Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление в конце сжатия бензинового двигателя

Давление в конце сжатия бензинового двигателя

Оценка герметичности камеры сгорания при помощи пневмотестера

Одним из условий работы двигателя внутреннего сгорания является обеспечение необходимой компрессии — давления топливовоздушной смеси (в бензиновых двигателях) или воздуха (в дизельных двигателях) в конце такта сжатия. Давление в конце такта сжатия зависит от:

— наполнения цилиндра перед началом сжатия — зависит от оборотов двигателя и пропускной способности впускных каналов;

— степени сжатия — соотношения объема цилиндра непосредственно перед сжатием (когда поршень в нижней мертвой точке) и объема в конце такта сжатия (когда поршень в верхней мертвой точке). Степень сжатия является расчетной величиной и закладывается при конструировании двигателя, в процессе эксплуатации она не меняется;

— герметичности надпоршневого пространства. Герметичность надпоршневого пространства определяется механическим состоянием двигателя. Основные места негерметичности — клапана, поршневые кольца, прокладка головки блока.

Одним из методов проверки текущего технического состояния является непосредственное измерение компрессии при помощи компрессометра. Кратко процедура выглядит так:

— из двигателя выкручиваются свечи и отключается топливоподача и зажигание (возможны варианты). Также рекомендуется демонтаж воздушного фильтра и полное открытие дроссельной заслонки;

— поочередно к свечному отверстию каждого из цилиндров подключается компрессометр (представляет из себя манометр с обратным клапаном);

— после подключения к каждому из цилиндров двигатель прокручивается стартером и определяется максимальное давление в цилиндре;

— анализируется давление в каждом из цилиндров и их разброс.

У этого метода есть свои преимущества и недостатки. Тремя основными недостатками являются:

— зависимость показаний от оборотов двигателя. При этом обороты при прокрутке стартером (250-350 об/мин) существенно отличаются даже от оборотов в режиме холостого хода (700-900 об/мин), не говоря уже о режимах частичных и полных нагрузок.

— недостаточная информативность теста для выявления не только проблемных цилиндров, но и первопричины недостаточного давления. Определенные методики для локализации мест неисправностей с помощью компрессометра существуют, но это тема отдельного материала;

— невозможность проведения теста на демонтированном двигателе, частично разобранном двигателе или двигателе с неработающим стартером.

Для того, чтобы устранить эти недостатки существует методика использования пневмотестеров — при этом, во-первых, анализируется непосредственно герметичность надпоршневого пространства (обороты не оказывают никакого влияния на измерения, так как коленчатый вал при проведении теста неподвижен), во-вторых, имеется возможность локализации неисправностей, в-третьих, имеется возможность проведения теста на снятом или частично разобранном двигателе или на двигателе с неработающим стартером, в-четвертых, показания пневмотестера более наглядны и, соответственно, понятны не только диагносту, но и владельцу автомобиля.

Герметичность надпоршневого пространства (один из основных показателей механического состояния двигателя) определяется по падению давления сжатого воздуха, подаваемого в цилиндр через свечное отверстие (на бензиновом двигателе) или отверстие для форсунки (на дизельном двигателе).

Для использования методики требуется наличие специального прибора — пневмотестера, который состоит из:

1 — входного штуцера, в который подается сжатый воздух с давлением 6-10 Атм;

2 — манометра для измерения давления подаваемого воздуха;

3 — регулятора давления подаваемого воздуха;

4 — обратного клапана;

5 — манометра для измерения давления в надпоршневом пространстве цилиндра, равного давлению подаваемого воздуха за минусом утечек (манометра контроля утечек);

6 — выходного штуцера;

7 — шлангов и адаптеров для подключения к свечному отверстию.

Типичная процедура выполнения теста

1. Прогрейте двигатель до рабочей температуры, заглушите и выключите зажигание.

2. Вывернете свечи.

3. Установите поршень проверяемого цилиндра в положение верхней мертвой точки в такте сжатия.

4. Зафиксируйте коленчатый вал — для автомобилей с механической коробкой передач включите высшую передачу и затяните ручной тормоз, для автомобилей с автоматической коробкой удерживайте коленчатый вал двигателя специальным стопором или ключом.

5. Подключите шланг пневмотестера (при необходимости с соответствующим адаптером) к свечному отверстию проверяемого цилиндра (на бензиновом двигателе) или к отверстию для форсунки (на дизеле), но не подключайте пока его к самому пневмотестеру.

6. Установите регулятор давления подаваемого воздуха (левый манометр) на минимальную величину (для избежания выхода из строя манометров при подаче воздуха).

7. Подключите пневмотестер через входной штуцер к источнику сжатого воздуха (компрессору или пневмосети) давлением 6-10 Атм.

8. С помощью регулятора давления плавно увеличивайте давление. Если рабочее давление прибора установлено в документации на прибор (как правило, 2-6 Атм) — установите рабочее давление. В общем случае надо повышать давление подаваемого воздуха до того момента, пока показания правого манометра не уменьшатся до нуля! Не увеличивайте давление подаваемого воздуха больше указанной величины — это может привести к выходу манометров из строя.

9. Подсоедините шланг пневмотестера, соединенный с тестируемым цилиндром, к певмотестеру и снимите показания давления в цилиндре по второму манометру. Его шкала может быть отградуирована как в единицах давления (Атм. и пр.), так и в процентах утечки от заданной величины давления подачи воздуха. Кроме того, зачастую на шкалу нанесены цветные сектора, показывающие области хорошего, удовлетворительного состояния цилиндра и область критической утечки.

10. При индикации критической утечки проведите дополнительные исследования для выявления места утечки (см. далее).

11. Перед отсоединением пневмотестера от цилиндра или от источника сжатого воздуха обязательно установите регулятор давления подаваемого воздуха на минимальную величину (для избежания выхода из строя манометров).

12. Отсоедините пневмотестер от свечного отверстия и повторите процедуру измерений для всех цилиндров.

Оценка показаний пневмотестера

Даже на новом автомобиле надпоршневое пространство не может быть полностью герметичным — из-за наличия конструктивных зазоров допускается падение давления подаваемого в цилиндр воздуха на 15-20%. В процессе эксплуатации этот величина утечки может увеличиться до 30-40%. Общая таблица для оценки показаний пневмотестера выглядит следующим образом:

Локализация мест утечки (для отдельного цилиндра)

Если величина утечки превышает 40-60% рекомендуется провести дополнительные исследования для выявления мест утечки. Для этого:

1. Откройте крышку радиатора и расширительного бачка, крышку маслозаливной горловины, выньте масляный щуп, снимите крышку воздушного фильтра (для карбюраторного двигателя) или отсоедините входной патрубок впускного коллектора.

2. Установите давление на входном манометре 2-6 Атм.

3. По шуму выходящего воздуха или визуально определите место или места выхода воздуха:

— выход воздуха из маслозаливного отверстия или гнезда масляного щупа свидетельствует о негерметичности пары цилиндр-поршень (проблема с поршневыми кольцами) или о разрушении поршня.

— выход воздуха из впускной системы свидетельствует о негерметичности в паре: впускной клапан — седло клапана (наиболее вероятная проблема — прогар или неправильная работа клапанного механизма).

— выход воздуха из глушителя свидетельствует о негерметичности в паре: выпускной клапан — седло клапана (наиболее вероятная проблема — прогар или неправильная работа клапанного механизма).

— выход воздуха из соседнего свечного отверстия свидетельствует о негерметичности прокладки головки блока цилиндров или трещине в блоке цилиндров.

— воздушные пузырьки (или резкое увеличение уровня жидкости) в расширительном бачке или радиаторе свидетельствуют о негерметичности или прогаре прокладки головки блока цилиндров или о трещине в головке блока цилиндров или самом блоке цилиндров.

Не исключена возможность сочетания двух и более неисправностей.

Может возникнуть вполне закономерный вопрос — зачем проводить дополнительные исследования, если при неудовлетворительных показаниях двигатель все равно подлежит капитальному ремонту? Дело в том, что:

— дополнительные исследования дополнительно подтверждают заключение данное при анализе показаний пневмотестера.

— дополнительные исследования дают мотористу важную информацию, на что обратить внимание при капитальном ремонте.

Читать еще:  Давление масло в двигателе меньше 1

Кроме того, провести приведенные тесты можно и вообще не имею пневмотестера, просто поджав сжатый воздух в свечное отверстие, ведь при этих тестах точная величина подаваемого давления значения не имеет.

Вывод. Пневмотестер является одном из важнейших вспомогательных диагностических приборов. Использование его показаний позволяет избежать проведения неоправданного капитального ремонта. А в случае реальной необходимости капитального ремонта за счет максимальной наглядности показаний («стрелка в красной зоне») не возникает каких-либо сомнений в правильности поставленного диагноза со стороны владельца автомобиля.

© АРДИО РУ, Виснап К.Н. Размещение статьи 15.08.2006. Последнее обновление статьи 25.05.2009. Перепечатка только с согласия автора и с обязательной ссылкой.

Давление в конце сжатия бензинового двигателя

Вслед за процессом наполнения при движении поршня от НМТ к ВМТ осуществляется процесс сжатия. Процесс сжатия служит для создания тех необходимых условий, которые обеспечивают наиболее эффективное после­дующее протекание процесса сгорания рабочей смеси. Необходимое зна­чение параметров конца сжатия зависит от способа воспламенения рабочей смеси в цилиндре. В дизелях температура и давление в конце сжатия долж­ны быть такими, при значении которых происходит вполне надежное само­воспламенение топлива, поданного в цилиндр.

В двигателях с посторонним источником зажигания параметры в конце сжатия не должны достигать значений, при которых может произойти само­воспламенение.

Процесс сжатия в цилиндре двигателя протекает с переменным тепло­обменом между сжимаемым зарядом и стенками цилиндра. При работе двига­теля внутренние стенки цилиндра имеют температуру значительно выше температуры свежего заряда, поступающего в цилиндр. Вследствие этого в начальный период сжатия тепло передается от стенок цилиндра к сжи­маемому заряду, а потому кривая состояний рабочего тела от точки а (рис. 28) проходит выше адиабаты ат переменной теплоемкости, проходя­щей через точку а.

При дальнейшем сжатии температура сжимаемого заряда повышается и передача тепла к нему будет уменьшаться. Процесс сжатия ас может совпасть в какой-то точке b с адиабатой bп, проведенной через точку b.

Вследствие повышения температуры заряда процесс сжатия в дальней­шем будет протекать с отводом тепла к стенкам цилиндра, а потому кривая действительного процесса сжатия пойдет ниже адиабаты bп.

Отсюда следует, что процесс сжатия протекает с переменным теплообме­ном не только по величине, но и по направлению. Характер теплообмена и характер кривой процесса сжатия зависит от различных причин: от числа оборотов двигателя, от геометрических размеров цилиндра, от охлаждения стенок цилиндра и донышка поршня, от степени сжатия, от тепловой на­пряженности цилиндра, от состояния изношенности цилиндра и поршневых колец и др.

Если весь процесс сжатия разбить на ряд участков и каждый такой участок принять как политропный процесс с постоянным показателем п, то можно установить характер изменения показателя п процесса сжатия. Определение указанным способом показателя политропы сжатия по инди­каторным диаграммам показывает, что в начале сжатия п составляет около 1,50—1,53 и в конце сжатия — пример­но Г, 1—1,17.

Для определения расчетным путем давления и температуры в конце сжа­тия (в целях упрощения этого расчета) действительный процесс сжатия заме­няют политропным с постоянным пока­зателем n1, равным среднему значению за весь процесс сжатия. Показатель по­литропы n1 должен быть принят из ус­ловия равенства параметров в начале и в конце сжатия как действительного про­цесса сжатия, так и принятого политропного.

Величина показателя пi зависит прежде всего от числа оборотов двига­теля. С повышением числа оборотов продолжительность теплообмена умень­шается, а потому n1 возрастает. Интенсивность охлаждения стенок цилиндра влияет на их температуру, а потому и на теплоотвод от сжимаемого заряда, а следовательно, и на величину n1. С усилением охлаждения (теплоот­вода) n1 уменьшается; по этой же причине n1 имеет минимальные значения в пусковой период работы холодного двигателя. Чем меньше диаметр ци­линдра, тем меньше значение n1, так как относительная поверхность охлаж­дения изменяется обратно пропорционально диаметру цилиндра D:

По мере увеличения нагрузки двигателя температура стенок цилиндра повышается и теплоотвод от сжимаемого заряда будет уменьшаться, а n1 будет возрастать. При наличии износа цилиндра и поршневых колец утечка свежего заряда в период сжатия становится больше, усиливается теплоотвод и уменьшается значение n1.

На основании опытных данных среднее значение показателя политропы сжатия n1 для определения температуры Тс и давления рс в конце сжатия может быть принято следующим:

В период пуска в ход холодного двигателя n1 примерно равно 1,18—1,2.

При отсутствии опытных данных по определению n1 можно, как пред­ложил Е. К. Мазинг, найти среднее значение показателя кажущейся адиа­баты и приравнять его п1, т. е. (k = n1).

Выражение работы для одного моля газа при адиабатном сжатии с по­стоянным значением k равно

где ис — иа — изменение внутренней энергии одного моля заряда за про­цесс сжатия;

Lзд.с — работа адиабатного сжатия одного моля заряда при постоянном среднем значении показателя адиабаты k1.

Подставляя значение изменения внутренней энергии и выражая работу через изменение температуры, получим:

После сокращения на (Тс—Та) и замены Тс на Та ? k1 — 1 получаем уравнение, из которого определяется значение k1.

где a? и b — коэффициенты линейной зависимости теплоемкости от темпе­ратуры.

Решение уравнения (19) относительно b1 удобнее производить способом последовательных приближений, задаваясь предварительно значениями k1 для вычисления правой части уравнения.

Принимая процесс сжатия как политропный процесс с постоянным показателем щ, давление и температуру в конце сжатия можно определить из уравнения этого процесса:

Из этих выражений следует, что с увеличением степени сжатия, сред­него значения показателя политропы сжатия, давления и температуры в на­чале сжатия (в конце наполнения) давление рс и температура Тс в конце сжатия повышаются.

Наибольшее влияние на величину рс и Тс оказывает степень сжатия. Действительная величина степени сжатия ?д отличается от номинальной ? = Va / Vc тем, что она равна отношению объема полости цилиндра в момент закрытия распределительных органов к объему камеры сжатия.

где ?S — доля рабочего объема цилиндра VS соответствующая моменту закрытия распределительных органов цилиндра.

При выполнении расчетов четырехтактных двигателей обычно приме­няют только номинальную степень сжатия ?, тогда как в двухтактных дви­гателях больше пользуются действительной степенью сжатия.

В двухтактных двигателях с противоположно движущимися поршнями, условная степень сжатия определяется:

?1 и ?2 — отношение R/L опережающего и отстающего поршней (здесь L — длина шатуна);

Нк — расстояние между днищами поршней, когда каждый из них находится на своей ВМТ.

У действующих двигателей степень сжатия определяется по замеряе­мому объему камеры сжатия посредством заливки этого объема маслом при нахождении поршня в ВМТ.

Увеличение степени сжатия, как это было показано ранее, увеличивает коэффициент наполнения, уменьшает коэффициент остаточных газов, об­легчает пуск двигателя в ход, повышает надежность самовоспламенения топлива (сокращая период подготовки топлива к самовоспламенению) и сокращает продолжительность процесса сгорания. Вместе с тем увеличе­ние степени сжатия вызывает рост максимального давления цикла рz, ве­личина которого лимитируется конструктивными соображениями.

В судовых тихоходных дизелях степень сжатия обычно находится в пределах 13—15, а у быстроходных дизелей с однокамерным смесеобразо­ванием степень сжатия колеблется от 15 до 15,5 и повышается до 18—20 у быстроходных дизелей с двухкамерным смесеобразованием.

Карбюраторные двигатели имеют степень сжатия: бензиновые двига­тели 5—9 и керосиновые 3—4.

Давление и температура в конце сжатия достигают величины:

Разрушители легенд. Двигатель внутреннего сгорания. Часть №3. Степень сжатия.

На самом деле совершенно не степень сжатия является темой данной статьи. Я несколько раз менял название в ходе написания текста и в конце концов вернулся к первоначальному названию, хотя к тому времени сам почти перестал понимать — что это такое и зачем…

Читать еще:  Авто не заводится горит чек двигателя

Итак.
Официальная трактовка:
Степень сжатия — отношение полного объёма цилиндра двигателя внутреннего сгорания(надпоршневого пространства цилиндра при положении поршня в нижней мёртвой точке) к объёму «камеры сгорания» (надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке):

Степень сжатия — чисто геометрическая безразмерная характеристика двигателя.

Поскольку воздух при быстром(адиабатическом) сжатии нагревается — то у двигателя со степенью сжатия 10 давление конца сжатия будет не 10 атмосфер, а около 16. Эта характеристика того же самого двигателя называется компрессия ДАВЛЕНИЕ КОНЦА ТАКТА СЖАТИЯ:

На самом деле давление в ВМТ может быть и больше(если двигатель горячий), а может быть и меньше(если двигатель холодный и сильно изношен или если используются нестандартные фазы ГРМ)…

Как я уже писал в своих предыдущих опусах — сгорание в двигателе происходит на протяжении 50-70 градусов по коленвалу в определённых «климатических» условиях. Поскольку ни СТЕПЕНЬ СЖАТИЯ, ни КОМПРЕССИЯ нам об этих самых «климатических» условиях ничего толком сообщить не могут(хотя бы по той самой элементарной причине, что замеряются они в одной единственной точке на абсолютно неработающем двигателе) — то и оперировать в дальнейшем я буду ДАВЛЕНИЕМ и ТЕМПЕРАТУРОЙ.
Ибо только они показывают что происходит в цилиндре двигателя НА САМОМ ДЕЛЕ.

А НА САМОМ ДЕЛЕ там творится нечто подобное:

Синяя кривая — это давление в цилиндре НЕРАБОТАЮЩЕГО двигателя.
Ромбик в ВМТ — это «компрессия».

Вопрос залу — а что такое эдакое означают ромбики на кривых давления РАБОТАЮЩЕГО двигателя?!

А это есть СУММАРНАЯ «компрессия», которая обеспечивается не только поршневой группой двигателя — но и давлением, создаваемым сгорающим топливом, если это топливо запалить ДО верхней мёртвой точки.
Давление это до ВМТ будет толкать и поршень и коленвал в обратную сторону, ухудшая и без того низкий КПД двигателя — но именно это давление обеспечит топливу те самые ОПТИМАЛЬНЫЕ «климатические» условия, необходимые для его полного и качественного сгорания.

В том или ином виде суммарную «компрессию» повышают и турбокомпрессор, и ЕГР, и оптимальные фазы ГРМ, и всякого рода резонансные впускные коллектора… Не суть.

Давайте повнимательнее рассмотрим все кривые на рисунке.
Чем раньше(в разумных пределах) мы запалим топливо — тем выше будет давление в ВМТ, тем лучше и полнее сгорит топливо и тем больше давления мы получим — и по максимальному значению и по площади.
Не забываем — именно давление выполняет полезную работу!

Проблема заключается только в том, что КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ это ДАВЛЕНИЕ в РАБОТУ в зоне ВМТ преобразовать ЭФФЕКТИВНО не может.

Если обеспечить момент зажигания в той точке, которая обеспечит наилучшее СГОРАНИЕ топлива, то проблем получается аж три.

1). Воспламенение топлива до ВМТ значительно снижает КПД двигателя за счёт того, что выделяемая энергия ТОРМОЗИТ коленвал, пока он не перевалит через ВМТ. Для того чтобы скомпенсировать это торможение и просто выйти по нулям — нужно аннигилировать аналогичную площадь давления газов уже сразу после ВМТ.
Синий график давления самый эффективный по площади, но про жёлтый треугольник давления можно забыть — полезной работы он не создаст:

Забавная ситуация. Самый пик давления и температуры — а вся выделяемая энергия тупо идёт в нагрев двигателя — ибо именно в этот момент осуществляется максимальная теплопередача в стенки «камеры сгорания», а полезного с коленвала снять не получается вообще НИЧЕГО.
ВСЯ выделяющаяся энергия затрачивается из полезного — ТОЛЬКО на обеспечение тех самых, наилучших для сгорания топлива, «климатических условий».
Чтобы избавиться от этого безобразия нужно воспламенять топливо исключительно после ВМТ, но тогда топливо в наших двигателях не успевает сгореть…

2). Воспламенение топлива до ВМТ значительно снижает КПД двигателя и за счёт того, что выделяемая энергия не может эффективно трансформироваться коленвалом до тех пор, пока поршень находится в зоне ВМТ:

Сиреневая кривая — это усилие на коленвалу. То, что остаётся ПОЛЕЗНОГО от давления газов — от синей кривой.

Чтобы избавиться от этого безобразия нужно обеспечить пик сгорания где-то в районе 50-70 градусов после ВМТ — вот тогда толку от давления сгорающих газов будет в разы больше. Но в существующих ДВС нормальное сгорание на этом отрезке организовать вообще не возможно — так как объём «камеры сгорания» на этом участке уже раза в три-четыре больше, чем в ВМТ, и стремительно увеличивается.

3). Воспламенение топлива до ВМТ обуславливает сгорание бОльшей части топлива в зоне малого изменения объёма камеры сгорания. Полезной работы не производится вообще — и вся энергия сгорающего топлива расходуется исключительно на повышение давления и температуры внутри «камеры сгорания». Ну и на нагрев стенок «камеры сгорания», есстесственно… Если давление и температура превысят некоторый порог — детонационные процессы(которые в «бензиновом» двигателе присутствуют ВСЕГДА) начнут УСПЕВАТЬ развиваться во взрыв.
Если поршень уже интенсивно опускается(а он с каждым градусом по КВ опускается всё быстрее) — то снижение давления в «камере сгорания» детонацию активно подавляет — не даёт развиться новым очагам самовоспламенения. Если поршень вблизи ВМТ и объём «камеры сгорания» увеличивается ещё не интенсивно — то детонация будет максимальна, так как охватит всё невоспламенившееся ещё топливо. Детанационные пики на рисунке — это не набор микровзрывов. Взрыв по сути один — объёмный. Эти пики показывают как детонационная волна мечется по камере сгорания, отражаясь и переотражаясь от стенок и вызывая этим резонансные процессы:

Рисунок рисовали балбесы. Но этот рисунок самый лучший из десятков просмотренных в инэте(мне лень их рисовать самому, сорри) — он хотя бы правильно показывает ГДЕ на кривой расположена детонация в «бензиновом» двигателе.
Чем сильнее детонация — тем быстрее сгорает топливо — тем выше пик общего давления и тем быстрее он спадает.

Детонация плоха двумя вещами:
Первая — это чрезмерные ударные нагрузки, разрушающие двигатель.
Вторая — резкое укорачивание сгорания опять удерживает пик давления в области ВМТ, где эффективное преобразование давления в работу невозможно.

Дросселирование в «бензиновом» двигателе значительно уменьшает суммарную степень сжатия.
«Климатические» условия в камере сгорания рушатся — температура и давление конца такта сжатия значительно снижаются — ВОСПЛАМЕНЕНИЕ значительно ухудшается. Для исправления ситуации приходится делать зажигание всё раньше и раньше — со всеми положительными и отрицательными моментами.
КПД двигателя по мере прикрытия дроссельной заслонки стремительно падает…

В «дизельном» двигателе ситуация отличается не сильно, но в лучшую сторону:

1). Топливо в «камеру сгорания» поступает дозировано — соответственно нарастанием давления можно худо-бедно управлять. Предвпрыск до ВМТ обеспечивает необходимые «климатические условия» в зоне ВМТ и, самое главное, — пламя. ПЛАМЯ во «всём» объёме «камеры сгорания»!
Потому основной впрыск топлива можно осуществлять после ВМТ — уже в пламя. ВОСПЛАМЕНЕНИЕ свежих порций топлива происходит практически мгновенно.

2). Поскольку смесееобразование осуществляется параллельно со сгоранием — типичная для «бензинового» двигателя детонация не возможна в принципе.
Но попытка впрыскивать топливо слишком интенсивно приводит к тому, что образуются локальные зоны с большим содержанием топлива и зоны, вообще не содержащие топлива — это нарушает смесеобразование.
Ничего хорошего не выходит и при модном нынче у производителей затянутом впрыске — воздушный вихрь делает оборот в камере сгорания и впрыск опять осуществляется в воздушную область, где кислород уже выгорел, потому как туда топливо уже впрыскивалось на предыдущем обороте воздушного вихря.

Читать еще:  Щелчок при запуске двигателя рено дастер

Интенсивность впрыска топлива в «дизельном» двигателе должна чётко синхронизироваться со складывающейся турбулизацией в камере сгорания. В идеальном случае впрыскивание топлива в камеру сгорания дизеля должно продолжаться ровно столько по времени, за сколько воздушный вихрь совершает один полный оборот.
Это должно неплохо получаться у систем на базе CommonReil — где можно и давлением в рейке манипулировать как угодно и открытием форсунок управлять очень точно…

3). Более высокая по сравнению с «бензиновым» двигателем степень сжатия обуславливает и более высокий КПД «дизельного» двигателя на режиме максимальной мощности, и намного более высокий КПД на режиме холостого хода — ведь дросселирования на «дизельном» двигателе нет.

К сожалению быстрое и эффективное сгорание топлива в ДВС приводит к образованию окислов азота. Законодательство большинства стран прямо предписывает уменьшение азотистых выбросов из года в год. Но ДЕШЁВОГО и эффективного средства ОЧИСТКИ выхлопных газов от азотистых соединений не придумали до сих пор — потому развитие двигателестроения идёт по пути уменьшения ОБРАЗОВАНИЯ окислов азота.
Основной способ — ЗАМЕДЛЕНИЕ сгорания топлива за счёт снижения предельных температур и давления в камере сгорания. Соответственно современный трэнд развития двигателестроения — снижение степени сжатия.
Тьфу ты… зарёкся же… Снижение того, что принято обзывать степенью сжатия.
А добиться этого можно, как вы уже поняли, многими способами.

Давление в конце сжатия бензинового двигателя

Все элементы и расходные материалы, окружающие устройства со временем изнашиваются. К сожалению, это неизбежно также и в случае автомобилей и двигателей внутреннего сгорания. В какой-то момент блок питания дает знать, что свое уже отработал, а некоторые группы внутри него, не подходят для замены. Симптомом, свидетельствующим о поломке, является, прежде всего, недостаточная компрессия в цилиндрах.

Для начала стоит сосредоточиться на разнице между степенью сжатия воздуха и его давлением (сжатием). Эти понятия, из-за похожего названия, часто неосознанно путают. Степень сжатия — это отношение объема воздуха, находящегося в цилиндре во время самого низкого положения поршня (в конце хода всасывания) – DMP (нижняя мертвая точка) – до объема в верхнем его положении (в конце такта сжатия) – ВМТ (верхнюю мертвую точку). На это значение, вы не имеете никакого влияния, поскольку оно вытекает из параметров гильз цилиндров и поршней. Степень сжатия определяется при проектировании привода. Ее значение для каждого автомобиля можно найти в руководстве по эксплуатации. Единственной ситуацией, в которой она может быть изменена, является планирование головки. Тогда объем камеры сгорания уменьшается на определенное минимальное значение, что влияет на увеличение степени сжатия. Сжатие правильно называется давление сжатия двигателя внутреннего сгорания, давлением воздуха или топливно-воздушной смеси при результате сжатия в цилиндре. Этот параметр зависит, в частности от состояния привода и износа уплотнительных элементов камеры сгорания, то есть, в частности, поршневых колец, клапанов и их гнезд или гильзы цилиндра, и т. д. Это один из наиболее важных параметров, необходимых для правильной работы привода. Без получения соответствующих значений сжатия не произойдет самовозгорания в случае дизельных двигателей, а во время взрыва топливно-воздушной смеси не будет создано достаточно энергии, чтобы переместить поршень в нижнее положение. Для бензиновых двигателей компрессия должна составлять 7-9 баров, а для вариантов дизельных двигателей – от 14 до 23. Разница между отдельными цилиндрами может составлять до одного бара, без негативного влияния на работу и срок службы привода. Все отклонения от нормы, превышающие это значение должно быть причиной для беспокойства.

Причины

Причин, по которым происходит недостаточное давление сжатия в двигателе, может быть несколько. Одним из примеров такой неисправности может быть повреждение или выгорание клапанов в головке или негерметичность поршневых колец. Короче говоря – любые утечки, вызывающие распаковки камеры сгорания — это самый большой враг двигателя. Наиболее радикальный сценарий, это, например, выжженная дыра в поршне или повреждение какого-либо из цилиндров. Если первые две неисправности, можно отремонтировать, и они не приведут владельца автомобиля к банкротству, то второй вариант, уже не будет так милостив для вашего кошелька. Часто, это более рентабельный вариант. Слишком низкое значение давления сжатия не должно быть единственной причиной для беспокойства. В ситуации, когда было сделано так называемое планирование головки, повышенное значение сжатия, также не означает ничего хорошего.

Как измерить компрессию?

Чтобы измерить давление сжатия в машине, единственное, что вам нужно, — это специальный измерительный прибор, ключ для свечей и немного ручного труда. Если вы не боитесь возиться в собственном автомобиле, можете смело сами взять под контроль состояние вашего двигателя. Это делается очень просто – выкрутите свечи зажигания, а затем по очереди на их место вкрутите манометр. Следующим шагом является поворот ключа в замке зажигания, чтобы заставить стартер работать в течение нескольких секунд. Затем определите результат на индикаторе устройства с помощью кнопки, расположенной на его корпусе. Позже вы можете измерить сжатие в последующих цилиндрах. Стоит помнить о соответствующей подготовке автомобиля для такого исследования. В первую очередь следует убедиться, что аккумулятор и стартер находятся в безупречной форме. Кроме того, чтобы обеспечить достоверность измерений, следует придерживаться конкретных рекомендаций производителя, касающихся процедуры измерения. Для некоторых автомобилей необходимо полностью охладить двигатель, прежде чем приступить к действию. Другие инструкции требуют подогрева привода для его оптимальной рабочей температуры (значения для масла должно быть не менее 70-80 градусов по Цельсию). Для некоторых автомобилей может потребоваться также максимальное нажатие на педаль газа во время работы стартера, чтобы обеспечить полное открытие дроссельной заслонки. Однако все зависит от модели автомобиля и рекомендаций производителя. Поэтому, прежде чем приступить к действию, хорошо бы заглянуть в так называемые инструкции, чтобы увидеть, с чем вообще вы имеете дело.

Манометр – необходим для контроля давления

Устройство, которое позволяет вам осуществить самостоятельный контроль технического состояния привода, не является слишком сложным. Оно состоит из указателя (часто аналогового), оснащенного соответствующей шкалой (бары, атмосферы), а также наконечники для гнезда свечей зажигания. Хотя есть универсальные приборы, которые предназначены для бензиновых двигателей. Наконечники манометров предназначены для контроля давления в единицах с искровым зажиганием часто просто размещают в отверстиях при свечах, а резиновая прокладка предотвращает протекание воздуха снаружи камеры сгорания. Каждый манометр имеет значение критического давления, возможное для поддержания и измерения. Большинство имеющихся датчиков предназначены для бензиновых двигателей, так как их максимальное давление составляет 10 бар, хотя можно найти варианты до 20. Это необходимый аксессуар, который каждый должен иметь в своем гараже. Это незаметное, на первый взгляд, устройство позволит вам, как можно быстрее диагностировать все возможные неисправности в вашей машине. И чем быстрее данный недостаток будет обнаружен, тем меньше вероятность серьезных аварий.

Что бы сохранить автомобиль в превосходном состоянии необходимо вовремя обслуживать свой автомобиль это как замена масла, фильтров, тормозных дисков и колодок, в этом поможем мы выберите ваш автомобиль из списка.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector