучение за счет работы дизеля, электрических машин (400 К), торможения локомотивов и вагонов (400–800 К), нагрева буксовых узлов (340 К) и т. п. В результате происходит формирование внешних тепловых полей, отражающих процессы, происходящие внутри объектов в зависимости от их технического состояния [1].

Разработка общих форм математических моделей теплоэнергетической визуализации технических объектов в зависимости от внутренних термодинамических процессов, с последующей реализацией в виде прикладных программ для использования их в системах технического диагностирования решит проблему широкого использования методов тепловой диагностики для целей диагностирования.

Основным источником теплоты на тепловозах является дизель-генераторная установка (ДГУ). Характер тепловых полей на внешней поверхности дизеля отражает качество протекания рабочего процесса в цилиндрах и работы ДГУ в целом. Таким образом, термодинамическая визуализация внутренних тепловых процессов позволит произвести не только тепловизионную диагностику, но и сформировать в дальнейшем энергетический паспорт дизеля.

На первом этапе исследований необходимо рассмотреть процессы выделения теплоты при сгорании рабочей смеси, её передачи через стенку цилиндра в систему охлаждения, крышке цилиндра (при наличии), головке поршня и т. д. Прежде всего, для этого необходимо составить внешний тепловой баланс для номинального режима работы и исследовать процессы распространения теплоты через стенки дизеля.

Внешний тепловой баланс двигателя удобно представить через схему внутреннего теплового баланса (рис. 1), из которой видно, как формируется составляющие внешнего теплового баланса.

Рис. 1. Схема теплового баланса дизеля

Теплота, выделившаяся при сгорании топлива, обозначена Q. Теплота Qi эквивалентна индикаторной работе в цилиндре двигателя. Теплота, эквивалентная эффективной работе Qe, состоит из теплоты Qeд, соответствующей эффективной работе поршневой части, и теплоты Qeт, эквивалентной эффективной работе турбины, передаваемой на вал двигателя; теплота, отводимая от двигателя охлаждающей жидкостью или воздухом, обозначена Qв; теплота Qг, отводимая из двигателя с выпускными газами, состоит в общем случае из физической теплоты газов Qг.ф и химической теплоты Qг.х.

В дизелях теплота, отводимая с выпускными газами из поршневой части, направляется в газовую турбину. В общем случае этот тепловой поток делится на два: один соответствует полезной работе турбины и внутренним потерям теплоты в ней, другой — теплоте, отводимой из турбины с выпускными газами. Теплота, соответствующая полезной работе турбины, делится на теплоту, эквивалентную работе, передаваемой на вал двигателя Qет, и на теплоту, эквивалентную работе привода компрессора Qтк. При работе турбины теряется часть теплоты Q4, которая отводится частично охлаждающей турбину жидкостью (вода), а часть теплоты Q8 отводится через стенки турбины.

Работа турбины затрачивается на сжатие в компрессоре воздуха. Теплота Qк, эквивалентная работе сжатия наддувочного воздуха, возвращается в цилиндр двигателя при наполнении. При сжатии воздуха в компрессоре он подогревается и дополнительно вносит в цилиндр дизеля теплоту Q1. Подогрев воздуха происходит от выпускных газов (теплота Q10) и охлаждающей жидкости (теплота Q2).

В большинстве двигателей, работающих с высоким наддувом, устанавливается охладитель наддувочного воздуха (ОХНВ). Теплота, отводимая в ОХНВ, обозначена Q3. Теплота, эквивалентная энтальпии сжатого воздуха Qк, возвращается обратно в поршневую часть. В турбине и компрессоре имеются потери теплоты трения в подшипниках Q9. Теплота, эквивалентная работе трения в подшипниках, выносится из турбины смазочным маслом в ОХНВ и присоединяется к тепловому потоку, который выносится из двигателя охладителем.

Теплота, эквивалентная работе трения Qт частично передается смазывающему детали маслу (теплота Q5) и деталям двигателя (теплота Q6), уносится охладителем и рассеивается в окружающую среду через стенки корпуса двигателя (теплота Q7).

Применение турбины, работающей на выпускных газах, уменьшает долю теплоты, отводимой с газами, и увеличивает долю полезно используемой теплоты. В двигателях, не имеющих передачи от турбины к валу двигателя, нет потока теплоты Qет. В случае отключения ОХНВ исключается поток теплоты Q3.

По результатам внешнего теплового баланса необходимо далее рассмотреть теплонапряженность деталей дизеля, которая зависит от величины теплового потока через единицу площади поверхности или сечения детали, ее температуры, температурного градиента в стенках и температуры поверхностей трения. Каждый из указанных параметров в отдельности не отражает теплонапряженности детали. Тепловой поток характеризуется величиной q, ккал/(м2·ч) [1],

(1)

где Q — количество теплоты, проходящей через поверхность детали, ккал/ч;

F — площадь поверхности детали, м2.

Величина теплового потока зависит от степени форсировки двигателя, т. е. от количества топлива, сжигаемого в единице объема цилиндра, и от числа оборотов, или частоты подвода теплоты. Величина теплового потока, проходящего через разные части поверхностей деталей двигателя, различна, поэтому температуры разных точек детали неодинаковы.

Температура газов в цилиндре циклически изменяется. Вследствие этого тепловой поток тоже все время меняется. При значительном колебании температуры газов в пределах одного рабочего цикла температура стенки детали изменяется незначительно. По опытным данным в быстроходных двигателях на глубине 1 мм от поверхности, соприкасающейся с горячими газами, колебания температуры не превышают 8–10° С.

Величина тепловых потоков, проходящих через детали двигателя, определяется напряженностью рабочего процесса, свойствами материала, толщиной стенок детали, температурой охладителя и скоростью движения его относительно стенок. Средняя величина удельного теплового потока через стенки цилиндра для двигателей различных типов q = 75000 ÷ 300000 ккал/(м2·ч). Тепловой поток на различных участках рабочего цилиндра неодинаков. Наибольшее количество теплоты, примерно до 60 %, отводится через головку цилиндра и примерно до 40 % — через стенки цилиндров и другие детали двигателя.

Определить количество теплоты, проходящей через отдельные детали двигателя (поршень, втулку, клапаны и т. п.), чтобы выявить их температуры и температурные напряжения, чрезвычайно трудно. Сложность и разнообразие конструктивных форм деталей, равно как и характера теплообмена между рабочим телом и стенками, требуют применения современных программ 3D моделирования (SolidWorks, CosmosFloWorks, Nastran) процессов нестационарной теплопроводности в технических объектах сложной конфигурации. C помощью этих программ необходимо идентифицировать процессы, происходящие внутри технических объектов с внешней теплоэнергетической визуализацией. На рис. 2 показан пример моделирования тепловых полей в цилиндровой гильзе тепловозного дизеля. Полученные таким образом математические модели будут представлять собой зависимость теплоэнергетического портрета объекта от его технического состояния и режима работы, что особенно важно для транспортных средств, и с высокой достоверностью реализовывать картину распределения температуры на его поверхности.

Рис. 2. Моделирование процессов теплопередачи в цилиндровой гильзе тепловозного дизеля: а — изолинии; б — векторная форме тепловых полей

В настоящее время на кафедре «Локомотивы» разрабатывается 3D модель цилиндро-поршневой группы на примере дизеля 10Д100. Данная модель позволит оперативно и с высокой достоверностью представить тепловую картину диагностируемой дизель-генераторной установки с учетом внутренних и внешних факторов, определяющих ее работоспособность.

  1. Алексенко В. М. Тепловая диагностика элементов подвижного состава: Монография. — М.: Маршрут, 2006. — 398 с.
  2. Овчаренко С. М. Совершенствование систем диагностирования узлов и систем тепловозов / С. М. Овчаренко, О. В. Балагин, Д. В. Балагин // Транспорт-2015: Труды международной научно-практической конференции. В трех частях. Ч. 2: Технические науки. (21–24 апреля 2015 г.) / Ростовский гос. ун-т. путей сообщения. Ростов н/Д, 2015. С. 229–231.
Читать еще:  Что такое автозапуск двигателя по температуре

Принципы работы и классификация ДВС. Технико-экономические показатели и тепловой баланс ДВС.

Поршневым двигателем внутреннего сгорания называется тепловая машина, в рабочем цилиндре которой происходит сжигание топлива и преобразование теплоты в работу.

Принципы работы ДВС:

На рис. 1 представлена принципиальная схема ДВС. Основным элементом любого поршневого двигателя является цилиндр 4 с поршнем 5, соединенным посредством кривошипно-шатунного механизма с внешним потребителем работы. Цилиндр (или блок цилиндров) монтируется на верхней части картера 1 и сверху закрыт крышкой, в которой установлены впускной 2 и выпускной 3 клапаны и электрическая свеча зажигания (в карбюраторном и газовом двигателях) или форсунка (в дизеле). В зарубашечном пространстве цилиндра и его головки циркулирует охлаждаю­щая жидкость. В картере монтируется коленчатый вал, кривошип 7 которого подвижно соединен с шатуном 6. Верхняя головка шатуна сочленена с поршнем, который совершает прямолинейное возвратно-поступательное движение в цилиндре

Рис. 1. Принципиальная схема поршневого ДВС

Кроме основных деталей двигатель имеет ряд вспомогательных механизмов для подачи топлива (топливные насо­сы, смесительные устройства, фильтры, топливные баки, регулятор), смазки (масляные насосы, фильтры, масляные баки, масленки), охлаждения (водяные насосы, водяные баки, радиаторы) и другие устройства, необходимые для его обслуживания. Вспомогательные ме­ханизмы приводятся в движение от коленчатого вала.

Крайние положения поршня называют верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). Ход поршня от ВМТ до НМТ называют тактом. Объем, описываемый поршнем за один ход, является рабочим объемом цилинд­ра, Vn = nD 2 S/4 (D — диаметр цилиндра, S — ход поршня).

Сумму рабочих объемов всех цилиндров двигателя в литрах называют литражом двигателя.

Анализ рабочего цикла в ДВС обычно производят с помощью индикаторной диаграммы, на которой графически изображена зависимость давления в цилиндре от объема, занятого газом, или положения поршня. При работе ДВС индикаторная диаграмма записывается присоединенным к нему специальным прибором — индикатором.

Различают два типа поршневых ДВС — четырехтактные и двухтактные. У четырехтактного двигателя, индикаторная диаграмма ко­торого изображена на рис. 2, а, от­дельным процессам соответствуют: 0 -1 — всасывание топливной) смеси (1-й такт); 1-2 — сжатие смеси (2-й такт); 2-3 — сгорание +3-4 — расширение продуктов сгорания +4-5— выхлоп (3-й такт); 5-0 — выталкивание продуктов сгорания, (4-й такт).

Из всех четырех тактов, составляю­щих цикл, только в третьем получается полезная paбoта, в остальных трех так­тах работа затрачивается.

У двухтактного двигателя отдельным процессам соответствуют (рис. 2, б): 0-1 — продувка и введение новой порции смеси + 1-2 — сжатие (1-й такт); 2-3 — сгорание + 3-4 — расширение + 4-0 — выхлоп (2-й такт). В двухтактном двигателе очистку цилиндра от остаточных газов и наполнение его свежим зарядом выполняют продувочным воздухом через шлицы, открываемые поршнем.

Рис. 2. Индикаторная диаграмма четырех­тактного (а) и двухтактного (б) двигателей: А — выпускное окно; Б — продувочное окно

Двигатели с «мгновенным сгоранием» топлива (карбюраторные и газовые “Отто”). В цилиндр такого двигателя всасывается готовая горючая смесь, которая в нужный момент под­жигается от внешнего источника (элек­трической искры высокого напряжения, раскаленного шара). Время сгорания го­товой смеси очень мало, в связи с чем допустимо считать, что процесс сгорания осуществляется при (почти) постоянном объеме.

Двигатели со сгоранием топлива при (почти) посто­янном давлении (компрессорные дизели). В ци­линдре двигателя сжимается чистый воз­дух. В конце сжатия в цилиндр впрыски­вается топливо, которое в процессе смешения с горячим воздухом воспла­меняется и сгорает при р = const. Для распыла топлива, подаваемого в цилиндр, используют воздух, сжатый в компрессоре до давления, в 1,2—2 раза превышающего давление в цилиндре (отсюда и произошло название «компрессорные дизели»). Такие двигатели имеют ряд конструктивных недостатков (наличие компрессора для распыла топлива, сложное устройство форсунок и др.) и в настоя­щее время не строятся.

Двигатели со смешанным сгоранием топлива (бескомпрессорные дизели). В цилиндре этого двигателя тоже сжимается чистый воздух, а жидкое топливо, сжатое насосом до давлений около 30— 40 МПа, подается в форсунку, через которую оно в мелкораспыленном виде разбрызгивается в цилиндр в конце такта сжатия. Топливо, попадая в воздух, нагретый в процессе сжатия до температуры, пре­вышающей температуру воспламенения, сгорает по мере ввода его в цилиндр сначала (почти) при V=const, а затем при (почти) р = const.

Все типы двигателей могут выполняться как четырехтактными, так и двухтактными.

Тепловой баланс ДВС:

Оценкой совершенства осуществляемого в тепловом двигателе процесса служат его индикаторные показатели, а суммарной оценкой, учитывающей и механическое совершенство конструкции двигателя, — эффективные показатели. Распределение теплоты, подведенной к двигателю с топливом, на полезно использованное и потери дает тепловой баланс двигателя, который называется внешним тепловым балансом. В общем виде можно записать:

Последнее изменение этой страницы: 2019-04-01; Просмотров: 259; Нарушение авторского права страницы

Влияние различных факторов на тепловой баланс двигателя

На распределение теплоты в двигателе оказывают влияние такие факторы как частота вращения коленчатого вала, нагрузка, состав смеси, угол опережения зажигания.

Частота вращения коленчатого вала

С ростом частоты вращения коленчатого вала абсолютные величины всех составляющих теплового баланса увеличиваются, так как в двигатель за единицу времени поступает большее количество теплоты. Изменение относительных величин теплового баланса в зависимости от частоты вращения коленчатого вала.

Рис. Влияние частоты вращения коленчатого вала на составляющие теплового баланса: а — изменение абсолютных значений; б — изменение относительных величин

С увеличением частоты вращения коленчатого вала величина qохл уменьшается, так как время на теплоотдачу в систему охлаждения сокращается.

Значения qе достигают максимума при частоте вращения коленчатого вала, соответствующей минимальному удельному расходу топлива.

Величина qг увеличивается с ростом частоты вращения коленчатого вала, так как при этом растет температура отработавших газов и недогорание топлива.

Потери на неполноту сгорания qнс остаются почти постоянными, что объясняется примерно одинаковым составом смеси по всему диапазону частоты вращения коленчатого вала.

Нагрузка

С увеличением нагрузки значение qе увеличивается до максимума, когда произведение ni*nm принимает наибольшее значение. Дальнейшее уменьшение де связано с обогащением смеси на полных нагрузках, при этом возрастает доля qнс.

Рис. Влияние нагрузки на составляющие теплового баланса: а — изменение абсолютных значений; б — изменение относительных величин

Наибольшие потери теплоты в охлаждающую среду наблюдаются на холостом ходу, так как на этом режиме вся выделенная теплота идет на совершение работы по преодолению сил трения в двигателе и нагрев окружающей среды.

С увеличением нагрузки возрастает и qг в связи с ростом температуры и теплосодержания отработавших газов.

Потеря теплоты вследствие неполноты сгорания топлива имеет место при малых нагрузках, когда включается система холостого хода карбюратора, а также на полных и близких к ним нагрузках, когда происходит обогащение смеси экономайзером.

Угол опережения зажигания

Наибольшие значения qе соответствуют оптимальному значению угла опережения зажигания. Потери теплоты в систему охлаждения возрастают как при раннем, так и при позднем зажигании, так как сгорание в этих случаях происходит в невыгодных условиях. При позднем зажигании возрастают потери теплоты с отработавшими газами, так как догорание происходит уже в стадии процесса расширения. На потери, связанные с неполнотой сгорания, угол опережения зажигания влияния не оказывает, так как коэффициент избытка воздуха остается при этом неизменным.

Читать еще:  Актрос стук при нагрузке в двигателе

Рис. Влияние угла опережения зажигания на составляющие теплового баланса двигателя

Состав горючей смеси

При экономичном составе смеси, когда а равно 1,05—1,1, значения qc становятся максимальными. Потери qохл возрастают при отклонениях в обе стороны от значений а, равных 0,8—0,9, что объясняется увеличением времени сгорания в обоих случаях. Потери qг увеличиваются с изменением коэффициента избытка воздуха аналогично qохл из-за увеличения температуры газов при замедлении скорости сгорания. Кроме того, при а >1 возрастают значения qг из-за роста тепловых потерь с излишним воздухом, участвующим в сгорании.

Рис. Влияние состава смеси на составляющие теплового баланса: а — изменение абсолютных значений: б — изменение относительных величин

Что такое тепловой баланс двигателя

Каждый раз, когда вы читаете статьи об автомобилях, претендующие на научность и скрупулёзность, ваш взгляд натыкается на термины и понятия, кажущиеся незнакомыми. Особенно этим любят козырнуть мастера тюнинга и какие-нибудь эксперты. И если вам в этих статьях всё понятно без пояснений, то это прекрасно. Но если вы думаете, что некоторые вещи всё-таки стоило бы назвать попроще, то ничего страшного, мы расскажем.

Например, часто упоминают тепловой баланс двигателя. Причём, как правило, произносят этот термин так, как будто все на свете должны знать, что он означает.

О чём идёт речь

Смысл работы двигателя внутреннего сгорания, с точки зрения физики, заключается в преобразовании тепловой энергии в кинетическую. В камере сгорания двигателя тепло от микровзрыва толкает поршень; но фазы работы ДВС вы наверняка и так знаете. Применительно же к нашей теме, если рассмотреть процесс с точки зрения физики и измерений, то получится, что тепло расходуется не только на приведение поршня в движение.

Это проблема двигателей внутреннего сгорания. Вы наверняка слышали, что их КПД не так высок, как хотелось бы инженерам, и каждый отвоёванный процент вызывает у конкурентов зависть и приступы патентной аллергии. Так вот, смысл в том, что есть ещё несколько источников, которые забирают тепло сгорания. Если суммировать их с полезным теплом, которое в итоге сдвинуло поршень, то вместе их величина составит 100%. Так вот, соотношение величин этих показателей и называется тепловым балансом двигателя внутреннего сгорания. Какие же это величины?

В выхлопную систему автомобиля уходит часть тепловой энергии от сгорания. При отведении газов за счёт этого они нагреваются. Вы можете убедиться в этом: выхлопные газы подымаются вверх, они легче и горячее воздуха. Система охлаждения двигателя также отъедает свой кусок пирога. Холодный воздух или жидкость, забирающие у двигателя излишки тепла, к сожалению, не отличают бесполезное тепло от полезного. Так что система охлаждения также становится одним из параметров снижения КПД. Следующий важный пункт — потери от неполного сгорания. В идеале топливно-воздушная смесь не должна оставлять следов, тем не менее, бензин может содержать присадки и посторонние элементы, которые не поддаются сгоранию. Тогда и происходит потеря тепла, ведь открытие клапанов рассчитано на попадание в камеру определённого количества топлива и получения из него нужного количества энергии. Если же масса топливной смеси при сгорании станет меньше от наличия в ней посторонних элементов, соответственно, она даст меньше энергии. Это и считается потерями.

Последний пункт, который очень сложно измерять, и который расплывчато называется «прочие потери», включает в себя потери от трения деталей. Как мы и сказали, его сложно измерять, но можно с достаточно большой точностью рассчитать.

Теперь соединим все эти компоненты вместе. Их сумма будет равна 100%. Соответственно, несложно высчитать значение каждого из остальных параметров. Пропорция вида «30% полезной тепловой энергии, 28% на выхлоп, 15% на охлаждение, 20% на неполное сгорание и 7% прочих потерь» и называется тепловым балансом двигателя.

Зачем это знать

Дело в том, что тепловой баланс не является статической величиной. Он принимает разные пропорции под разной нагрузкой. С течением времени износ сказывается на двигателе, в том числе снижая его эффективность; опять-таки меняется баланс. Измерения, проводимые мастерами, призваны показать эффективность работы двигателя или указать на необходимость его ремонта. Так что это действительно важный показатель. Другое дело, что в современном автомобиле есть множество других способов «выловить» неисправность, включённых в компьютерную диагностику с опросом датчиков. А замеры теплового баланса приносят гораздо больше пользы инженерам-конструкторам, проектирующим двигатель.

В заключение

Тепловой баланс двигателя, как мы выяснили, это совокупность показателей, отображающих эффективность работы двигателя. Рядовой водитель, конечно, может интересоваться этой пропорцией. Ведь она покажет, на каких оборотах и, вообще, в каких условиях эффективность двигателя растёт или падает. Возможно, мастера чип-тюнинга смогут даже изменить настройки инжектора, чтобы увеличить эффективность работы двигателя в зависимости от конкретных условий эксплуатации.

Энергоэффективность систем обеспечения параметров микроклимата. Тепловой баланс помещений

Сегодня мы начинаем публиковать цикл статей, посвящённых анализу методов создания и поддержания теплового режима помещений в холодный период года. Первая статья цикла расскажет о развитии современных энергоэффективных систем создания и поддержания теплового комфорта в помещениях. По мнению авторов, это развитие требует уточнения основных закономерностей по расчёту теплопотребления зданиями.

Составляющие теплового баланса помещения

Физический смысл теплового баланса помещения в холодный период года заключается в поддержании постоянной температуры внутреннего воздуха tв [ °C] системами обеспечения параметров микроклимата. Сведение всех составляющих поступления и расхода теплоты определяет дефицит или избыток её в помещении. Тепловой баланс составляется для таких расчётных условий, когда возникает наибольший дефицит теплоты. Наличие дефицита теплоты ΔQ [Вт] показывает следующую количественную характеристику мощности системы отопления [Вт] [1]:

где Qогр — потери теплоты через наружные ограждения, Вт; Qин — расход теплоты на нагрев инфильтрующегося воздуха, Вт; Qт-б — технологические или бытовые поступления (расходы) теплоты, Вт.

Для производственных помещений промышленных зданий в (1) при расчёте мощности систем отопления логично и оправдано определять величину ± Qт-б для периодов технологических циклов с наименьшими тепловыделениями.

Формирование теплового режима в помещениях жилых и общественных зданий во многом отличается от производственных. При продолжительном отсутствии в квартире жильцов, а в общественных зданиях посетителей или обслуживающего персонала какие-либо дополнительные (бытовые) тепловыделения Qт-б отсутствуют. Поэтому они не должны учитываться при расчётах тепловых балансов данных помещений [2, 3], то есть расчётные температурные параметры воздуха должны поддерживаться при отсутствии людей и неработающем бытовом или служебном оборудовании.

Однако в отечественную нормативную литературу для снижения реальной расчётной мощности систем отопления было введено понятие теплового потока, поступающего в жилые комнаты и кухни: 21 Вт на 1 м 2 площади пола [4]; затем

он был произвольно уменьшен до 10 Вт на 1 м 2 площади пола [1]. Данное положение привело к законодательному нарушению санитарно-гигиенических норм по поддержанию минимальной расчётной температуры в жилых и общественных помещениях. Авторами нормативов по субъективному введению бытового теплового потока при расчёте теплового баланса жилого помещения подменено понятие «энергоэффективность», то есть рациональное и, по возможности, полное использования потенциала искусственно генерируемой энергии, на «энергосбережение», которое осуществляется административными методами.

Поэтому зависимость (1) для жилых и общественных зданий должна иметь следующий вид:

Формирование теплового режима в помещениях жилых и общественных зданий во многом отличается от производственных. Например, при продолжительном отсутствии в квартире жильцов, а в общественных зданиях посетителей или обслуживающего персонала какие-либо дополнительные тепловыделения отсутствуют

В сельскохозяйственных зданиях расчётный температурный режим в холодный период года возможно, как правило, создать только за счёт варьирования теплофизическими характеристиками наружных ограждений (пассивных элементов систем обеспечения параметров микроклимата). В процессе жизнедеятельности животные, птицы, хранящееся сочное растительное сырьё (картофель, овощи, фрукты) выделяют явную теплоту: физиологическую Qф или биологическую Q6. Рациональный подбор теплофизических характеристик наружных ограждений позволяет в таких помещениях отказаться от искусственно генерируемой теплоты. Поддержание расчётной внутренней температуры осуществляется за счёт утилизации явной теплоты, то есть помещения эксплуатируются как неотапливаемые с естественными источниками энергии. Для помещений таких энергопассивных производственных сельскохозяйственных комплексов уравнение теплового баланса имеет вид:

Читать еще:  Cdi двигатель для скутеров что это такое

Потери теплоты отапливаемыми помещениями через ограждения

Расчётные трансмиссионные потери теплоты помещением при выборе тепловой мощности определяются как сумма потерь через все ограждения. Количество теплоты, проходящее через каждое ограждение при стационарном режиме Qогр [Вт] определяется по формуле Фурье [1] (расшифровка обозначений в формуле (4) приведена далее в статье):

Основным критерием теплотехнических показателей энергоэффективных зданий должно быть снижение затрат тепловой энергии системами обеспечения параметров микроклимата.

Не претендуя на полноту освещения всех вопросов по эффективному использованию теплоты, предлагаемый в статье анализ физических процессов переноса теплоты через ограждения позволяет уточнить факторы формирования температурного режима помещений.

Рассмотрим соответствие закономерностей переноса теплоты и логики протекания этих процессов по основополагающей формуле (4) некоторым современным широко рекламируемым (в том числе в нормативных источниках) рекомендациям по рациональному использованию подаваемой в помещения тепловой энергии.

Расчётная площадь каждой ограждающей конструкции А [м 2 ] вычисляется с соблюдением определённых условно принятых правил обмера, которые стабильны с первой половины ХХ века. В них заложены особенности переноса теплоты теплопроводностью в каждом из конструктивных видов ограждений.

Положение ограждения относительно наружного воздуха (коэффициент n) учитывается для ограждений, отделяющих отапливаемые помещения от неотапливаемых (чердаки, подвалы, скотные дворы в сельских домах).

Температура в неотапливаемых помещениях всегда выше наружной. Поэтому потери теплоты уменьшаются и соответствуют разности температур (например, для чердака tчер):

Значения понижающего расчётную разность температур коэффициента n, приведённые в нормах [5], несмотря на их ориентировочный характер, показали свою востребованность и необходимость в практических расчётах. Термодинамическая основа коэффициента n показывает возможную степень использования энергетического потенциала теплоносителя системы отопления путём последовательного использования как высокопотенциальной, так и низкопотенциальной энергии. Многие способы наиболее полной утилизации поданной в здание теплоты характерны для индивидуальных зданий, имеющих чердаки, подполья, сени, тамбуры, пристроенные животноводческие помещения. В нормативных документах следует расширить область использования коэффициента n, разработать и внести его значения для многоквартирных домов. Например, значения n отсутствуют: для лифтовых холлов домов с наружными пожарными лестницами, для «тёплых» чердаков с естественной или механической вытяжной вентиляцией, для застеклённых лоджий и т.п.

Об этом цикле статей

Представленный в данном цикле статей анализ методов создания и поддержания теплового режима помещений в холодный период года не является альтернативой общепринятых апробированных практикой методик расчёта, конструирования и эксплуатации систем обеспечения параметров микроклимата. Необходимость анализа современных тенденций формирования комфортного теплового режима помещений вызвана повышением требований по энергосбережению в строительстве. Однако предлагаемые новые решения по экономии тепловой энергии (даже включённые в нормативную литературу) не всегда соответствуют физическим законам тепломассопереноса, санитарным нормам, а иногда и здравому смыслу. При этом, жёстко регламентируя применение одних технических решений, действующие нормы не учитывают их совместную работу с другими элементами эксплуатируемых систем.

Нормативные документы, регламентирующие проектирование и эксплуатацию систем обеспечения параметров микроклимата, должны включать научно систематизированные, физически обоснованные и экономичные схемы систем, порядок их выбора и расчёта, рекомендации по реконструкции объектов, не позволяющие различной их трактовки. С другой стороны, они должны позволять отказываться от одних средств автоматизации и кажущегося «энергосбережения», являющихся обязательными по нормативным документам, на иные, способные повысить энергетические и экономические показатели систем. Этот фактор является особо актуален с учётом появившегося в области принятия инженерных решений не проверенных в отечественной практике зарубежных стереотипов, навязанных рекламой или лоббированием частными компаниями.

Проведённый анализ нормативной и справочной литературы по энергосбережению в строительстве подготовлен в рамках выполнения НИР «Разработка и научное обоснование теплофизических закономерностей переноса теплоты и влаги в неотапливаемых производственных сельскохозяйственных зданиях» с финансированием из средств Минобрнауки России, в рамках базовой части государственного задания на научные исследования.

Разность температуры внутреннего tв и наружного воздуха tн5 [°C] в холодный период года с коэффициентом обеспеченности kоб = 0,92 в формуле (4) определяет максимальную величину переноса теплоты из помещения в атмосферу. Расчётные значения температуры (tв каждого из помещений жилых зданий приведены в нормах [6]. Современная квартира представляет собой единый комплекс обитания семьи, поэтому практически невозможно поддерживать стабильный индивидуальный температурный режим в каждом из помещений, но для фиксации общего количества необходимой подаваемой в квартиру теплоты это различие имеет определённое значение.

Более сложным является расчёт потерь или поступлений теплоты через внутренние ограждения смежных помещений с различной расчётной температурой. Потери или поступления теплоты допускается не учитывать, если разность температуры в этих помещениях не более 3 °С [1]. В научной и справочной литературе не обнаружено теплотехнических и каких-либо иных объяснений субъективному снижению существовавшей ранее разности температур от 5 до 30 °C. Следствием является возникновение ряда практически тупиковых расчётных ситуаций. Например, расчёт нестационарного по функциональному назначению температурного режима ванных, совмещённых туалетов (25 °C) и окружающих помещений (18-20 °C).

Не изученной до практического внедрения является методика нормирования и теплофизического расчёта количественных показателей ограждений между смежными помещениями с различной расчётной температурой.

Они важны не только по количественным характеристикам переноса теплоты, но и по стабилизации влажностного состояния внутренних ограждений. Необходимым и обязательным условием должна быть недопустимость наблюдаемой на практике конденсации водяных паров на внутренних поверхностях ограждений смежных помещений с более высокой температурой. Характерный пример, ограждение между кухней tв = 20 °C) и лестничной клеткой в многоэтажных домах с лифтовыми холлами tв = 16 °C) и в жилых домах с неотапливаемыми лестничными клетками tв = 5 °C). Только для единственного последнего случая СНиП 23-02-2003 [5] при разности расчётных температур смежных помещений 6 °С и более обязывает нормировать и, соответственно, конструктивно менять ограждающие конструкции.

Ориентированные на другие стороны горизонта наружные ограждения получают в холодный период года меньшее количество лучистой энергии, вследствие чего их наружные поверхности имеют более низкую температуру и потери теплоты через них увеличиваются

Добавки к основным потерям теплоты отапливаемых помещений (Σβ, доли), то есть определение реальных потерь теплоты отапливаемым помещением, относится до настоящего времени к наименее изученному, субъективно трактуемому вопросу. Количественные характеристики добавок к основным потерям теплоты составляют [1]:

Добавки на ориентацию по сторонам горизонта βст.г, согласно нормам, принимаются на все вертикальные и наклонные (проекции на вертикаль) ограждения. Условно из-за наличия солнечной радиации за расчётную принята ориентация наружных ограждений на юг и юго-запад (βст.г = 0). Считается, что ориентированные на другие стороны горизонта наружные ограждения получают в холодный период года меньшее количество лучистой энергии, вследствие чего их наружные поверхности имеют более низкую температуру и потери теплоты через них увеличиваются. В то же время наиболее холодный период суток приходится на ночные и предутренние часы при отсутствии лучистого теплопритока, а теплоинерционность непрозрачных ограждающих конструкций препятствует колебаниям суточных температур их внутренних поверхностей. Данные добавки βст.г существуют с начала прошлого века [3], считаются традиционными и незыблемыми, однако они противоречат физическому смыслу процесса определения максимального дефицита теплоты в помещении и не должны учитываться при расчётах мощности систем отопления.

В понятие добавок βст.г одновременно включены величины, имеющие иной физический смысл и которые следует учитывать в расчётах. Например, в общественных, административнобытовых и производственных, включая сельскохозяйственные, зданиях при наличии двух и более наружных стен добавка βст.г = 0,05 (увеличение потерь теплоты в углах). В помещениях жилых зданий с двумя наружными стенами добавка βст.г = 0, но она заменена увеличением расчётной температуры воздуха в угловых помещениях на 2 °C. Для горизонтально расположенных наружных ограждений применяется добавка βст.г = 0,05 для необогреваемых полов при температуре холодной пятидневки tн5 (0) (3559) (2)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector