Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Авиационное топливо

Авиационное топливо

Авиационное топливо — горючее вещество, вводимое вместе с воздухом в камеру сгорания двигателя летательного аппарата для получения теплов

Авиационное топливо — горючее вещество, вводимое вместе с воздухом в камеру сгорания двигателя летательного аппарата для получения тепловой энергии в процессе окисления кислородом воздуха (сжигания).

Делится на 2 типа — авиационный бензин и керосин.

Бензин применяются, как правило, в поршневых двигателях, керосин — в турбореактивных.

Также известны разработки дизельных поршневых авиационных моторов, которые использовали дизельное топливо, а в настоящее время — керосин.

На данный момент из-за прогрессирующего дефицита нефти ищутся способы для замены нефтяного авиационного топлива, в том числе рассматриваются варианты топлив: синтетическое, криогенное (включая жидкий водород), криогенное метановое топливо (КМТ) и другие.

Любой авиационный двигатель рассчитывается под определенный тип (сорт) топлива, на котором он выдает требуемые параметры по мощности, приемистости, надежности, ресурсу, и рекомендуемые аналоги топлива, на которых допускается, как правило, ограниченная эксплуатация, с потерей ряда характеристик двигателя.

Авиационный бензин

Основная область применения авиационного бензина — топливо высоконагруженных поршневых двигателей внутреннего сгорания.

Основной способ производства авиационного бензина — прямая перегонка нефти, каталитического крекинга или риформинга без добавки или с добавкой высококачественных компонентов, этиловой жидкости и различных присадок.

Для авиабензина основными показателями качества являются:

детонационная стойкость (определяет пригодность бензина к применению в двигателях с высокой степенью сжатия рабочей смеси без возникновения детонационного сгорания);

фракционный состав (говорит об испаряемости бензина, что необходимо для определения его способности к образованию рабочей топливовоздушной смеси; характеризуется диапазонами температур выкипания (40-180(°)С) и давлений насыщенных паров (29-48 кПа));

химическая стабильность (способность противостоять изменениям химического состава при хранении, транспортировке и применении).

Классификация авиационного бензина основывается на их антидетонационных свойствах, выраженных в октановых числах и в единицах сортности.

Сорта советского авиационного бензина ранее маркировались по системе: буква Б и через дефис — цифра, обозначающая октановое число.

Как пример, в СССР в 1950 х гг. выпускались авиационные бензины — Б-59, Б-70, Б-74, Б-78б и Б-78г, причем 2 последних несколько различались по химическому составу, что обозначали литеры после цифры: б — это из бакинских месторождений нефти, а г — из грозненских.

В дальнейшем для повышения октанового числа в бензин вводилась антидетонационная присадка:

продукт Р-9 (тетраэтилсвинец — 55%, бромистый этил — 35%, монохлорнафталин — 10%, красный краситель);

продукт В-20 (тетраэтилсвинец — 55%, бромистый этил — 35%, дихлорэтан — 10%, синий краситель);

Присадка добавлялось по объёму от 1 до 4 см 3 /литр.

Бензин с присадкой имел маркировку:

на основе Б-59: 1Б-59(73), 2Б-59(78), 3Б-59(81), 4Б-59(82)

на основе Б-70: 1Б-70(80), 2Б-70(85), 3Б-70(87), 4Б-70(88)

на основе Б-74: 1Б-74(85), 2Б-74(88), 3Б-74(90), 4Б-74(92)

на основе Б-78: 1Б-78(87), 2Б-78(92), 3Б-78(93), 4Б-78(95)

где цифра перед буквой Б означает объём количества присадки в см3 на литр бензина. В скобках число показывает итоговое октановое число смеси бензина с присадкой.

Также готовились топливные смеси, с добавлением в бензин бензолов и изооктанов, с октановым числом 95:

Смесь №1: 60% Б-70, 20% изооктана и 20% неогексана.

Смесь №2: 60% Б-70, 20% алкилбензола и 20% неогексана.

Смесь №3: 60% Б-70, 32% изооктана и 8% изопентана.

С распространением турбореактивных двигателей производство авиационного бензина было значительно сокращено.

К концу 20 го века в производстве оставались этилированный бензин Б-91/115 и Б-95/130, которые маркируются по ГОСТ 1012-72 через дробь: в числителе — октановое число или сортность на бедной смеси, в знаменателе — сортность на богатой смеси.

Затем производство этого бензина в России было полностью прекращено, а парк легкомоторной авиации начал использовать автомобильный бензин АИ-95 или импортный бензин AVGAS 100LL (с осени 2016 года 100LL производится в РФ по ГОСТ Р 55493-2013).

Также осталось производство бензина Б-70, который долгое время применялся в качестве горючего для турбостартеров двигателей самолётов типа Ту-16, Ту-22, МиГ-21 и ряда др.

В настоящее время этот бензин в основном применяется при техническом обслуживании техники в качестве растворителя.

Реактивное топливо

Керосин — фракция нефти, выкипающая в основном в интервале температур 200-300°С

Реактивное топливо, топливо для авиационных реактивных двигателей — это как правило, керосиновые фракции, получаемые прямой перегонкой из малосернистых (например, Т-1) и сернистых (ТС-1) нефтей.

В настоящее время прямоперегонного авиационного топлива мало, широко применяется гидроочистка и добавка присадок.

Керосин применяется для бытовых целей как печное и моторное топливо, растворитель лаков и красок.

Реактивное топливо применяется в качестве горючего для газотурбинных двигателей самолётов и вертолётов гражданской и военной авиации, и кроме того, топливо на борту воздушного судна также может использоваться в качестве теплоносителя или хладагента (топливно-воздушные и топливно-масляные радиаторы), и в качестве рабочей жидкости гидросистем (например, управление сечением реактивного сопла двигателя).

Также реактивное топливо широко применяются как растворитель при техническом обслуживании воздушных судов, при очистке от загрязнений ручным либо машинным способом (например, в ультразвуковой установке для очистки фильтров в качестве рабочей жидкости применяется авиакеросин).

Авиационное реактивное топливо проходит в общей сложности до 8 ступеней контроля качества, а в Российской Федерации, кроме того, и приемку военным представителем.

Реактивное топливо вырабатывается в основном из среднедистиллятных фракций нефти, выкипающих при температуре 140-280 С° (лигроино-керосиновых).

Широкофракционные сорта реактивного топлива изготовляются с вовлечением в переработку бензиновых фракций нефти.

Для получения некоторых сортов реактивных топлив (Т-8В, Т-6) в качестве сырья применяются вакуумный газойль и продукты вторичной переработки нефти.

Кроме углеводородов в реактивном топливе в незначительных количествах присутствуют сернистые, кислородные, азотистые, металлорганические соединения и смолистые вещества.

Их содержание в реактивных топливах Регламентируется стандартами.

В России и странах СНГ, эксплуатирующих советскую авиатехнику, используются следующие типы авиационного топлива:

— ТС-1 в РФ производится по ГОСТ 10227-86 с изм. 1-6. — прямогонная фракция 150-250 С°, либо смесь прямогонных и гидроочищенных фракций (основным ограничением является содержание общей серы и меркаптановой не более 0,2 % и 0,003 %).

Самый массовый вид авиационного топлива на территории РФ и постсоветском пространстве, предназначенный для всех старых типов турбовинтовых и дозвуковых турбореактивных двигателей, также на нём эксплуатируются самолёты зарубежных производителей.

По своим характеристикам и области применения примерно соответствует зарубежному керосину Jet-A.

Является резервным по отношению к топливу РТ.

— РТ — высококачественное топливо, нефтяная фракция 135-280 С° с полной гидроочисткой.

Содержание серы: общей — 0,1 %, меркаптановой — 0,001 %.

В связи с гидрокрекингом топливо «сухое», то есть имеет низкие смазывающие свойства.

Читать еще:  Что такое предпусковой подогреватель двигателя пандора

В процессе производства в него вводятся антиокислительная и антиизносная присадки.

Предназначено для турбореактивных дозвуковых и некоторых сверхзвуковых самолётов (Су-27, Ту-22М3 и др.), а также в качестве резерва топлива ТС-1.

Зарубежных аналогов для данного топлива нет.

-Т-6 и Т-8В — термостойкое реактивное топливо для двигателей некоторых сверхзвуковых самолетов (например, МиГ-25).

Производятся по очень сложной технологии с гидроочисткой и введением присадок.

Это топливо производятся только для нужд Министерства обороны РФ.

Традиционное топливо реактивных двигателей

Для небольших винтовых самолетов (частных и рейсовых самолетов местных авиалиний) в качестве топлива используется высокооктановый бензин. Но большинство самолетов гражданской и военной авиации являются реактивными и работают на соответствующем топливе различных сортов. Есть также самолеты, в которых используется турбовинтовой двигатель (Под винтовыми двигателями автор, очевидно, понимает самолет с поршневым двигателем в качестве источника энергии и воздушным винтом в качестве устройства, создающего тягу (движителя). В турбовинтовом двигателе источником механической энергии является турбина, а в качестве движителя используется воздушный винт и сопло. В реактивном двигателе мощность турбины затрачивается только на привод компрессора, а тяга создается только соплом.).

Реактивные и турбовинтовые самолеты заправляются смесью высокооктанового бензина и реактивного топлива (Высокооктановым бензином могут заправляться самолеты с поршневыми двигателями (ДВС), а реактивные и турбовинтовые самолеты используют в качестве топлива керосин — традиционное топливо реактивных двигателей. Использование смесей этих видов топлива для реактивных и турбовинтовых двигателей принципиально невозможно.).

Что такое топливо для реактивных двигателей?

В большинстве видов реактивного топлива для реактивных двигателей в качестве основы используется керосин, выделяемый при переработке нефти наряду с бензином, дизельным топливом и другими нефтепродуктами. Керосин можно также получать из угля. Именно так и было в середине XVIII века, когда керосин применялся для газовых ламп, которыми обеспечивалось внутреннее и внешнее освещение до появления электрических ламп.

Керосин имеет различные области применения, не связанные с авиацией. В Японии он используется для отопления домов. На нем работают некоторые портативные печки для туристов и альпинистов. Керосин применяется в индустрии развлечений, так как он горит на открытом воздухе, выпуская эффектные языки пламени. Им можно воспользоваться в качестве растворителя. Керосином можно уничтожать вшей, правда, он вызывает воспаление кожи. Керосин, который используется для особых целей, очищается лучше, чем тот, который берется в качестве основы для реактивного топлива. Он имеет специфический запах, подобный запаху дизельного топлива, который может вызвать у некоторых людей тошноту или головную боль.

Когда керосин очищается для использования в качестве топлива для реактивных двигателей, в нем снижается содержание серы, а также уменьшаются природные коррозийные свойства. Наиболее часто в Америке используется полученное из керосина топливо для реактивных двигателей марки JET А. Оно замерзает при температуре —40 °С (—40 Т) и имеет температуру самовозгорания примерно 425 °С (800 °F). Некоторые другие виды топлива для реактивных двигателей, особенно JET В, замерзают при более низких температурах, но они более летучи, поэтому используются только для полетов в высоких, или полярных, широтах, где температуры экстремально низкие.

В топливо для реактивных двигателей, получаемое из керосина, добавляются присадки, такие как антиоксиданты (чтобы топливо не стало слишком вязким)(Антиоксиданты применяются для сохранения свойств (консервации) различных материалов.); вещества, обеспечивающие нейтрализацию статического электричества (которое может вызвать искру и последующий пожар или взрыв); химические вещества, обеспечивающие понижение коррозийной активности чистого керосина; вещества, замедляющие образование льда, — ингибиторы оледенения (чтобы предотвратить замерзание трубок, по которым поступает топливо), а также тетраэтилсвинец — антидетонационная присадка, которая ранее вводилась и в автомобильный бензин.

Что является топливом для реактивных двигателей

Пожалуйста включите JavaScript в вашем браузере для полноценной работы сайта.

  • О Компании
  • «Роснефть» сегодня
  • История Компании
  • Перспективы развития и стратегия
  • Ключевые принципы в области налогообложения
  • Карьера в компании
  • Прочая деятельность
  • Контакты

  • Совет директоров
  • Правление
  • Внутренний аудит и ревизионная комиссия
  • Устав и внутренние документы
  • Управление рисками и внутренний контроль

Разведка и добыча

Переработка и сбыт

  • Устав и внутренние документы
  • Отчетность, Презентации и Годовые отчеты
  • Раскрытие информации
  • Календарь инвестора
  • Роснефть: вклад в реализацию целей ООН в области устойчивого развития
  • ESG
  • Инсайдерам
  • Акционерный капитал
  • Дивиденды
  • Информация для акционеров
  • Инструменты инвестора
  • Контактная информация
  • Осторожно мошенники

  • Пресс-релизы
  • Новости
  • Новости дочерних обществ
  • «Роснефть» сегодня
  • Корпоративные СМИ
  • Видеоматериалы
  • Фотогалерея
  • Контактная информация

  • Поддержка международных инициатив в области устойчивого развития
  • Взаимодействие с заинтересованными сторонами
  • Отчеты в области устойчивого развития
  • Подходы к соблюдению прав человека
  • Противодействие коррупции
  • Горячая линия безопасности
  • Промышленная безопасность, охрана труда и окружающей среды
  • Наука и инновации
  • Корпоративный научно-проектный комплекс
  • Персонал
  • Корпоративная культура
  • Социальная политика
  • Система корпоративной сертификации

  • Пресс-релизы
  • Новости
  • Новости дочерних обществ
  • «Роснефть» сегодня
  • Корпоративные СМИ
  • Видеоматериалы
  • Фотогалерея
  • Контактная информация

« Август, 2021

ПнВтСрЧтПтСбВс
1
2345678
9101112131415
16171819202122
23242526272829
3031
  • Январь
  • Февраль
  • Март
  • Апрель
  • Май
  • Июнь
  • Июль
  • Август
  • Сентябрь
  • Октябрь
  • Ноябрь
  • Декабрь

«Роснефть» приступила к реализации высокооктанового топлива АИ-100 производства Ярославского НПЗ

Розничная сеть «Роснефть» начала реализацию высокооктанового бензина АИ-100 производства Ярославского НПЗ. В 2021 году Ярославский НПЗ приступил к выпуску высокооктанового бензина АИ-100-К5. Запуск нового продукта стал возможен благодаря реализации программы модернизации предприятия. Бензин АИ-100 прошел все квалификационные и стендовые испытания во Всероссийском научно-исследовательском институте по переработке нефти (ВНИИ НП).

Ярославский НПЗ – третий из нефтеперерабатывающих заводов «Роснефти», на котором организован выпуск АИ-100-К5. Ранее производство высокооктанового бензина началось на Рязанском НПЗ и Уфимской группе НПЗ.

АИ-100 предназначен для высокофорсированных двигателей. Его высокие детонационные свойства позволяют в полной мере раскрыть потенциал современных двигателей и повысить эффективность работы моторов спортивных автомобилей. Применение бензина АИ-100 способствует увеличению мощности двигателя, повышению динамики разгона, а также снижению уровня вибрации и шума мотора. Высокие экологические характеристики топлива были получены благодаря использованию компонентов с низким содержанием серы, бензола и олефинов.

С января 2021 года организованы прямые поставки нового вида бензина с Ярославского НПЗ на АЗС «Роснефть» в Ярославской и Костромской областях. Кроме этого, топливо АИ-100, в том числе фирменный бензин Pulsar-100, реализуется на АЗС Компании в 19 регионах России.

Высокооктановый бензин Pulsar-100 производства НК «Роснефть является официальным топливом Российской серии кольцевых гонок, в которых принимает участие гоночная команда LADA Sport ROSNEFT. Автомобили всех классов серии используют исключительно бензин НК «Роснефть» с октановым числом 100. Высокие детонационные свойства позволяют использовать бензин Pulsar-100 как в 1,6-литровых моторах класса «Туринг-Лайт», так и в 2-литровых турбированных двигателях на машинах класса «Туринг».

Справка:

Одно из крупнейших нефтеперерабатывающих предприятий России «Славнефть-ЯНОС» входит в «НГК «Славнефть» — совместное предприятие «Роснефти» и «Газпром нефти». Объем переработки завода – более 15 млн тонн нефти ежегодно. Ассортимент продукции завода включает автомобильные бензины и дизельное топливо стандарта Евро-5, авиационный керосин и топливо для реактивных двигателей, широкий спектр масел, битумы, парафино-восковую продукцию, ароматические углеводороды, сжиженные газы и др.

Департамент информации и рекламы
ПАО «НК «Роснефть»
22 января 2021 г.

Кровеносная система авиации

Каждый день в мире выполняется более 100 тысяч авиарейсов. В год мировая авиация потребляет около 300 млн тонн топлива. Эти цифры прекрасно отражают масштаб и сложность системы авиатопливообеспечения. Системы, от надежной работы которой во многом зависит безопасность миллионов людей, пользующихся авиатранспортом

Чем заправляют самолеты

Топливо для самолетов бывает двух видов. Поршневые двигатели, которыми оборудуются небольшие самолеты и вертолеты, работают на бензине — так же, как и автомобильные моторы. Правда, по составу такое топливо несколько отличается от автомобильного. Газотурбинные двигатели (турбореактивные и турбовинтовые), которыми сегодня оснащены практически все коммерческие воздушные суда, потребляют топливо для реактивных двигателей, которое также называют авиакеросином.

Основная марка авиакеросина, которым в России заправляют почти все пассажирские, транспортные и военные дозвуковые самолеты и большую часть вертолетов — ТС-1 — топливо сернистое. Оно вырабатывается из нефти с высоким содержанием серы.

В Европе основа системы авиатопливообеспечения — керосин Jet A-1. Он считается более экологичным как раз за счет меньшего содержания серы — при его производстве прямогонная керосино-легроиновая фракция полностью проходит процедуру гидроочистки. Российский авиакеросин — это смесь гидроочищеного и неочищенного прямогонного дистиллятов. В целом же это аналоги — более того, отечественный продукт может использоваться при гораздо более низких температурах, чем «Джет». ТС-1 сегодня наравне с Jet A-1 включен в международные документы и руководства по эксплуатации не только самолетов российского производства, но и лайнеров семейств Airbus и Boeing (правда, только выполняющих полеты по России). Но это авиакеросин для гражданской авиации, не предназначенный для сверхзвуковых самолетов.

Основное авиатопливо для сверхзвуковой авиации — РТ. При его производстве с помощью гидроочистки из нефтяного дистиллята удаляются агрессивные, а также нестабильные соединения, содержащие серу, азот и кислород. При этом повышается термическая стабильность топлива, что крайне важно при полетах на сверхзвуковых скоростях, когда за счет трения о воздух нагревается весь корпус самолета, а вместе с ним и топливо в баках.

Разумеется, РТ, обладающее такими характеристиками, можно использовать и в обычных воздушных судах вместо ТС-1. Для самых же скоростных самолетов применяется авиакеросин Т-6, обладающий еще большей термостабильностью и повышенной плотностью.

Что касается авиабензина, то это, по сути, автомобильное моторное топливо, но с улучшенными свойствами, влияющими на надежность работы двигателя. Именно потребность в повышении детонационной стойкости, октанового числа, сортности, обеспечивающих запас динамических характеристик и надежности, заставляет производителей авиабензина добавлять в него тетраэтилсвинец (этилировать). Из-за токсичности эта присадка давно запрещена при производстве автомобильного бензина, но двигатель самолета работает в гораздо более напряженном режиме, а создать неэтилированный авиабензин, не уступающий по характеристикам этилированному, октановое число которого превышает пока не удалось никому.

При этом самым современным и совершенным самолетам и вертолетам с поршневыми двигателями нужен авиабензин с повышенным октановым числом — не меньше 100. Поэтому разработкой экологичных аналогов этилированного авиабензина 100LL (одна из самых востребованных марок в мире) сегодня занимаются ведущие производители и научные центры во всем мире. В том числе подобная программа существует и у «Газпром нефти».

100 тысяч авиарейсов выполняется в мире каждый день

Заправка в крыло

Правильная организация заправки даже одного воздушного судна — процесс сложный и при этом очень ответственный. Инцидентов и катастроф, причиной которых стала некачественно организованная заправка, к сожалению, в истории мировой авиации произошло немало. Достаточно вспомнить аварию 2000 года, когда у Ту-154 авиакомпании «Сибирь», летевшего из Краснодара, при посадке в Новосибирске отказали все три двигателя. Как показало расследование, топливные насосы просто забило частицами эпоксидного покрытия, кустарно нанесенного на внутренние стенки топливозаправщика умельцами одного из краснодарских ремонтных предприятий. Но если в этом случае благодаря профессионализму пилотов обошлось без жертв, то в Иркутске при падении гигантского транспортника Ан-124 на жилые дома в 1997 году погибли 72 человека. Одна из версий причины отказа трех двигателей «Руслана» из четырех — превышение содержания воды в авиационном топливе, которое привело к образованию кристаллов льда, забивших топливные фильтры. Чтобы такого не случалось, весь процесс заправки очень жестко регламентирован, а само топливо проходит несколько проверок качества на пути от нефтеперерабатывающего завода до бака самолета.

Первый этап — выходной контроль на самом НПЗ. Однако качественные характеристики керосина могут измениться при его перевозке в случае несоблюдения всех правил транспортировки. Поэтому при приеме керосина на топливозаправочном комплексе (ТЗК), вне зависимости от того, каким путем оно пришло с завода: по трубе, как в аэропортах московского авиаузла или санкт-петербургском Пулково; железнодорожным или автомобильным транспортом, как это происходит в большинстве воздушных гаваней страны, или, тем более, если керосин проделал долгий путь, включающий и наземные и водные маршруты, как при доставке в отдаленные точки, такие как Чукотка, — обязательно проводится входной контроль. Из каждой партии берутся пробы для лабораторных исследований, а также арбитражная проба, которую сразу опечатывают и хранят на случай возникновения разногласий в оценке качества у разных участников процесса топливообеспечения. Само топливо при закачке в приемные резервуары ТЗК проходит через фильтры с тонкостью фильтрации не более 15 мкм.

Затем керосин отстаивается в резервуарах, после чего проходит полномасштабную проверку по всем основным параметрам, определенным ГОСТом, таким как плотность, фракционный состав, кислотность, температура вспышки, кинематическая вязкость, концентрация смол, содержание воды и механических примесей, температура начала кристаллизации, взаимодействие с водой, удельная электропроводность. Если экзамен успешно сдан, керосин получает паспорт качества, который становится для топлива пропуском на перрон аэропорта. Правда, перед выдачей для заправки самолета, керосин проходит еще один этап контроля — аэродромный — и еще раз фильтруется, теперь через еще более мелкий фильтр. Проверке подвергается и сама заправочная техника, которую без специального контрольного талона до самолета не допустят.

Заправляют самолеты двумя способами. В крупных современных аэропортах перрон соединен с ТЗК системой центральной заправки, а на самолетных стоянках установлены топливные гидранты. Из них керосин в баки воздушного судна перекачивается через специальные заправочные агрегаты (ЗА). Однако пока все же более распространен другой способ — с помощью цистерн—топливозаправщиков (ТЗ). В свою очередь в ТЗ керосин наливается на пунктах налива — складских или перронных. В зависимости от размера цистерны топливозаправщик может вместить до 60 тысяч литров керосина.

Перед началом закачки топливо еще раз проверяют, правда, без использования лабораторий. Керосин сливается из резервуаров ТЗ в прозрачную банку, и визуально определяется наличие в нем воды, кристаллов льда или осадка. Также проверяется и наличие воды в баках самолета перед заправкой и после нее. Перед подсоединением рукава топливозаправщика к горловине бака и само воздушное судно, и ТЗ обязательно заземляются. В истории бывали случаи, когда разряды статического электричества воспламеняли топливо и вызывали серьезные пожары. Для обеспечения безопасности людей самолеты практически всегда заправляются до посадки в них пассажиров.

Где хранится керосин

Объем топливных баков самого крупного и вместительного до последнего времени пассажирского лайнера Boeing-747 достигает 241 140 л (у последних модификаций). Это позволяет залить около 200 тонн топлива. Более привычные ближне- и среднемагистральные Boeing-737 и Airbus A-320 могут принять по

В большинстве самолетов топливо размещается в крыльях и баке, расположенном в центральной части самолета. На некоторых моделях еще один бак есть в хвосте или стабилизаторе — для утяжеления задней части самолета и облегчения взлета, а также для регулировки центровки самолета в полете.

Сначала топливо вырабатывается из внутренних отсеков крыла, затем из концевых. Однако непосредственно к двигателям керосин поступает только из одного бака — расходного (как правило, центрального), куда перекачивается изо всех остальных емкостей.

Для того чтобы предотвратить снижение давления при расходе топлива и прекращения его подачи в топливную систему, все баки сообщаются с атмосферой с помощью специальных дренажных баков в концевой части крыла. Попадающий в них забортный воздух замещает объем израсходованного горючего.

Топливо по бакам на современных лайнерах распределяется автоматически с помощью бортового компьютера. Соблюдение баланса крайне важно, так как влияет на центровку самолета, нарушение которой может привести к самым печальным последствиям, вплоть до катастрофы. Контролировать же процесс заправки и скорректировать его в случае необходимости можно со специальной панели, расположенной рядом с местом подсоединения рукава.

Сам оператор топливозаправщика в процессе заправки держит в руке специальный прибор контроля Deadman, кнопку которого необходимо нажимать через определенные промежутки времени. Если этого не происходит, заправка прекращается — система воспринимает пропуск в нажатии как нештатную ситуацию. Как только заданное количество керосина попало в баки, автоматика отключает подачу топлива, и заполняются документы, фиксирующие результаты заправки.

Автоматизация по всем направлениям

Постоянно автоматизируется не только сам процесс того, как заправляют самолеты. Именно в этом направлении развивается и вся система авиатопливообеспечения. Уже сегодня клиенты лидеров мирового рынка в этом сегменте могут в онлайн-режиме заказать заправку своего самолета в любом аэропорту присутствия топливного оператора. Такую схему развивает, например, Air Total International, свою интегрированную облачную систему управления топливозаправкой создает и Air BP, причем делает он это совместно с глобальным центром планирования полетов RocketRoute, в платформу которого интегрируются данные о топливозаправочной сети по всему миру.

В этом же направлении двигается «Газпромнефть-Аэро» в рамках реализации программы «Цифровой ТЗК».

241 тыс. л — объем топливных баков одного из самых крупных и вместительных в настоящее время пассажирских лайнеров Boeing-747

Сам процесс заправки по такой схеме выглядит как кадр из фантастического фильма. К лайнеру на стоянке подъезжает ТЗ, пилот, как на обычной АЗС, платит за топливо пластиковой картой с помощью мобильного терминала, которым оборудован топливозаправщик. Водитель ТЗ с планшета оформляет и распечатывает документы, подтверждающие факт заправки для пилота — уже через 10 минут в офис авиакомпании приходят необходимые финансовые документы, а баки самолета заполняются топливом.

Наличие такой системы, очевидно, повышает конкурентоспособность топливных операторов, так как значительно упрощает и оптимизирует процесс планирования полетов их клиентам — авиакомпаниям.

Зеленый керосин

Еще одно направление развития авиатопливного рынка совпадает с вектором движения рынка автомобильного — это снижение уровня вредных выбросов в атмосферу. Главная технология здесь — создание более чистого топлива, в первую очередь за счет разработки и использования биокомпонентов.

На сегодня процедуру сертификации прошли несколько технологий производства авиационного биотоплива. Биокеросин производят из биомассы с помощью процесса Фишера — Тропша*, из растительного масла, создают горючее для самолетов и на основе этилового спирта. Биокомпоненты в разных пропорциях (максимум 50×50) смешиваются с обычным авиакеросином, что позволяет сократить объем выбросов углекислого газа в атмосферу почти на 50 %. При этом конечный продукт по химическому составу эквивалентен традиционному авиатопливу, и его применение не влияет на эксплуатационные характеристики самолетов.

Одним из первых коммерческие заправки биотопливом начал аэропорт норвежского Осло, а пионером в использовании экологичного керосина стала немецкая Lufthansa. Использование биотоплива одобрено Федеральной авиационной администрацией США (FAA), им уже заправляют свои самолеты в США несколько десятков авиакомпаний.

Но у развития этого направления есть одно но — производство биотоплива пока слишком дорого, поэтому сегодня, во времена низких цен на нефть, оно не может на равных конкурировать с обычным «Джетом», а тем более с ТС-1.

Полезные дополнения

Авиакеросин, как правило, не используется в чистом виде. Для улучшения его характеристик используются различные присадки. Основные из них:

Противодокристаллизационная (ПВК-жидкость): наиболее известная присадка этого типа — жидкость «И-М». При полете на большой высоте топливо охлаждается до очень низких температур (от −30°С до −45°С). В таких условиях вода, содержащаяся в топливе, кристаллизуется, частицы льда могут забить фильтры, и двигатель остановится. Присадки эффективно решают эту проблему.

Антистатическая: увеличивает электропроводность топлива, снижая при этом активность накопления статического электричества в топливной системе и, соответственно, риск возникновения пожара.

Антиокислительная: борется с окислением топлива и отложением смолистых образований в топливной системе и двигателе.

Противоизносная: увеличивает срок эксплуатации механизмов топливной системы.

* Процесс Фишера — Тропша — химическая реакция, происходящая в присутствии катализатора, в которой монооксид углерода (CO) и водород H2 преобразуются в различные жидкие углеводороды. Обычно используются катализаторы, содержащие железо и кобальт. Принципиальное значение этого процесса — производство синтетических углеводородов

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector