Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания

Выявить резервы форсирования двигателя можно с привлечением формулы для расчета эффективной мощности, кВт:

где — среднее эффективное давление, МПа; — рабочий объем цилиндра, дм³; i — количество цилиндров двигателя; n — частота вращения КВ, 1/мин; — тактность двигателя (для 2-х тактных =2, для 4-х тактных =4)

Рабочий объем цилиндра равен =**S / 4, очевидно, что увеличение диаметра цилиндра D оказывает на повышение мощности большее влияние, чем такое же увеличение хода поршня S.

Мощность двигателя с наддувом в значительной мере пропорциональна давлению наддува. Это позволяет ориентировочно оценить значение мощности, получаемое при наддуве двигателя, по формуле:

где, Pek — мощность двигателя с наддувом; P e — мощность двигателя без наддува; pka — абсолютное давление наддува; p — атмосферное давление.

Формула геометрической степени сжатия, , где — рабочий объем цилиндра; — объем камеры сгорания. т.е. геометрическая степень сжатия представляет собой отношение полного объема над поршнем (при положении поршня в НМТ) к объему над поршнем при положении его в ВМТ.

Определить значение эффективной степени сжатия приближенно можно по формуле , где k — показатель адиабаты (численное значение равно 1,41). Формула дает удовлетворительные результаты при допущении, что температура в конце процесса сжатия у двигателя с наддувом и без наддува одинаковая. Очевидно, что обеспечения бездетонационного сгорания при увеличении наддува геометрическую степень сжатия необходимо уменьшать. Например, если двигатель без наддува имеет степень сжатия 10, то в случае наддува его при давлении p ka = 1,3 бар следует геометрическую степень сжатия уменьшить до 8,3 бар, а в случае наддува при давлении pka = 1,8 бар — до относительно низкого значения 6,6.

Важным фактором, позволяющим повысить степень сжатия без риска возникновения детонационного сгорания, является охлаждение наддувочного воздуха.

Из теории ДВС известно, что мощность двигателя ( ) определяется следующим выражением:

где низшая теплота сгорания топлива, — количества воздуха, теоретически необходимое для полного сгорания данного топлива,, i — тактность двигателя (4 или 2) и число цилиндров, — рабочий объем цилиндра, — коэффицент избытка воздуха,,,— соответственно, коэффицент наполнения, индикаторный и механический к.п.д., — плотность наддувочного воздуха, n — частота вращения коленчатого вала, К — константа.

Анализ этого выражения показывает, что мощность двигателя можно увеличить, увеличивая число оборотов i — при сохранении размеров цилиндра, или увеличивая рабочий объем цилиндра , т.е. его размеры, или увеличивая частоту вращения коленчатого вала n, или создавая вместо четырехтактного двигателя двухтактный, т.е. меняя , или применяя эти методы совместно. Однако очевидно, что в этом случае меняется конструкция двигателя, меняются масса и габариты двигателя.

Количество свежего воздуха, всасываемого двигателя с наддувом, равно

,где n — в 1/с. Количество воздуха, идущего на продувку, определяется с использованием характеристик проходных сечений впускных и выпускных органов. Если температура однозначно зависит от давления (через КПД компрессора или благодаря применению охладителю наддувочного воздуха), то при постоянном противодавлении на выпуске двигателя имеется только одна линия расхода. Если у двигателя, не имеющего охладителя наддувочного воздуха, температура , соответствующая определенному давлению наддува, понижается (например, из-за повышения КПД компрессора, т.е. уменьшения показателя политропы n), то объемный V и массовый расход воздуха через двигатель увеличатся. Однако влияние КПД компрессора на объемный расход воздуха невелико:

Количество расхода масла вашего двигателя можно подсчитать следующим способом:

Залитое количество масла (см³) — Слитое количество масла (г) : 0,86 г/см³
Километраж при сливе — километраж при заливке масла

* * * * *

Полная сила — F = Fw-D-R, где D-сила аэродинамического сопротивления, R-сила сопротивления качению, Fw-тяговое усилие

Сила аеродинамического сопротивления D=0,5 Cx p(Po)SV², где Cx-коэфф.динамического сопротивления, p(Po)-Плотность воздуха, S-площадь лобового сечения

Сила сопротивления качению R = KrV = 1,03V, где Kr-коэфф.трения качения колеса

Тяговое усилие Fw = TeGn / (d/2), где Те-крутящий момент двигателя, G-главная пара, Gn-произведение передаточных чисел главной пары и включенной Передачи, d-диаметр колеса

Скорость вращения колеса W = 60V/πd, где V-скорость движения авто, d-диаметр колеса

Скорость вращения вала двигателя E = WGn, где W-скорость вращения колеса, Gn-произведение передаточных чисел главной пары и вкл. передачи

Пример: Имеем 7 литров 92-го бензина с АЗС, и 3 литра 113 бензина купленного не на АЗС. Каково ОЧ смеси (математ.)?

  1. Общее количество смеси 10 литров.
  2. % Базового бензина составляет 70% с октановым числом 92 (Ну поверим ГОСТу, просто так, хотя рекомендую считать не 92, а 90 по РОН, вернее будет
  3. Процент присадки составляет 30% с октановым числом 113 по РОН. (Исследовательский метод, экстраполяция шкалы УИТ-85)
  4. Применяем формулу. Получаем ОЧ смеси 98.30 (Если верим ГОСТ и считаем 92 как 92ОЧ, а не как 90)

Объем, образующийся дополнительно в цилиндре при перемещении поршня от ВМТ к НМТ называется рабочим объемом цилиндра. Он обозначается VR и равен площади цилиндра умноженной на ход поршня.

Полным объемом цилиндра является объем над поршнем, когда он расположен в НМТ. Он обозначается Va и равен сумме объемов камеры сжатия и рабочего.

Степень сжатия Е называют отношение полного объема цилиндра к объему камеры сжатия. (сгорания)

Степень сжатия показывает во сколько раз изменяется объем цилиндра при перемещении поршня от НМТ к ВМТ. Она оказывает большое значение на экономичность работы и мощность двигателя.

Геометрическая степень сжатия вычисляется по следущей формуле E=(Vh+Vc)/Vc, где Vh это рабочий объем цилиндра, а Vc это объем камеры сгорания, определяемый количеством масла, залитого в свечное отверстие.

Существуют различные системы измерения мощности двигателя, не всегда сравнимые напрямую, хотя есть четкие взаимосвязи между отдельными единицами измерения.

Киловатт (кВт) 1 кВт = 1,35962 л.с. = 1,34102 hp
Лошадиная сила (л.с.) 1 hp = 1,0139 л.с.
Лошадиная сила США (hp) 1 л.с. = 0,9862 hp

Давно и прочно вошел в обиход киловатт, но мощность определяют по разным стандартам и испытательным инструкциям по испытаниям. Есть несколько контор, разработавших свои методы измерения. От отдельных методов уже отказались.

DIN Германский институт стандартизации
ECE Европейская экономическая комиссия ООН, ЕЭК ООН
EG Европейское экономическое сообщество, EЭC
ISO Международная организация по стандартизации, ИСО
JIS Японский промышленный стандарт
SAE Общество инженеров автомобильной промышленности (США)

Степень сжатия и компрессия в ДВС.

Не стану рассуждать о разницы степени сжатия и компрессии. Об этом и так уже много написано.
Просто расскажу об этих 2ух определениях.
Для начала рассмотрим Степень Сжатия, и о том как и почему изменение толищны прокладки на пол миллиметра, может влиять на Степень Сжатия.
Многие вообще не понимают, что такое степень сжатия, и как ее рассчитать.

Степень сжатия — это отношение полного объема цилиндра к объему камеры сгорания.

Полный объем цилиндра — это сумма рабочего объема и объема камеры сгорания

Рабочий объем — это объем цилиндра ограниченный ходом поршня, то есть объем между НМТ (Нижняя Мертвая точка — точка ниже, которой поршень не может опуститься, из за конструкционных особенностей кривошипа) и ВМТ (Верхняя Мертвая Точка) .
Как известно из математики, Объем цилиндра равен произведению площади сечения на высоту цилиндра.

Объем камеры сгорания — надпоршневое пространство при нахождении поршня в ВМТ. Объем ограниченный поршнем и головкой блока.
Объем камеры сгорания трудно вычислить, обычно ее измеряют.
Тогда Степень сжатия можно записать следующим образом

Читать еще:  Что такое eci multi на двигателе

Для чего нужны эти формулы?
Но допустим мы имеем мотор 2ZZ-GE
Диаметр цилиндра = 82мм
Ход поршня = 85 мм
Степень сжатия = 11.5
И хотим уменьшить СЖ, для того чтобы немного вдуть. Технология проста. Допустим измерив толщину заводской прокладки, мы получили значение в 0.5мм.
Как изменится степень сжатия, при установки 2ух таких прокладок вместо одной?
Как сильно влияют эти несчастные полмиллиметра на СЖ ?

По выше приведенным формулам может записать следующие равенства:

Таким образом, мы вычислили заводской объем камеры сгорания нашего мотора.
при увеличении толщины прокладки на 0.5 мм, мы просто добавляем к объему камеры сгорания, объем цилиндра с высотой 0.5, ну или математическим языком?

Таким образом «плюс полмиллиметра» уменьшили степень сжатия на 0.6 единиц.

Компрессия. В заводском исполнение вышеописанный двигатель обладает достаточно высокой степенью сжатия CR = 11.5
Очень часто встречаюсь с напуганными людьми, выходящими из сервиса с шарообразными глазами… С диагнозом механика
«Ваш 2ZZ скорее мертв, чем жив»
«Компрессия у него 17 атмосфер… Нормальная должна быть 12…»
И выглядишь ты перед этим механиком с 20 летним стажем, как неуч… И никакие потрясания мануалом с записью
«Давление конца такта сжатия НЕ НИЖЕ 14» вам не помогут. Так как гуру здесь только один… у него за плечами опыт.

Компрессия в двигателе — это процесс сжатия газа, поршнем при его движении из НМТ в ВМТ (такт сжатия), сопровождающийся при этом движении повышением давления и температуры газа.
С давлением все понятно — это как раз и будет искомая нами величина компрессии или давление конца такта сжатия
Но если компрессия измеряется на заглушенном двигателе, причем здесь изменение температуры?
Все дело в том, что при измерении компрессии, происходит сжатие не топливной смеси, а обычного воздуха… И двигатель, вращаемый стартером, превращается в простой поршневой насос, в котором протекает процесс с газом неизменной массы… Сжатие в таком процессе, называется адиабатическим и описывается уравнением Пуассона.

Конечно это уравнение термодинамического процесса для идеального газа, в изолированной системе, с множеством упрощений, но для показательного описания, я могу спокойно допустить эти упрощения.
И так… В конце такта сжатия, процесс можно описать, следующим уравнением

P — давление
V — объем сжатого газа, то есть над поршневое пространство, при занятии поршнем Верхней Мертвой Точки
y — показатель адиабаты
Так же рассмотрим начало такта сжатия

Чтобы делать формулы а затем из них картинки, занимает время, поэтому я опустил несколько шагов, в частности
V = Vр + Vc = Это объем занимаемый газом в начале такта сжатия, логично предположить, что это надпоршневое пространство, при занятии поршнем НМТ. И состоит, оно из рабочего объема цилиндра, и объема камеры сгорания.
Предположив, что адиабатический процесс происходит в изолированной системе, следующее равенство, должно быть справедливым

Выполнив простые математические действия, приведем равенство к такому виду

Пытливый ум должен был уже увидеть знакомую формулу из рассмотрения Степени Сжатия

Дальнейшие преобразования уже не нужны
P0 — давление воздуха в начале такта сжатия, равно атмосферному

показатель адиабаты, для двухатомного газа, а воздух, которым дышим мы и мотор — является смесью 2ухатомных газов, равен

Но система ДВС не является полностью изолированной, в процессе сжатия происходит теплообмен со стенками цилиндров, утечки и т.д.
показатель адиабаты принято считать 1.2

Применив современный калькулятор

Нетрудно вычислить, что для мотора 2ZZ-GE, со степенью сжатия 11.5, НОРМАЛЬНАЯ компрессия в лучшем случае, может быть 18.7 атмосфер.
Но моторы у нас не новые… соответственно и потери больше.

Степень сжатия и компрессия

Это параметр конструктивный, раз и навсегда присущий данному типу двигателя и не изменяющийся в процессе эксплуатации (в этой формуле не учитывается утечки, мы имеем дело с двумя объёмами, по этому теоретически он не изменен — ход поршня не меняется объём камеры сгорания тоже).

Компрессия это максимальная величина давления создаваемого в камере сгорания в верхней мёртвой точке (очень похоже на степень сжатия и здесь мы имеем дело с теми же объёмами, но только заполненными воздухом, топливом или смесью топлива и воздуха, а так как они имеют определённую плотность то после сжатия стремятся принять прежнее состояние — это и составляет давление). При нагреве, за счет увеличения расстояния между атомами линейные размеры тела увеличиваются. По этому при сборке приходится оставлять как минимум тепловые зазоры между деталями, иначе при нагреве их просто заклинит (что часто и происходит, надиры на поршнях и гильзах в основном являются следствием теплового расширения). Поэтому даже полностью исправная цилиндропоршневая группа всегда имеет зазоры в которые и стремится при сжатии проникнуть воздух из камеры сгорания, например в картерное пространство.

Возможные пути утечек давления.(см. рис.2)

Основные места утечек воздуха из камеры сгорания:

а) в зазор между кольцами и поверхностью цилиндра или в зазор в замке колец;

б) в зазор по торцевым поверхностям колец и канавок поршней;

в) в зазор между седлом и клапаном;

г) в зазор между поврежденной прокладкой и плоскостью головки или блока;

д) в трещину в стенке камеры сгорания.

показатель степени для идеального двухатомного газа составляет x=1,4. Таким образом, для двигателя со степенью сжатия 8.5 максимальное давление составляет примерно 20 атм. Кстати, очень похожая цифра (16-17 атмосфер) получается у двигателя с идеально притертыми клапанами при измерении компрессии «с маслом», когда кольца (и замки колец) герметизированы залитым в цилиндр моторным маслом. Недостающие 3-4 атмосферы получаются, например, за счет того, что начальное давление меньше 1 атм. При измерении компрессии без масла давление составляет 12 атмосфер, за счет вытекания горючей смеси из цилиндра при сжатии через замки колец и в зазор между кольцами и цилиндром, который имеется в силу конструктивных особенностей (например сетка Хона), что на 4 атмосферы больше чем с маслом (запомните эту цифру). Поэтому обычно говорят, что «компрессия исправного двигателя в 1.2 -1.3 раза больше степени сжатия».

До тех пор пока двигатель работает исправно, все эти данные просто никому не нужны, даже авторемонтникам. Они становятся интересны лишь во время диагностики неисправности. Хотел бы в общих чертах попробовать объяснить как вообще происходит ремонт и диагностика в том числе. Прошу простить за юмор, но тем не менее когда вы стоите рядом с неисправным автомобилем в компании бывалого авторемонтника или начинающего (на нем в принципе не написано ведь), на самом деле в этот момент у вас гораздо больше информации об этом авто чем у ремонтника, он то его первый раз видит. А вы ездили на нём и могли слышать или чувствовать что либо, что ему как раз и не мешало бы знать. В любом случае, анализируя ваши слова и симптомы неисправности, диагност на основании знания устройства автомобиля предполагает неисправность. По сути он её придумывает. Потом проверяет правильность своих соображений. И только потом ремонт.

Фундаментом для диагностики является знание процессов происходящих при работе автомобиля. Попытаюсь на примере компрессии описать износ цилиндра поршневой группы. Исправный двигатель – компрессия 12 атмосфер, хоновая сетка присутствует на стенках гильз и поршне (царапины равномерно нанесённые на всю площадь гильзы и круговые риски на поршне). В этих углублениях остается смазка ослабляющая трение. До тех пор пока есть хон износ идёт медленно. При эксплуатации постепенно хон истирается. В середине гильзы в первую очередь, так как верхний край трет только верхний край поршня, а нижний только нижний. Середину трёт верхний, нижний край поршня и середина. Постепенно цилиндр гильзы начинает превращаться в бочку (в середине больший диаметр). Это приводит к прорыву газов пока не значительному, но компрессия может упасть немного 0.5… 0.6 атмосферы на работе двигателя почти не сказываются. Но в этот момент начинается износ поршневых канавок, потому что кольцо при каждом ходе поршня в середине гильзы немного выходит из поршня и потом заходит назад. Когда появляется износ в поршневых канавках, гильза тоже к этому времени немного подтачивается, прорыв увеличивается значительно- компрессия падает до 10 атмосфер. В принципе это уровень компрессии большинства подержанных иномарок. Японцы в силу малого пробега чуть лучше. Дальше увеличивается лишь степень износа и в тот момент когда компрессия должна была бы упасть ещё на 1..2 атмосферы за счёт большого количества масла попадающего в середину гильзы, так же надо отметить что маслосъёмные кольца к этому времени не справляются со своей задаче полностью, компрессия повышается на те самые три четыре атмосферы (на которые я просил обратить ваше внимание выше)- 12 атмосфер, компрессия нового двигателя (естественно это всего лишь показания, двигатель уже начинает работать заметно хуже). Правда потом компрессия начинает падать снова, но уже начинают становиться заметны следы масла на свечах и излишние нагары. Вывод не утешителен, компрессия может быть рассмотрена лишь как косвенный показатель в ряду других: потеря мощности (косвенный), повышенный расход, нагары, прорыв картерных газов и т.д. Тем не менее, существует большое количество не исправностей которые можно определить при помощи этого косвенного показателя (компрессия).

Читать еще:  Давление форсунок дизельных двигателей фиат дукато

Некоторые дефекты и неисправности бензиновых двигателей, выявляемые измерением компрессии

НеисправностьПризнаки неисправностиКомпрессии, МПа
полностью открытая заслонказакрытая заслонка
Полностью исправный двигательОтсутствуют1,0-1,20,6-0,8
Трещина в перемычке поршняСиний дым выхлопа, большое давление в картере0,6-0,80,3-0,4
Прогар поршняЦилиндр не работает на малых оборотах0,5-0,50-0,1
Залегание колец в канавках поршняЦилиндр не работает на малых оборотах0,2-0,40-0,2
Задир поршня и цилиндраВозможна неустойчивая работа цилиндра на холостом ходу0,2-0,80,1-0,5
Деформация клапанаЦилиндр не работает на малых оборотах0,3-0,70-0,2
Прогар клапанаЦилиндр не работает на малых оборотах0,1-0,4
Зависание клапанаЦилиндр не работает на малых оборотах0,4-0,80,2-0,4
Дефект профиля кулачка распредвала (для конструкций с гидротолкателями)Цилиндр не работает на малых оборотах0,7-0,80,1-0,3
Повышение количества нагара в камере сгорания в сочетании с изношенными маслосъемными колпачками и кольцамиПовышенный расход масла с синим дымом выхлопа1,2-1,50,9-1,2
Естественный износ деталей поршневой группыПовышенный расход масла с синим дымом выхлопа0,6-0,90,4-0,6

Необходимые обороты коленчатого вала производимые стартером частотой 200-250 оборотов в минуту. Чем выше обороты коленчатого вала тем менее страшны утечки, именно по этому автомобиль почти всегда заводится с толкача (например дизель зимой).

Увеличенное сопротивление на впуске влечет за собой снижение наполняемости цилиндров воздухом, и как следствие,- уменьшение максимально создаваемого давления.

Основными причинами повышения сопротивления являются:

— засоренность или неправильная установка воздушного фильтра;

— присутствие и неправильная работа заслонки во впускном коллекторе;

— повышенное нагарообразование во впускном патрубке и каналах;

— присутствие посторонних предметов.

Компрессию измеряют как с открытой, так и с закрытой дроссельной заслонкой. При этом каждый из способов дает свои результаты и позволяет определять свои дефекты.

Так, когда заслонка закрыта, в цилиндры, очевидно, поступит мало воздуха, поэтому компрессия будет низкой и составит около 0,6-0,8 МПа. Утечки воздуха в этом случае сравнимы с его поступлением в цилиндр. Вследствие этого компрессия становится особо чувствительной к утечкам — даже при малых неплотностях ее значение падает в несколько раз. Эта посылка позволяет сделать выводы или предположения о следующих дефектах двигателя: не вполне удовлетворительном прилегании клапана к седлу; зависании клапана, например, из-за неправильной сборки механизма с гидротолкателями; дефектах профиля кулачка распределительного вала в конструкциях с гидротолкателями, и том числе неравномерном износе или биении тыльной стороны кулачка; негерметичности вызванной прогаром прокладки головки или трещиной в стенке камеры сгорания.

При измерении компрессии с открытой заслонкой картина будет иной. Большое количество поступившего воздуха и рост давления в цилиндре, конечно, способствуют увеличению утечек. Однако они заведомо меньше подачи воздуха. Вследствие этого компрессия падает не столь значительно (приблизительно до 0,8-0,9 МПа). Поэтому способ замеров с открытой заслонкой лучше подходит для определения более «грубых» дефектов двигателя, таких, как поломки и прогары поршней, поломки или зависание (закоксовывание) колец в канавках поршня, деформации или прогары клапанов, серьезные повреждения (задиры) поверхности цилиндров.

В обоих способах измерения желательно учитывать динамику нарастания давления — это поможет установить истинный характер неисправности с большей вероятностью. Так, если на первом такте величина давления, измеряемая компрессометром, низкая (0,3-0,4 МПа), а при последующих тактах резко возрастает, — это косвенно свидетельствует об износе поршневых колец. В таком случае заливка в цилиндр небольшого количества масла (3-5куб.см) сразу увеличит не только давление на первом такте, но и компрессию.

С другой стороны, когда на первом такте давление достигает 0,7-0,9 МПа, а на последующих тактах почти не растет, вероятнее всего налицо негерметичность клапана или прокладки головки. Разумеется, более точно установить причину можно с помощью других средств диагностики.

Компрессометр имеет довольно простую конструкцию — это манометр, который посредством промежуточной трубки соединяется с переходником, выполненным в форме форсунки или свечи накаливания, который в свою очередь вворачивается в головку блока при измерении компрессии. Для того, чтобы при проворачивании коленчатого вала не происходило сбрасывания давления, в промежуточной трубке или переходнике установлен отсечной клапан.

Однако, несмотря на простоту конструкции, результаты замеров компрессии одного и того же двигателя очень часто сильно разнятся в разных сервисах. И это объясняется не тем, что у одних манометр врет, а у других показания идеальны. Как правило, манометр здесь ни при чем. Причина, чаще всего, кроется в так называемых паразитных объемах и жесткости пружины отсечного клапана. И если для бензинового двигателя они, как правило, не играют существенной роли, то в дизельном двигателе это влияние очень существенно.

Величина степени сжатия, как известно, представляет формулу:

В случае, если отсечной клапан компрессометра установлен в переходнике, ввертываемом в свечное или форсуночное отверстие, то формула не меняется. Однако, если отсечной клапан установлен возле самого манометра, то появляется паразитный объем V3 в переходнике и переходной трубке. При этом формула приобретает другой вид:

где n — степень сжатия,

V1 — объем камеры сгорания при положении коленчатого вала в верхней мертвой точке,

Читать еще:  Что такое радиатор двигателя honda civic

V2 — объем камеры сгорания между положениями коленчатого вала в нижней и верхней мертвыми точками,

V3 — внутренний объем переходника и переходной трубки.

В бензиновых двигателях, где объем камеры сгорания, при положении коленчатого вала в верхней мертвой точке, довольно большой, прибавка дополнительного небольшого паразитного объема V3 лишь незначительно увеличивает показания степени сжатия.

В дизельных двигателях объем камеры сгорания V1 крайне мал. Поэтому, даже незначительная величина паразитного объема V3 резко изменяет величину степени сжатия.

Электронная библиотека

В двигателях внутреннего сгорания могут быть использованы следующие циклы:

· со смешанным подводом теплоты как при постоянном объеме, так и при постоянном давлении;

· с подводом теплоты при постоянном объеме (v = const);

· с подводом теплоты при постоянном давлении (р = const).

Во всех перечисленных циклах отвод теплоты в цикле производится при постоянном объеме в силу того, что расширение газа происходит не полностью, и степень возможного расширения в двигателе определяется положением поршня в нижней мертвой точке.

Цикл со смешанным подводом теплоты (цикл Тринклера)

Цикл со смешанным подводом теплоты (цикл Тринклера) осуществляется в бескомпрессорных дизелях. В цилиндрах дизеля сжимается чистый воздух, и происходит самовоспламенение топлива, распыление которого осуществляется механическим путем с помощью насоса или насос-форсунки под давлением 100…150 МПа.

Топливо впрыскивается в камеру сгорания или специальные предкамеры. Процесс сгорания идет вначале с повышением давления, а затем при постоянном давлении. Осуществление такого подвода теплоты характерно для двигателей, работающих по смешанному циклу. При термодинамическом исследовании рассматривают цикл, состоящий из следующих процессов (рис. 9.14): aс – адиабатное сжатие; cz’ – изохорный подвод теплоты; z’z – изобарный подвод теплоты; ze – адиабатное расширение; еа – изохорный отвод теплоты.

Рис. 9.14. Диаграммы работы цикла со смешанным подводом теплоты

Цикл является как бы обобщающим для всех циклов поршневых ДВС. Цикл со смешанным подводом зависит от заданного начального состояния в точке с и от параметров цикла:

· степени сжатия (степень сжатия представляет собой отношение полного объема цилиндра Va к объему камеры сгорания Vc; разность между полным объемом и объемом камеры сгорания дает так называемый рабочий объем цилиндра Vh);

· степени изохорного повышения давления ;

· степени предварительного (изобарного) расширения .

Параметры рабочего тела в узловых точках цикла при рассмотрении отдельных процессов, находят по формулам:

Термический КПД смешанного цикла равен:

Подставляя выражения для соответствующих температур и полагая, что теплоемкости идеального газа величины постоянные, получим:

Как видно из формулы (9.9), термический КПД цикла растет с увеличением и k и уменьшается с увеличением . Степень изохорного повышения давления связана с величиной . Чем больше , тем меньше (при тех же значениях и q2). Тогда с ростом термический КПД смешанного цикла увеличивается.

Работа теоретического цикла определяется по формуле:

Отношение работы цикла к рабочему объему vh характеризует среднее давление цикла:

Среднее давление смешанного цикла равно:

Наиболее эффективным способом увеличения среднего давления цикла является повышение начального давления – наддув двигателя.

Рассмотренный идеальный цикл лежит в основе работы всех современных дизелей.

Цикл с подводом теплоты при постоянном объеме (цикл Отто)

Цикл с подводом теплоты при постоянном объеме (цикл Отто) является частным случаем рассмотренного цикла со смешанным подводом теплоты, когда степень изобарного расширения = 1.

По этому циклу работают двигатели, в цилиндрах которых сжимается топливно-воздушная смесь до давления 1,0… 1,5 МПа и поджигается в конце сжатия от электрической искры. Идеальный цикл Отто (рис. 9.15) состоит из процессов адиабатного сжатия (ас), подвода к рабочему телу теплоты при v = const (cz), адиабатного расширения (ze) и отдачи рабочим телом теплоты при v =const (еа).

Параметры в узловых точках цикла определяются так же, как и для цикла со смешанным подводом теплоты.

Формулы для определения и рц в этом цикле получаются из соответствующих формул для смешанного цикла при = 1:

Рис. 9.15. Диаграммы работы цикла с подводом теплоты при постоянном объеме

Из выражения (9.11) видно, что термический КПД цикла с подводом теплоты при v = const зависит от степени сжатия и показателя адиабаты k рабочего тела, совершающего цикл. Несмотря на то, что с увеличением степени сжатия растут термический КПД и полезная работа цикла, при больших степенях сжатия ( > 10) в результате значительного повышения температуры в конце процесса сжатия может наступить самовоспламенение смеси.

Еще более существенным является то обстоятельство, что с увеличением степени сжатия, а следовательно, и с увеличением температуры в конце сжатия появляется детонация свежей рабочей смеси, которая приводит к взрывному характеру сгорания. В результате детонации процесс сгорания нарушается, мощность двигателя падает, расход топлива растет. По этой причине двигатели, работающие по циклу v = const, имеют вполне определенные предельные значения степени сжатия ( = 5,5…9,0).

Явление детонации в значительной степени зависит от сорта применяемого топлива, от его антидетонационных качеств. Поэтому сорт применяемого топлива определяет выбор предельного значения степени сжатия для двигателей легкого топлива.

Цикл с подводом теплоты при постоянном давлении (цикл Дизеля)

Цикл с подводом теплоты при постоянном давлении (цикл Дизеля) является также частным случаем обобщающего цикла при = 1. В двигателях дизеля раздельно сжимается воздух до давления 4,0…5,0 МПа, и смесь топлива с воздухом, сжатым во вспомогательном компрессоре. Подача топлива осуществляется так, чтобы давление в процессе сгорания оставалось постоянным.

Идеальный цикл дизеля (рис. 9.16) состоит из двух адиабат сжатия и расширения, изобары подвода теплоты и изохоры отвода теплоты Термический КПД и среднее давление цикла из формул (9.9) и (9.10) при = 1 соответственно равны:

Влияние на такое же, как и в циклах Тринклера и Отто, т.е. с увеличением степени сжатия увеличивается и термический КПД цикла. При увеличении степени предварительного расширения ( ), как видно из формулы (9.12), термический КПД цикла должен падать.

Рис. 9.16. Диаграммы работы цикла с подводом теплоты при постоянном давлении

При постоянной степени сжатия увеличение вызовет увеличение объема vz , который зависит от подводимого количества теплоты q1. При увеличении q1 увеличивается объем vz, а вместе с ним увеличивается и работа цикла. Таким образом, возрастание приводит к увеличению работы и уменьшению термического КПД.

Сопоставляя значения термических КПД циклов с подводом теплоты при v = const и p = const, видим, что они различаются множителем:

Отсюда следует, что при одинаковых степенях сжатия > .

Термодинамическая эффективность каждого из рассмотренных циклов зависит от конкретных условий его осуществления. Целесообразнее сравнивать циклы при различных степенях сжатия , но при одинаковых максимальных давлениях и температурах и одинаковом отведенном количестве теплоты q2.

Из TS-диаграммы (рис. 9.17) следует, что наибольший термический КПД будет у цикла с подводом теплоты при р = const:

КПД смешанного цикла имеет промежуточное значение по сравнению с циклами с подводом теплоты при p = const и v = const.

Рис. 9.17. Сравнение циклов при различных степенях сжатия

При оптимальных степенях сжатия (для цикла Отто Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector