Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловые двигатели

Тепловые двигатели. Термодинамические циклы. Цикл Карно

Устройство, имеющее способность преобразовывать полученную теплоту в механическую работу носит название теплового двигателя. В таких машинах механическая работа совершается в процессе расширения вещества, называющегося рабочим телом. Его роль обычно исполняют газообразные вещества, вроде паров бензина, воздуха и водяного пара.

Рабочее тело приобретает или отдает тепловую энергию при теплообмене с телами, которые имеют внушительный запас внутренней энергии. Такие тела называют тепловыми резервуарами.

Исходя из первого закона термодинамики, можно сделать вывод, что полученное газом количество теплоты Q полностью преобразуется в работу A в условиях изотермического процесса, при котором внутренняя энергия не претерпевает изменений ( Δ U = 0 ) :

Однако, подобный однократный акт превращения теплоты в работу для техники не представляет интереса. Существующие тепловые двигатели, такие как паровые машины, двигатели внутреннего сгорания и им подобные, работают циклически. Необходимо периодическое повторение процесса теплопередачи и преобразования полученной теплоты в работу. Чтобы данное условие выполнялось, рабочее тело должно совершать круговой процесс или же термодинамический цикл, при котором исходное состояние с периодически восстанавливается. На рисунке 3 . 11 . 1 в виде диаграммы ( p , V ) газообразного рабочего тела с помощью замкнутых кривых проиллюстрированы круговые. В условиях расширения газ производит положительную работу A 1 , эквивалентную площади под кривой a b c . При сжатии газ совершает отрицательную работу A 2 , равную по модулю площади под кривой c d a . Полная работа за цикл A = A 1 + A 2 на диаграмме ( p , V ) равняется площади цикла. Работа A положительна, в том случае, если цикл проходит по часовой стрелке, и A отрицательна, когда цикл проходит в противоположном направлении.

Рисунок 3 . 11 . 1 . Круговой процесс на диаграмме ( p , V ) . a b c – кривая расширения, c d a – кривая сжатия. Работа A в круговом процессе равна площади фигуры a b c d .

Все круговые процессы обладают общей чертой. Они не могут привестись в действие при контакте рабочего тела только с одним тепловым. Их минимальное число должно быть равным двум.

Тепловой резервуар, обладающий более высоким значением температуры, носит название нагревателя, а с более низким – холодильника.

Рабочее тело при совершении кругового процесса получает от нагревателя некоторую теплоту Q 1 > 0 и теряет, отдавая холодильнику, количество теплоты Q 2 0 . Для полного полученного рабочим телом за цикл количества теплоты Q справедливо следующее выражение:

Q = Q 1 + Q 2 = Q 1 — Q 2 .

Совершая цикл, рабочее тело приходит в свое первоначальное состояние, из чего можно сделать вывод, что изменение его внутренней энергии равняется Δ U = 0 . Основываясь на первом законе термодинамики, запишем:

Из этого следует:

Работа A , которую рабочее тело совершает за цикл, эквивалентна полученному за этот же цикл количеству теплоты Q .

Коэффициентом полезного действия или же КПД η теплового двигателя называют отношение работы A к полученному рабочим телом за цикл от нагревателя количеству теплоты Q 1 , то есть:

η = A Q 1 = Q 1 — Q 2 Q 1 .

Рисунок 3 . 11 . 2 . Модель термодинамических циклов.

Коэффициент полезного действия теплового двигателя демонстрирует, какая доля тепловой энергии, которую получило рабочее тело от нагревателя, преобразовалась в полезную работу. Оставшаяся часть ( 1 – η ) была без пользы передана холодильнику. Коэффициент полезного действия тепловой машины не может быть больше единицы η 1 . На рисунке 3 . 11 . 3 проиллюстрирована энергетическая схема тепловой машины.

Рисунок 3 . 11 . 3 . Энергетическая схема тепловой машины: 1 – нагреватель; 2 – холодильник; 3 – рабочее тело, совершающее круговой процесс. Q 1 > 0 , A > 0 , Q 2 0 ; T 1 > T 2 .

Виды тепловых двигателей

В технике свое применение находят двигатели, использующие круговые процессы. Рисунок 3 . 11 . 3 демонстрирует нам циклы, применяемые в бензиновом карбюраторном и в дизельном двигателях. Они оба в качестве рабочего тела используют смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания включает в себя две изохоры ( 1 – 2 , 3 – 4 ) и две адиабаты ( 2 – 3 , 4 – 1 ) , дизельного двигателя -две адиабаты ( 1 – 2 , 3 – 4 ) , одну изобару ( 2 – 3 ) и одну изохору ( 4 – 1 ) . Реальный КПД (коэффициент полезного действия) у карбюраторного двигателя составляет около 30 % , у дизельного двигателя – приблизительно 40 % .

Рисунок 3 . 11 . 4 . Циклы карбюраторного двигателя внутреннего сгорания ( 1 ) и дизельного двигателя ( 2 ) .

Цикл Карно

Круговой процесс, изображенный на рисунке 3 . 11 . 5 , состоящий из двух изотерм и двух адиабат был назван циклом Карно в честь открывшего его в 1824 году французского инженера. Данное явление впоследствии оказало колоссальное влияние на развитие учения о тепловых процессах.

Рисунок 3 . 11 . 5 . Цикл Карно.

Находящийся в цилиндре, под поршнем, газ совершает цикл Карно. На участке изотермы ( 1 – 2 ) он приводится в тепловой контакт с нагревателем, обладающим некоторой температурой T 1 . Газ изотермически расширяется, при этом к нему подводится эквивалентное совершенной работе A 12 количество теплоты Q 1 = A 12 . После этого на участке адиабаты ( 2 – 3 ) газ помещается в адиабатическую оболочку и продолжает процесс расширения при отсутствующем теплообмене. На данной части цикла газ совершает работу A 23 > 0 . Его температура при адиабатическом расширении снижается до величины T 2 . На идущем следующим участке изотермы ( 3 – 4 ) газ приводится в тепловой контакт с холодильником в условиях температуры T 2 T 1 . Производится процесс изотермического сжатия. Газом совершается некоторая работа A 34 0 и отдается тепло Q 2 0 , эквивалентное произведенной им работе A 34 . Его внутренняя энергия не претерпевает изменений. На последнем оставшемся участке адиабатического сжатия газ снова помещают в адиабатическую оболочку. При сжатии его температура вырастает до величины T 1 , также совершается работа A 41 0 . совершаемая газом за цикл полная работа A эквивалентна сумме работ на отдельных участках:

A = A 12 + A 23 + A 34 + A 41 .

На диаграмме ( p , V ) данная работа равняется площади цикла.

Процессы на любом из участков цикла Карно квазистатичны. Например, оба участка 1 – 2 и 3 – 4 , относящихся к изотермическим, производятся при пренебрежительно малой разности температур рабочего тела, то есть газа, и теплового резервуара, будь то нагреватель или холодильник.

Исходя из первого закона термодинамики, можно заявить, что работа газа в условиях адиабатического расширения или сжатия эквивалентна падению значения Δ U его внутренней энергии. Для 1 моля газа верно следующее выражение:

A = — ∆ U = — C V ( T 2 — T 1 ) ,

в котором T 1 и T 2 представляют собой начальную и конечную температуры рабочего тела.

Из этого следует, что работы, совершаемые газом на двух адиабатических участках цикла Карно, противоположны по знакам и одинаковы по модулю:

Коэффициент полезного действия η цикла Карно может рассчитываться с помощью следующих соотношений:

η = A Q 1 = A 12 + A 34 Q 12 = Q 1 — Q 2 Q 1 = 1 — Q 2 Q 1 .

С. Карно выразил коэффициент полезного действия цикла через величины температур холодильника T 2 и нагревателя T 1 :

Читать еще:  Блок двигателя для тюнинга какой лучше

η = T 1 — T 2 T 1 = 1 — T 2 T 1 .

Цикл Карно примечателен тем, что ни на одном из его участков тела, обладающие различными температурами, не соприкасаются. Любое состояние рабочего тела в цикле является квазиравновесным, что означает его бесконечную близость к состоянию теплового равновесия с окружающими объектами, то есть тепловыми резервуарами или же термостатами. В цикле Карно исключен теплообмен в условиях конечной разности температур рабочего тела и окружающей среды (термостатов), если тепло имеет возможность переходить без совершения работы. По этой причине любые другие возможные круговые процессы проигрывают ему в эффективности при заданных температурах нагревателя и холодильника:

η К а р н о = η m a x

Рисунок 3 . 11 . 6 . Модель цикла Карно.

Каждый участок цикла Карно и цикл в целом могут проходиться в обоих направлениях.

Обход цикла по часовой стрелке соответствует тепловому двигателю, в котором полученное рабочим телом тепло частично преобразуется в полезную работу. Обход против часовой стрелки соответствует холодильной машине, где некое количество теплоты отходит от холодного резервуара и передается горячему резервуару за счет совершения внешней работы. Именно поэтому идеальное устройство, работающее по циклу Карно, носит название обратимой тепловой машины.

В реально существующих холодильных машинах применяются разные циклические процессы. Любой холодильный цикл на диаграмме ( p , V ) обходятся против часовой стрелки. На рисунке 3 . 11 . 7 проиллюстрирована энергетическая схема холодильной машины.

Рисунок 3 . 11 . 7 . Энергетическая схема холодильной машины. Q 1 0 , A > 0 , Q 2 > 0 , T 1 > T 2 .

Работающее по холодильному циклу устройство может обладать двояким предназначением.

Если полезным эффектом является отбор некоторого количества тепла Q 2 от охлаждаемых тел, к примеру, от продуктов в камере холодильника, то такое устройство является обычным холодильником.

Эффективность работы холодильника может быть охарактеризована следующим отношением:

Таким образом, эффективность работы холодильника представляет собой количество тепла, отбираемого от охлаждаемых тел на 1 д ж о у л ь затраченной работы. В условиях подобного определения β х может быть, как больше, так и меньше единицы. Для обращенного цикла Карно справедливо выражение:

β x = T 2 T 1 — T 2 .

В случае, когда полезным эффектом является передача некоего количества тепла
| Q 1 | нагреваемым телам, чьим примером может выступать воздух в помещении, то такое устройство называется тепловым насосом.

Эффективность β Т теплового насоса может быть определена с помощью отношения:

То есть она может определяться количеством теплоты, передаваемым более теплым телам на 1 д ж о у л ь затраченной работы. Из первого закона термодинамики следует:

Следовательно, β Т всегда больше единицы. Для обращенного цикла Карно справедливо следующее выражение:

Принцип работы теплового двигателя

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего те­ла (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Таким образом, основными элементами любого теплового двигателя являются:

1) рабочее тело (газ или пар), совершающее работу;

2) нагреватель, сообщающий энергию рабочему телу;

3) холодильник, поглощающий часть энергии от рабочего те­ла.

Тепловые двигатели: принцип действия, устройство, схема

Рассмотрим тепловые двигатели, принцип действия этих механизмов. В земной коре и мировом океане запасы внутренней энергии можно считать неограниченными. Для того чтобы решать практические задачи, ее явно недостаточно. Устройство и принцип действия теплового двигателя необходимо знать для того, чтобы приводить в движение токарные станки, транспортные средства. Человек нуждается в таких устройствах, которые могут совершать полезную работу.

Тепловые двигатели, принцип действия которых мы рассмотрим, являются основными на нашей планете. Именно в них происходит превращение внутренней энергии в механический вид.

Особенности теплового двигателя

Каков принцип действия теплового двигателя? Кратко его можно представить на простом опыте. Если в пробирку налить воду, закрыть пробкой, довести до кипения, она вылетит. Причина выскакивания пробки заключается в совершении паром внутренней работы. Процесс сопровождается превращением внутренней энергии пара в кинетическую величину для пробки. Тепловые двигатели, принцип действия которых аналогичен описанному эксперименту, отличаются строением. Вместо пробирки используется металлический цилиндр. Пробка заменена поршнем, плотно прилегающим к стенкам, перемещающимся вдоль цилиндра.

Алгоритм действия

Тепловыми машинами называют механизмы, где наблюдается превращение внутренней энергии топлива в механический вид.

Для совершения двигателем полезной работы, должна быть создана разность давлений с обеих сторон поршня либо лопастей мощной турбины. Для достижения такой разности давлений происходит повышение температуры рабочего тела на тысячи градусов в сравнении с ее средним показателем в окружающей среде. Происходит подобное повышение температуры в процессе сгорания топлива.

Изменения температур

У всех современных тепловых машин выделяют рабочее тело. Им принято называть газ, совершающий в процессе расширения полезную работу. Начальную температуру, обозначаемую Т1, он приобретает в паровом котле машины или турбины. Называют этот показатель температурой нагревателя. В процессе совершения работы происходит постепенная потеря газом энергии. Это приводит к неизбежному охлаждению рабочего тела до некоторого показателя Т2. Значение температуры должно быть ниже показателя окружающей среды, иначе давление газа будет иметь меньший показатель, чем атмосферное давление, и работа двигателем не будет совершена.

Показатель Т2 называют температурой холодильника. В его качестве выступает атмосфера либо специальное устройство, необходимое для конденсации и охлаждения отработанного пара.

Некоторые факты

Итак, тепловые двигатели, принцип действия которых основывается на расширении рабочего тела, не способны отдавать для совершения работы всю внутреннюю энергию. В любом случае часть тепла будет передаваться атмосфере (холодильнику) вместе с отработанным паром либо выхлопными газами турбин или двигателей внутреннего сгорания.

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Читать еще:  В какую сторону крутит двигатель ваз 2106

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Схема его понятна и проста, доступна даже ученикам средней школы. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Изобретение тепловой машины

Первым изобретателем машины, использующей тепло, стал Сади Карно. Он разработал идеальную машину, в которой рабочим телом выступал идеальный газ. Кроме того, ученому удалось определить показатель КПД для такого устройства, используя значения температуры холодильника и нагревателя.

Карно удалось определить зависимость между реальной тепловой машиной, функционирующей на основе нагревателя, и холодильником, в качестве которого выступает воздух или конденсатор. Благодаря математической формуле, предложенной Карно для его первой идеальной тепловой машины, определяется максимальное значение КПД. Между температурой нагревателя и холодильника существует прямая связь.

Для того чтобы машина полноценно функционировала, значение температуры не должно быть меньше ее показателя в окружающем воздухе. При желании можно повышать температуру нагревателя, не забывая о том, что у каждого твердого тела есть определенная жаропрочность. По мере нагревания оно теряет свою упругость, а при достижении температуры плавления просто плавится.

Благодаря инновациям, которые достигнуты в современной инженерной промышленности, происходит постепенное повышение КПД теплового двигателя. Например, снижается трение между его отдельными частями, устраняются потери, возникающие из-за неполного сгорания топлива.

Двигатель внутреннего сгорания

Он представляет собой тепловую машину, где в виде рабочего тела применяют высокотемпературные газы, получаемые в процессе сгорания разного вида топлива внутри камеры. Выделяют четыре такта в работе автомобильного двигателя. Среди составных его частей назовем впускной и выпускной клапаны, камеру сгорания, поршень, цилиндр, свечу, шатун, а также маховик.

На первом этапе наблюдается плавное передвижение клапана вниз, процесс происходит благодаря заполнению камеры рабочей смесью. В конце первого такта впускной клапан закрывается. Далее поршень передвигается вверх, при этом происходит сжатие рабочей смеси. Появление искры в свече приводит к воспламенению горючей смеси. Давление, которое оказывают пары воздуха и бензина на поршень, приводят к его самопроизвольному движению вниз, поэтому такт называют «рабочим ходом». В движение приводится коленчатый вал. На четвертом этапе открывается выпускной клапан, происходит выталкивание в атмосферу отработанных газов.

Принципы действия тепловых машин

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Как работают тепловые двигатели

Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.

Инструкция

  1. Поршневые тепловые двигатели имеют в своем составе один или несколько цилиндров, внутри которых находится поршень. В объеме цилиндра происходит расширение горячего газа. При этом поршень под воздействием газа перемещается и совершает механическую работу. Такой тепловой двигатель преобразует возвратно-поступательное движение поршневой системы во вращение вала. Для этой цели двигатель оснащается кривошипно-шатунным механизмом.
  2. К тепловым двигателям внешнего сгорания относятся паровые машины, в которых рабочее тело разогревается в момент сжигания топлива за пределами двигателя. Нагретый газ или пар под сильным давлением и при высокой температуре подается в цилиндр. Поршень при этом перемещается, а газ постепенно охлаждается, после чего давление в системе становится почти равным атмосферному.
  3. Отработавший свое газ выводится из цилиндра, в который немедленно подается очередная порция. Для возврата поршня в начальное положение применяют маховики, которые крепят на вал кривошипа. Подобные тепловые двигатели могут обеспечивать одинарное или двойное действие. В двигателях с двойным действием на один оборот вала приходится две стадии рабочего хода поршня, в установках одинарного действия поршень совершает за то же время один ход.
  4. Отличие двигателей внутреннего сгорания от описанных выше систем состоит в том, что горячий газ здесь получается при сжигании топливно-воздушной смеси непосредственно в цилиндре, а не вне его. Подвод очередной порции горючего и выведение отработанных газов производится через систему клапанов. Они позволяют подавать горючее в строго ограниченном количестве и в нужное время.
  5. Источник тепла в двигателях внутреннего сгорания – химическая энергия топливной смеси. Для данного типа теплового двигателя не нужен котел или нагреватель внешнего типа. В качестве рабочего тела здесь выступают самые разные горючие вещества, из которых самым распространенным являются бензин или дизельное топливо. К недостаткам двигателей внутреннего сгорания можно отнести их высокую чувствительность к качеству топливной смеси.
  6. Двигатели внутреннего сгорания по своей конструкции могут быть двух- и четырехтактными. Устройства первого вида проще в конструкции и не так массивны, но при одинаковой мощности требуют значительно больше топлива, чем четырехтактные. Двигатели, работа которых построена на двух тактах, чаще всего применяют в небольших мотоциклах или газонокосилках. Более серьезные машины оснащают тепловыми двигателями четырехтактного типа.

Видео по теме

Как устроены и как работают тепловые двигатели

Наша сегодняшняя встреча посвящена тепловым двигателям. Именно они приводят в движение большинство видов транспорта, позволяют получать электроэнергию, несущую нам тепло, свет и комфорт. Как устроены и каков принцип действия тепловых машин?

Понятие и виды тепловых двигателей

Тепловые двигатели — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

Читать еще:  Hyundai ix35 дизель сколько масла в двигателе

Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.

Взаимодействие газа (пара) с поршнем имеет место в паровых машинах, карбюраторных и дизельных двигателях (ДВС).

Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.

Что является рабочим телом в тепловом двигателе

2017-05-27
Тепловой двигатель работает по циклу, состоящему из изотермического, изобарного и адиабатного процессов. При изобарном процессе рабочее тело — идеальный газ — нагревается от температуры $T_ <1>= 200 К$ до $T_ <2>= 500 К$. Определить коэффициент полезного действия данного теплового двигателя и двигателя, работающего по циклу Карно, происходящему между максимальной и минимальной температурами данного цикла.


В условии задачи не оговорена последовательность процессов, но поскольку изобарный процесс, по условию, — процесс нагревания, следовательно, и расширения, а тепловая машина является тепловым двигателем, то прямая, соответствующая графику этого процесса в координатах $p, V$, должна лежать выше кривых, изображающих изотермический и адиабатный процессы. После изобарного расширения 12 (рис.) газ должен адиабатно расширяться (кривая 23) до тех пор, пока температура его не будет равна начальной температуре $T_<1>$, а затем изотермическим сжатием (кривая 31) газ можно вернуть в исходное состояние. (Легко убедиться, что при любой другой последовательности процессов не будет выполняться условие задачи.)

При последовательности процессов, изображенной на рис., газ получает теплоту только в процессе 12, поэтому $Q_ <1>= Q_<12>$, и отдает теплоту в процессе 31 ($Q_ <2>= | Q_ <31>|$. Процесс 23 происходит без теплообмена.

Тогда коэффициент полезного действия цикла, согласно определению,

Газ идеальный, все процессы предполагаются обратимыми (фактически это предположение было сделано уже при изображении процессов на графике). Тогда $Q_<12>$ и $Q_<31>$ могут быть выражены по известным формулам для изобарного и изотермического процессов.

Коэффициент полезного действия цикла Карно найдем по известным формулам,,так как из проведенного анализа очевидно, что $T_ = T_<2>, T_ = T_<1>$.

Количество теплоты, получаемое рабочим телом при изобарном процессе,

где $(i + 2) R/2 = C_

$ — молярная теплоемкость при постоянном давлении.
Количество теплоты, отдаваемое рабочим телом при изотермическом сжатии,

Для процесса 31 количество теплоты $Q_<31>$ пропорционально $ln (V_<1>/V_<3>)$. Поскольку $V_ <1>< V_<3>$, логарифм будет отрицательным, поэтому в выражении для $| Q_ <31>|$ стоит $ln (V_<3>/V_<1>)$.

Объемы газа и их отношения неизвестны; процесс 12 изобарный и поэтому

Точки графика, соответствующие состояниям 2 и 3, лежат на одной адиабате:

Учитывая, что $T_ <3>= T_<1>$, и извлекая корень степени $gamma — 1$, получаем

Перемножая почленно равенства (4) и (6), имеем

Если коэффициент Пуассона выразить через число степеней свободы, то $gamma /( gamma — 1) = (i + 2)/2$ и

Подставим выражения (2) и (7) в (1):

Коэффициент полезного действия цикла Карно между максимальной и минимальной температурами

§ 24. КПД теплового двигателя

Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника. Газ или пар, который является рабочим телом, получает от нагревателя некоторое количество теплоты.

Рабочее тело, нагреваясь, расширяется и совершает работу за счёт своей внутренней энергии. Часть энергии передаётся атмосфере — холодильнику — вместе с отработанным паром или выхлопными газами.

Очень важно знать, какую часть энергии, выделяемой топливом, тепловой двигатель превращает в полезную работу. Чем больше эта часть энергии, тем двигатель экономичнее.

Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия двигателя — КПД.

Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

Коэффициент полезного действия обозначают η (греч. буква «эта»).

КПД теплового двигателя определяют по формуле

где Ап — полезная работа, Q1 — количество теплоты, полученное от нагревателя, Q2 — количество теплоты, отданное холодильнику, Q1 — Q2 — количество теплоты, которое пошло на совершение работы. КПД выражается в процентах.

Например, двигатель из всей энергии, выделившейся при сгорании топлива, расходует на совершение полезной работы только одну четвёртую часть. Тогда коэффициент полезного действия двигателя равен ¼, или 25% .

КПД двигателя обычно выражают в процентах. Он всегда меньше единицы, т. е. меньше 100% . Например, КПД двигателей внутреннего сгорания 20—40%, паровых турбин — немногим выше 30%.

Вопросы

  1. Почему в тепловых двигателях только часть энергии топлива превращается в механическую энергию?
  2. Что называют КПД теплового двигателя?
  3. Почему КПД двигателя не может быть не только больше 100%, но и равен 100%?
  4. Какой такт работы двигателя внутреннего сгорания изображён на рисунке 29?

Упражнение 17

  1. Можно ли за счёт внутренней энергии тела, равной 200 Дж, совершить механическую работу в 200 Дж?
  2. Тепловая машина за цикл получает от нагревателя количество теплоты, равное 155 Дж, а холодильнику отдаёт количество теплоты, равное 85 Дж. Определите КПД машины.
  3. Определите количество теплоты, отданное двигателем внутреннего сгорания холодильнику, если его КПД равен 30%, а полезная работа равна 450 Дж.

Задание

Подготовьте доклад на одну из тем (по выбору). История изобретения паровых машин.

  • История изобретения турбин.
  • Первые паровозы Стефенсона и Черепановых.
  • Достижения науки и техники в строительстве паровых турбин.
  • Использование энергии Солнца на Земле.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector