Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разработка модуля управления трехфазным асинхронным двигателем с автономным питанием

Разработка модуля управления трехфазным асинхронным двигателем с автономным питанием

преподаватель, Донской государственный технический университет.

344000, Россия, Ростовская область, г. Ростов-на-Дону, Гагарина, 1

Gubanova Aleksandra Anatol’evna

Lecturer at Don State Technical University.

344000, Russia, Rostovskaya oblast’, g. Rostov-Na-Donu, Gagarina, 1

кафедра АПП, ДГТУ

344000, Россия, Ростовская область, г. Ростов-На-Дону, пл. Гагарина, 1, оф. 6-303

Kislov Kirill Vadimovich

post-graduate student at Don State Technical University

344000, Russia, Rostovskaya oblast’, g. Rostov-Na-Donu, pl. Gagarina, 1, of. 6-303

Просмотров статьи: 4166 c 5.5.2015

Дата направления статьи в редакцию:

Дата публикации:

Аннотация: Предметом исследования является модуль управления трехфазным асинхронным двигателем с автономным питанием; данный модуль предназначен для векторного управления асинхронным трехфазным двигателем. Устройство выполнено на основе современных достижений технологий микроэлектроники, цифроаналоговых интегральных схем и контроллера обработки цифровых и аналоговых сигналов со встроенными ШИМ- схемами.Область применения разрабатываемого устройства: может использоваться на любых предприятиях для управления машинами с асинхронным приводом.Проектируемое устройство предназначено для управления асинхронным двигателем и осуществляет регулирование и измерение его основных параметров. В основе управления модулем управления трехфазным асинхронным двигателем с автономным питанием лежит метод, который основан на осуществлении регулирования измерения его основных параметров на основе векторного управления. Разрабатываемое устройство быть реализовано в виде структуры, состоящей из определенного количества функциональных подсистем отражающих принципы декомпозиции как по технологическому признаку, так и в соответствии с иерархией реализуемых задач управления.В ходе работы были разработаны схемы электрическая структурная и принципиальная, а также печатная плата устройства. Разработанный модуль отличается малыми габаритами, возможностью модернизации, и низкой стоимостью (по сравнению с аналогичными устройствами).

Ключевые слова: модуль управления, асинхронный двигатель, автономное питание, микроконтроллер, печатная плата, индикация, интерфейс связи, диаграмма сигналов, датчик, надежность системы

Abstract: The subject of the research is the control module of a three-phase asynchronous motor with Autonomous power supply; this module is designed for vector control of an asynchronous three-phase motor. The device is made on the basis of modern achievements of microelectronics technologies, digital — analog integrated circuits and digital and analog signal processing controller with built-in PWM circuits.Field of application of the developed device: can be used in any enterprise to control machines with asynchronous drive.The designed device is designed to control an asynchronous motor and regulates and measures its main parameters. At the heart of the control module control three-phase asynchronous motor with Autonomous power supply is a method that is based on the implementation of the regulation of the measurement of its basic parameters based on vector control. The developed device should be implemented in the form of a structure consisting of a certain number of functional subsystems reflecting the principles of decomposition both on a technological basis and in accordance with the hierarchy of implemented management tasks.In the course of the work, the schemes of electrical structural and principal, as well as the printed circuit Board of the device were developed. The developed module is characterized by small dimensions, the possibility of modernization, and low cost.

communication interface, display, printed circuit board, microcontroller, Autonomous power supply, asynchronous motor, control module, signal diagram, sensor, system reliability

Любой модуль управления двигателем можно представить как ряд составляющих: силовые транзисторы (инвертор), драйверы управления этими транзисторами, схемы защиты транзисторов инвертора и нагрузки от различного рода неисправностей и схемы управления, формирующие логические сигналы управления инвертором. При этом независимо от схемы управления, формирующей логику работы модуля («активная» схема), непосредственно схема управления инвертором («пассивная») остается неизменной практически для всех типов двигателей, меняется только количество фаз.

В настоящее время существует большое количество аналогичных по структуре модулей, однако всем им присущ серьезный недостаток: они производятся зарубежными компаниями: из этого следуют высокая цена, проблемы с поставками, невозможность настройки модуля под конкретные требования заказчика и др.

Целью работы является обеспечение работы асинхронного двигателя в безопасных для него режимах, предотвращая ударные механические и электрические нагрузки и ограничивая потребляемый ток, а именно:

— управление любым типом нагрузки в соответствии с управляющими сигналами;

— одновременного включения транзисторов верхнего и нижнего плеча инвертора;

— перенапряжения в силовых цепях инвертора;

— регулировка порога срабатывания токовой защиты;

— питание модуля непосредственно от силовой цепи;

— возможность запитывать внешние схемы собственным стабилизированным напряжением c защитой от перегрузки по току.

Модуль управления трехфазным асинхронным двигателем с автономным питанием предназначен для управления асинхронным двигателем и осуществляет регулирование и измерение его основных параметров на основе векторного управления.

Для реализации поставленных задач разрабатываемое устройство должно обеспечивать:

· пуск и останов двигателя;

· изменение частоты вращения вала двигателя.

Визуально структурную схему можно разделить на одиннадцать блоков (см. рисунок 1):

— драйвер силовых ключей;

Более подробно работу модуля управления трехфазным асинхронным двигателем с автономным питанием целесообразно рассмотреть с помощью схемы электрической принципиальной.

Рисунок 1- Структурная схема модуля управления трехфазным асинхронным двигателем с автономным питанием

Модуль управления трехфазным асинхронным двигателем с автономным питанием состоит из микроконтроллера PIC18F458, асинхронного двигателя, индикатора LCD-дисплея (2-х строчный по 16 символов), клавиатуры, которая задается командой управления, двух интерфейсов связи RS-232 и CAN-интерфейсом, драйвера силовых ключей IR2131 и силовых ключей VT1-VT6.

Силовые ключи IR2131 предназначены для согласования уровней из TTL-уровней и датчика обратной связи (ОС) (датчик тока ACS758), который включен между минусовым проводом и силовыми ключами (является ОС по току).

В качестве датчика тока (ДТ) на схеме применен датчик ACS713, работающий на эффекте Холла, который регистрирует превышение тока и напряжение (Т1). ДТ имеет важные преимущества: благодаря своему миниатюрному корпусу он позволил сэкономить место на схеме, а также на нем не происходит падение напряжения и он не позволяет терять мощность в пустую.

Также в схеме предусмотрена RBRAKE – цепь с электролитом в цепи питания и силовым транзистором (VT7), разряжающим эту емкость по сигналу микроконтроллера.

Также предусмотрена цепь датчика перенапряжения с гальванической развязкой (оптопара Т1).

Алгоритм работы схемы управления можно рассмотреть с помощью диаграммы выходных сигналов и соответствующие им диаграммы выходных напряжений инвертора (при активной нагрузке). Длительность импульсов 1,11 миллисекунды, а длительность паузы между ними (внутри пачки) зависит от частоты, и при частоте выходного напряжения инвертора 50 Гц составляет около 20 микросекунд (защитный интервал, полностью исключающий возможность возникновения сквозных токов в инверторе).

Рисунок 2- Диаграмма выходных сигналов схемы управления

Принцип управления состоит в использовании инвертора на IGBT транзисторахIRG4BC40K, к которому подключается АД мощностью 0.75 кВт.

Учитывая условия эксплуатации устройства и допускаемые значения воздействующих факторов по группам жесткости, оговоренным государственным стандартом ГОСТ 23752-79 устанавливаем: плата должна соответствовать ГОСТ 23752-79, группа жесткости 1. Группа жесткости 1 подразумевает следующие климатические условия [1] :

— температура воздуха от -30ºС до +35ºС

— влажность воздуха примерно 75%

— атмосферное давление нормальное (761 мм.рт.ст)

Определяем тип печатной платы. По конструктивным особенностям печатные платы с жестким основанием делятся на типы: односторонние, двусторонние и многослойные.

Выбираем двустороннюю печатную плату (ДПП), так как она характеризуется:

— возможностью обеспечить повышенные требования к точности выполнения проводящего рисунка;

— механической прочностью платы;

— уменьшением сопротивлений всех подключений к общему проводу, что, в свою очередь, уменьшает шум и наводки;

— увеличением распределенной емкостью для каждой цепи схемы, помогая подавлять излучаемый шум.

Рисунок 3- Схема электрическая принципиальная модуля управления трехфазным асинхронным двигателем с автономным питанием

Выбираем габаритные размеры и конструкцию печатной платы. С этой целью из государственного стандарта ГОСТ 29137-91 выбираем варианты установки навесных элементов и выполняем компоновку графическим методом. В результате компоновки получена печатная плата простой прямоугольной формы с размерами 170х100 мм, размеры каждой стороны печатной платы кратны 5 и соотношения сторон близки к 1:1 Толщина платы определяется с учетом нагрузки на печатную плату, минимального диаметра отверстия и коэффициента γ для 3-го класса точности изготовления печатной платы.

Читать еще:  Что такое контрактный двигатель или акпп

(1)

где dmin – минимальный диаметр отверстия на печатной плате;

γ — коэффициент нагрузки (для 3 класса точности равен 0,33).

мм.

Толщина платы 1,5мм.

Рисунок 4- Плата печатная (блок модуля силовой части)

Интенсивность отказов устройства с учетом режимов работы рассчитывается по формуле 2 [2] и результат записывается в таблицу 1.

Учитывая все электронные компоненты модуля, имеем:

Определяется среднее время наработки до отказа [3] :

час

Вычисляется вероятность безотказной работы в течение заданного промежутка времени t = 10000 часов:

Строится график вероятности безотказной работы устройства.

Таблица 1- Вероятность безотказной работы устройства

Типовые схемы включения асинхронных электродвигателей. Схема управления асинхронным электродвигателем. Нереверсивная схема управления асинхронного двигателя

Типовые схемы релейно-контакторного управления асинхронными двигателями (АД) строятся по тем же принципам, что и схемы управления двигателями постоянного тока.

Типовые схемы управления ад с короткозамкнутым ротором

Двигатели этого типа малой и средней мощности обычно пускаются прямым подключением к сети без ограничения пусковых токов. В этих случаях они управляются с помощью магнитных пускателей, которые одновременно обеспечивают и некоторые виды их защиты.

Схема управления асинхронным двигателем с использованием магнитного пускателя (рис. 2.1) включает в себя магнитный пускатель, состоящий из контактора КМ и трех встроенных в него тепловых реле защиты КК. Схема обеспечивает прямой (без ограничения тока и момента) пуск двигателя, отключение его от сети, а также защиту от коротких замыканий (предохранители F А) и перегрузки (тепловые реле КК).

Рис. 2.1. Схема управления АД с использованием

нереверсивного магнитного пускателя

Для пуска двигателя замыкают выключатель QF и нажимают кнопку пуска S В 1. Получает питание катушка контактора КМ, который, включившись, своими главными силовыми контактами в цепи статора двигателя подключает его к источнику питания, а вспомогательным контактом шунтирует кнопку S В1. Происходит разбег двигателя по его естественной характеристике. Для отключения двигателя нажимается кнопка остановки S В2, контактор КМ теряет питание и отключает двигатель от сети. Начинается процесс торможения двигателя выбегом под действием момента нагрузки на его валу.

Реверсивная схема управления ад.

Основным элементом этой схемы является реверсивный магнитный пускатель, который включает в себя два линейных контактора КМ 1 и КМ 2 и два тепловых реле защиты КК (рис. 2.2). Схема обеспечивает прямой пуск и реверс двигателя, а также торможение противовключением при ручном (неавтоматическом) управлении.

Рис. 2.2. Схема управления АД с использованием реверсивного магнитного пускателя

В схеме предусмотрена защита от перегрузок двигателя (реле КК) и коротких замыканий в цепи статора (автоматический выключатель QF ) и управления (предохранители F А). Кроме того, схема управления обеспечивает и нулевую защиту от исчезновения (снижения) напряжения сети (контакторы КМ 1 и КМ 2).

Пуск двигателя при включенном QF в условных направлениях «Вперед» или «Назад» осуществляется нажатием соответственно кнопок S В1 или S В2. Это приводит к срабатыванию контактора КМ 1 или КМ 2, подключению двигателя к сети и его разбегу.

Для реверса или торможения двигателя вначале нажимается кнопка S В З, что приводит к отключению включенного до сих пор контактора (например, КМ 1), после чего нажимается кнопка S В 2.

Это приводит к включению контактора КМ 2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Магнитное поле двигателя изменяет свое направление вращения на противоположное, что приводит к началу процесса реверса. Этот процесс состоит из двух этапов: торможения противовключением и разбега в противоположную сторону.

В случае необходимости только торможения двигателя при достижении им нулевой частоты вращения должна быть вновь нажата кнопка S В З, что приведет к отключению двигателя от сети и возвращению схемы в исходное положение. Если кнопка S В З нажата не будет, то это приведет к разбегу двигателя в другую сторону, т.е. к его реверсу.

Во избежание короткого замыкания в цепи статора, которое может возникнуть в результате одновременного ошибочного нажатия кнопок S В 1 и S В 2, в реверсивных магнитных пускателях иногда предусматривается специальная механическая блокировка. Она представляет собой рычажную систему, которая предотвращает втягивание одного контактора, если включен другой. В дополнение к механической блокировке в схеме используется типовая электрическая блокировка, применяемая в реверсивных схемах управления. Она предусматривает перекрестное включение размыкающих контактов аппарата КМ 1 в цепь катушки аппарата КМ 2 и, наоборот.

Следует отметить, что повышению надежности и удобства в эксплуатации способствует использование в схеме воздушного автоматического выключателя QF . Его наличие исключает возможность работы привода при обрыве одной фазы, при однофазном коротком замыкании.

Схема управления многоскоростным АД .

Эта схема (рис. 2.3) обеспечивает получение двух скоростей двигателя путем соединения секций (полуобмоток) обмотки статора в треугольник или двойную звезду, а также его реверсирование. Защита электропривода осуществляется тепловыми реле КК 1 и КК 2 и предохранителями F А.

Рис. 2.3. Схема управления двухскоростным АД

Для пуска двигателя на низкую частоту вращения нажимается кнопка S В 4, после чего срабатывает контактор КМ 2 и блокировочное реле К V . Статор двигателя оказывается включенным по схеме треугольника, а реле К V , замкнув свои контакты в цепях катушек аппаратов КМ З и КМ 4, подготавливает подключение двигателя к источнику питания. Далее нажатие кнопки S В 1 или S В 2 приводит к включению соответственно в направлении «Вперед» или «Назад».

После разбега двигателя до низкой частоты вращения может быть осуществлен его разгон до высокой частоты вращения. Для этого нажимается кнопка S В 5, что приведет к отключению контактора КМ 2 и включению контактора КМ 1, обеспечивающему переключение секций обмоток статора с треугольника на двойную звезду.

Остановка двигателя производится нажатием кнопки S В 3, что вызовет отключение всех контакторов от сети и торможение двигателя выбегом.

Применение в схеме двухцепных кнопок управления не допускает одновременного включения контакторов КМ 1 и КМ 2, КМ 3 и КМ 4. Этой же цели служит перекрестное включение размыкающих блок-контактов контакторов КМ 1 и КМ 2, КМ 3 и КМ 4 в цепи их катушек.

Схема управления АД, обеспечивающая прямой пуск и динамическое торможение в функции времени

Пуск двигателя осуществляется нажатием кнопки S В 1 (рис. 2.4), после чего срабатывает линейный контактор КМ , подключающий двигатель к источнику питания. Одновременно с этим замыкание контакта КМ в цепи реле времени КТ вызовет его срабатывание и замыкание его контакта в цепи контактора торможения КМ 1. Однако последний не срабатывает, так как перед этим разомкнулся в этой цепи размыкающий контакт КМ.

Рис. 2.4. Схема управления пуском и динамическим торможением АД с короткозамкнутым ротором

Для остановки двигателя нажимается кнопка S В 2, Контактор КМ отключается, размыкая свои контакты в цепи статора двигателя и отключая тем самым его от сети переменного тока. Одновременно с этим замыкается контакт КМ в цепи аппарата КМ 1 и размыкается контакт КМ в цепи реле КТ. Это приводит к включению контактора торможения КМ 1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор R т и переводу двигателя в режим динамического торможения.

Реле времени КТ, потеряв питание, начинает отсчет выдержки времени. Через интервал времени, соответствующий времени останова двигателя, реле КТ размыкает свой контакт в цепи контактора КМ 1, тот отключается, прекращая подачу постоянного тока в цепь статора. Схема возвращается в исходное положение.

Интенсивность динамического торможения регулируется резистором R т, с помощью которого устанавливается необходимый постоянный ток в статоре двигателя.

Для исключения возможности одновременного подключения статора к источникам переменного и постоянного тока в схеме использована типовая блокировка с помощью размыкающих контактов КМ и КМ 1, включенных перекрестно в цепи катушек этих аппаратов.

Типовые схемы управления АДс фазным ротором . Схемы управления двигателя с фазным ротором, которые рассчитаны в основном на среднюю и большую мощность, должны предусматривать ограничение токов при их пуске, реверсе и торможении с помощью добавочных резисторов в цепи ротора. За счет включения резисторов в цепь ротора можно также увеличить момент при пуске вплоть до уровня критического (максимального) момента.

Схема одноступенчатого пуска АД в функции времени и торможения противовключением в функции ЭДС

Читать еще:  Что это когда двигатель трясет когда завод

После подачи напряжения включается реле времени КТ (рис. 2.5), ко­торое своим размыкающим контактом разрывает цепь питания контактора КМ 3, предотвращая тем самым его включение и преждевременное закорачивание пусковых резисторов в цепи ротора.

Рис.2.5. Схема управления пуском и торможением противовключением АД с фазным ротором

Включение двигателя производится нажатием кнопки S В 1, после чего включается контактор КМ 1. Статор двигателя подсоединяется к сети, электромагнитный тормоз Y В растормаживается, и начинается разбег двигателя. Включение КМ 1 одновременно приводит к срабатыванию контактора КМ 4, который своим контактом шунтирует ненужный при пуске резистор противовключения R д2 , а также разрывает цепь катушки реле времени КТ. Последнее, потеряв питание, начинает отсчет выдержки времени, после чего замыкает свой контакт в цепи катушки контактора КМ 3, который срабатывает и шунтирует пусковой резистор R д1 , в цепи ротора, и двигатель выходит на свою естественную характеристику.

Управление торможением обеспечивает реле торможения K V , контролирующее уровень ЭДС (частоты вращения) ротора. С помощью резистора R p , оно отрегулировано таким образом, что при пуске, когда скольжение двигателя 0

Однофазное подключение трехфазного двигателя к электрической сети

Содержание статьи

Асинхронные электродвигатели широко применяются в промышленности благодаря относительной простоте конструкции, хорошим рабочим характеристикам, удобству управления.

Подобные устройства часто попадают в руки домашнего мастера и он, пользуясь знанием основ электротехники, подключает такой электродвигатель для работы от однофазной сети 220 вольт. Чаще всего его используют для наждака, обработки древесины, измельчения зерен и выполнения других простых работ.

Даже на отдельных промышленных станках и механизмах с приводами встречаются образцы различных двигателей, способных работать от одной или трех фаз.

Чаще всего у них используется конденсаторный запуск, как наиболее простой и приемлемый, хотя это не единственный способ, известный большинству грамотных электриков.

Принцип работы трехфазного двигателя

Промышленные асинхронные электрические устройства систем 0,4 кВ выпускаются с тремя обмотками статора. К ним прикладываются напряжения, сдвинутые по углу на 120 градусов и вызывающие токи аналогичной формы.

Для запуска электродвигателя токи направляют таким образом, чтобы они создали суммарное вращающееся электромагнитное поле, оптимально воздействующее на ротор.

Конструкция статора, используемая для этих целей, представлена:

2. магнитопроводом сердечника с уложенными в него тремя обмотками;

3. клеммными выводами.

В обычном исполнении изолированные провода обмоток собраны по схеме звезды за счет установки перемычек между винтами клемм. Кроме этого способа еще существует подключение, называемое треугольником.

В обоих случаях обмоткам назначено направление: начало и конец, связанное со способом монтажа — навивки при изготовлении.

Обмотки нумеруются арабскими цифрами 1, 2, 3. Их концы обозначаются К1, К2, К3, а начала — Н1, Н2, Н3. У отдельных типов двигателей подобный способ маркировки может быть изменен, например, С1, С2, С3 и С4, С5, С6 или другими символами либо вообще не применяться.

Правильно нанесенная маркировка упрощает подключение проводов питания. При создании на обмотках симметричной схемы расположения напряжений, обеспечивается создание номинальных токов, осуществляющих оптимальную работу электродвигателя. В этом случае их форма в обмотках полностью соответствует подводимому напряжению, повторяет его без каких-либо искажений.

Естественно, следует понимать, что это чисто теоретическое заявление, ибо на практике токи преодолевают различные сопротивления, незначительно отклоняются.

Наглядному восприятию происходящих процессов помогает изображение векторных величин на комплексной плоскости. Для трехфазного двигателя токи в обмотках, создаваемые приложенным симметричным напряжением, изображаются следующим образом.

При питании электродвигателя системой напряжений с тремя равномерно разнесенными по углу и одинаковыми по величине векторами в обмотках протекают такие же симметричные токи.

Каждый из них образует электромагнитное поле, сила индукции которого наводит в обмотке ротора собственное магнитное поле. В результате сложного взаимодействия трех полей статора с полем ротора создается вращательное движение последнего, обеспечивается создание максимальной механической мощности, вращающей ротор.

Принципы подключения однофазного напряжения к трехфазному двигателю

Для полноценного подключения к трем одинаковым статорным обмоткам, разнесенных по углу на 120 градусов, два вектора напряжения отсутствуют, имеется только один из них.

Можно подать его всего в одну обмотку и заставить ротор вращаться. Но, эффективно использовать такой двигатель не получится. Он будет обладать очень малой выходной мощностью на валу.

Поэтому возникает задача подключения этой фазы таким образом, чтобы она в разных обмотках создавала симметричную систему токов. Другими словами, нужен преобразователь напряжения однофазной сети в трехфазную. Подобная задача решается разными методами.

Если отбросить сложные схемы современных инверторных установок, то можно реализовать следующие распространенные способы:

1. использование конденсаторного запуска;

2. применение дросселей, индуктивных сопротивлений;

3. создание различных направлений токов в обмотках;

4. комбинированный способ с выравниванием сопротивлений фаз для образования одинаковых амплитуд у токов.

Кратко разберем эти принципы.

Отклонение тока при прохождении через емкость

Наиболее широко практикуется конденсаторный запуск, позволяющий отклонять ток в одной из обмоток за счет подключения емкостного сопротивления, когда создается опережение тока от вектора приложенного напряжения на 90 градусов.

В качестве конденсаторов обычно используются металлобумажные конструкции серий МБГО, МБГП, КБГ и подобные. Электролиты не приспособлены для пропускания переменного тока, быстро взрываются, а схемы, предусматривающие их использование, отличаются сложностью, низкой надежностью.

В этой схеме ток отличается по углу от номинальной величины. Он отклоняется всего на 90 градусов, не доходя на 30 о (120-90=30).

Отклонение тока при прохождении через индуктивность

Ситуация аналогична предыдущей. Только здесь ток отстает от напряжения на те же 90 градусов, а тридцати недобирает. Кроме того, конструкция дросселя не такая простая, как у конденсатора. Его надо рассчитать, собрать, настроить под индивидуальные условия. Этот способ не получил широкого распространения.

При использовании конденсаторов или дросселей токи в обмотках электродвигателя не доходят до требуемого угла на тридцатиградусный сектор, показанный красным цветом на картинке, что уже создает повышенные потери энергии. Но, с ними приходится мириться.

Они мешают созданию равномерного распределения сил индукции, создают тормозящий эффект. Точно оценить его влияние сложно, но при простом подходе деления углов получается (30/120=1/4) потеря 25%. Однако, можно ли так считать?

Отклонение тока подачей напряжения обратной полярности

В схеме звезды принято фазный провод напряжения подключать на вход обмотки, а нулевой — на ее конец.

Если в две разнесенные на 120 о фазы подать одно и то же напряжение, но разделить их, а во второй изменить полярность, то токи сдвинутся по углу относительно друг друга. Они станут формировать электромагнитные поля разного направления, влияющего на вырабатываемую мощность.

Только при этом способе по углу получается отклонение токов на небольшое значение — 30 о .

Этим методом пользуются в отдельных случаях.

Способы комплексного применения конденсаторов, индуктивностей, изменения полярности обмоток

Первые три перечисленных метода не позволяют поодиночке создавать оптимально симметричное отклонение токов в обмотках. Всегда возникает их перекос по углу относительно стационарной схемы, предусмотренной для трехфазного полноценного питания. За счет этого происходит образование противодействующих моментов, тормозящих раскрутку, снижающих КПД.

Поэтому исследователи провели многочисленные эксперименты, основанные на разных сочетаниях этих способов с целью создания преобразователя, обеспечивающего наибольшую эффективность работы трехфазного двигателя. Эти схемы с подробным разбором электротехнических процессов приводятся в специальной учебной литературе. Их изучение повышает уровень теоретических знаний, но в своем большинстве они редко применяются на практике.

Хорошая картина распределения токов создается в схеме, когда:

1. на одну обмотку подается фаза прямого включения;

2. на вторую и третью обмотки напряжение подключают через конденсатор и дроссель, соответственно;

3. внутри схемы преобразователя осуществляется выравнивание амплитуд токов за счет подбора реактивных сопротивлений с компенсацией дисбаланса активными резисторами.

Хочется обратись внимание на третий пункт, которому многие электрики не придают значения. Просто посмотрите на следующую картинку и сделайте вывод о возможности равномерного вращения ротора при симметричном приложении к нему сил одинаковых и разных по величине.

Комплексный метод позволяет создать довольно сложную схему. Она очень редко применяется на практике. Один из вариантов ее реализации для электродвигателя мощностью в 1кВт показан ниже.

Читать еще:  Что такое вечный двигатель в аватарии

Для изготовления преобразователя необходимо создать непростой дроссель. Это требует затрат времени и материальных средств.

Также трудности возникнут при поиске резистора R1, который будет работать с токами, превышающими 3 ампера. Он должен:

обладать мощностью, превышающей 700 ватт;

надежно изолироваться от токоведущих частей.

Существует еще несколько технических сложностей, которые придется преодолеть для создания такого преобразователя трехфазного напряжения. Однако, он довольно универсален, позволяет подключать двигатели с мощностью до 2,5 киловатт, обеспечивает их устойчивую работу.

Итак, технический вопрос подключения трехфазного асинхронного двигателя в однофазную сеть решен посредством создания сложной схемы преобразователя. Но, он не нашел практического применения по одной простой причине, от которой невозможно избавиться — завышенное потребление электроэнергии самим преобразователем.

Мощность, затрачиваемая на создание схемы трехфазных напряжений подобной конструкцией, превышает минимум в полтора раза потребности самого электродвигателя. При этом суммарные нагрузки, создаваемые на подводящую питание электропроводку, сравнимы с работой старых сварочных аппаратов.

Электрический счетчик, к радости продавцов электроэнергии, очень быстро начинает перечислять деньги из кошелька домашнего мастера на счет энергоснабжающей организации, а это хозяевам совсем не нравится. В итоге сложное техническое решение создания хорошего преобразователя напряжения оказалось ненужным для практического применения в домашнем хозяйстве, да и на промышленных предприятиях тоже.

Допонительно

Схемы включения трехфазных асинхронных двигателей для работы от однофазных сетей:

Схемы а — е применяются в том случае, когда фазы обмотки статора жестко соединены в звезду или треугольник и у двигателя имеется только три выводных конца. Наилучшими из этих схем следует считать схемы в и е. При включении двигателя по этим схемам в случае правильного подбора емкости конденсатора он обладает вполне удовлетворительными пусковыми и рабочими свойствами.

Схемы ж и з применяются в случае, когда у двигателя имеется шесть выходных концов — начала и концы всех фаз. При таком соединении обмоток двигатель практически не отличается от обычного однофазного асинхронного двигателя с пусковым сопротивлением или емкостью.

Обмотки двух его фаз, соединенные последовательно, образуют рабочую обмотку, а обмотка третьей фазы — пусковую обмотку. Рабочая обмотка, как и в обычном однофазном двигателе с пусковым сопротивлением или емкостью, занимает 2/3 пазов статора, пусковая обмотка — 1/3 пазов.

При правильном выборе активного сопротивления или емкости этот двигатель может иметь примерно такие же пусковые и рабочие свойства, как и специально рассчитанный однофазный асинхронный двигатель с пусковой обмоткой. (Ю. М. Юферов. Электрические двигатели автоматических устройств)

4 заключительных вывода

1. Технически использовать однофазное подключение трехфазного двигателя можно. Для этого создано много разнообразных схем с различной элементной базой.

2. Практически применять этот способ для длительной работы приводов в промышленных станках и механизмах нецелесообразно из-за больших потерь энергии потребления, создаваемых посторонними процессами, ведущими к низкому КПД системы, повышению материальных затрат.

3. В домашних условиях схему можно использовать для выполнения кратковременных работ на неответственных механизмах. Длительно работать подобные устройства могут, но при этом оплата электроэнергии значительно возрастает, а мощность работающего привода не обеспечивается.

4. Для эффективной эксплуатации асинхронного двигателя лучше использовать полноценную трехфазную сеть питания. Если такой возможности нет, то лучше отказаться от этой затеи и приобрести специальный однофазный электродвигатель соответствующей мощности.

Способы включения трехфазного асинхронного двигателя в однофазную сеть

Ситуации, когда необходимо произвести подключение трехфазного асинхронного электродвигателя в однофазную сеть возникают, довольно часто. Скажем, имеется циркулярная пила, насос, компрессор или еще какое-либо оборудование с питающим напряжением 380 В., которое надо приспособить для питания от бытовой розетки 220 вольт.

Разумеется, при этом придется произвести модернизацию привода и его системы управления. Причина этого заключается в том, что для работы асинхронного двигателя необходим главный элемент – вращающееся электромагнитное поле. В трехфазной сети сети оно создается очень легко благодаря сдвигу в 120 градусов между фазами. Поле вращается, наводит ЭДС в роторной обмотке, которая создает там электрический ток. Этот ток взаимодействует с полем, и ротор начинает вращаться.

Если же подключить статорные обмотки трехфазного двигателя к однофазной сети, то поле получится не вращающимся, а пульсирующим. В таком поле электромагнитный момент возникнуть не может, а двигатель не запустится.

Поэтому очевидно, что включать асинхронный трехфазный двигатель прямо в однофазную сеть нельзя. И для решения этой проблемы имеются разные способы:

Установка частотного преобразователя

Практически все производители современных частотных преобразователей, или, как их еще часто называют, инверторов, предлагают интересные модели, получающие питание от однофазной сети, но способные управлять трехфазным асинхронным двигателем. Мощность таких преобразователей, а, соответственно, и приводов, управляемых ими, не очень велика – до 6 кВт. Но необходимо помнить, что потребность в запуске трехфазного двигателя в однофазной сети возникает, как правило в быту, а бытовой электропривод мощностью более 6 кВт – очень большая редкость.

Простейшая схема управления трехфазным двигателем, включенным в однофазную сеть через ПЧ:

UZ — преобразователь частоты (инвертор); L — «фаза» сети; N — рабочий «ноль»; u, v, w — выводы для подключеия двигателя.

Реле в цепи дискретных входов ПЧ:

Все преобразователи частоты устроены по одному общему принципу. Вначале они преобразовывают переменное напряжение сети в постоянное при помощи статического выпрямителя. Затем управляемый инвертор формирует из постоянного напряжения импульсы различной величины, частоты и продолжительности.

Эти импульсы распределяются по трем фазам двигателя и создают вращающееся электромагнитное поле статора. Управление преобразователем возможно либо с его съемной панели, либо посредством аналоговых или цифровых входов.

Таким образом, при помощи преобразователя можно подключить трехфазный электродвигатель в однофазную сеть и при этом в полной мере воспользоваться такими преимуществами частотно-регулируемого привода, как:

— высокий пусковой момент; — сниженный пусковой ток; — повышенный КПД; — широкий диапазон регулирования скорости; — полный спектр встроенных защит электрооборудования привода.

Однако, у такой схемы включения трехфазного двигателя в сеть 220 вольт, конечно есть и недостатки:

— высокая стоимость преобразователя: стоимость ПЧ может в несколько раз превышать стоимость самого двигателя, поэтому, дешевым решением, эту схему назвать никак нельзя; — низкая его ремонтопригодность; — требовательность преобразователя к условиям эксплуатации, необходимость создания определенного микроклимата в помещении или шкафу, где он расположен.

Монтаж пусковой схемы с рабочим и пусковым конденсаторами

Из-за перечисленных недостатков частотных преобразователей большинство пользователей в быту отдает предпочтение рабочей схеме с конденсаторами. Идея проста и популярна: чтобы создать сдвиг фаз, необходимый для вращающегося электромагнитного поля, один из статорных выводов двигателя подключают к линии через конденсатор. Другой вывод подключается к «фазе» напрямую, а третий соединяется с рабочим нулевым проводником. Обмотки двигателя при этом обычно соединяются в «треугольник».

Для осуществления реверса на вывод, подключенный к конденсатору, подают не «фазу», а «ноль». Поскольку необходимая емкость конденсатора зависит от текущих оборотов двигателя, то в схеме пуска применяют два конденсатора, включенных параллельно. Один из них включается только на время разгона и емкость его в два раза больше емкости рабочего конденсатора.

Пусковой конденсатор может быть защищен сопротивлением — резистором на 200-300 Ом, включенным параллельно и обеспечивающим разряд обкладок после пуска. Номинальное напряжение конденсаторов для безотказной работы должно быть 500 вольт или более. Емкость рабочего конденсатора определяется по формуле:

где P – номинальная мощность двигателя, кВт.

Для нагруженных в момент пуска или имеющих мощность более 1,5 кВт асинхронных двигателей рекомендуется использовать помимо рабочего конденсатора дополнительный — только для пуска. Их емкость можно рассчитать здесь.

При работе в однофазной сети с конденсаторами мощность двигателя снижается, в среднем на 40-50%. Ухудшаются и энергетические показатели, в частности КПД и коэффициент мощности. Но зато, схема с конденсаторами может быть собрана буквально «на коленке», без особых материальных затрат. Последнее достоинство конденсаторной схемы включения, в наше время, нередко оказывается решающим при выборе способа включения электродвигателя в однофазную сеть.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector