Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема двигателя постоянного тока

Схема двигателя постоянного тока

Электродвигатели, работающие на постоянном токе, используются не так часто, как двигатели переменного тока. Ниже приведем их достоинства и недостатки.

ДостоинстваНедостатки
частота вращения легко регулируетсявысокая стоимость
мягкий пуск и плавный разгонсложность конструкции
получение частоты вращения выше 3000 об/минсложность в эксплуатации

В быту двигатели постоянного тока нашли применение в детских игрушках, так как источниками для их питания служат батарейки. Используются они на транспорте: в метрополитене, трамваях и троллейбусах, автомобилях. На промышленных предприятиях электродвигатели постоянного тока применяются в приводах агрегатов, для бесперебойного электроснабжения которых используются аккумуляторные батареи.

  1. Конструкция и обслуживание двигателя постоянного тока
  2. Схемы включения двигателя постоянного тока
  3. Независимое возбуждение
  4. Параллельное возбуждение
  5. Последовательное возбуждение
  6. Смешанное возбуждение

Конструкция и обслуживание двигателя постоянного тока

Основной обмоткой двигателя постоянного тока является якорь, подключающийся к источнику питания через щеточный аппарат. Якорь вращается в магнитном поле, создаваемом полюсами статора (обмотками возбуждения). Торцевые части статора закрыты щитами с подшипниками, в которых вращается вал якоря двигателя. С одной стороны на этом же валу установлен вентилятор охлаждения, прогоняющий поток воздуха через внутренние полости двигателя при его работе.

Схема двигателя постоянного тока

Щеточный аппарат – уязвимый элемент в конструкции двигателя. Щетки притираются к коллектору, чтобы как можно точнее повторять его форму, прижимаются к нему с постоянным усилием. В процессе работы щетки истираются, токопроводящая пыль от них оседает на неподвижных частях, ее периодически нужно удалять. Сами щетки нужно иногда перемещать в пазах, иначе они застревают в них под действием той же пыли и «зависают» над коллектором. Характеристики двигателя зависит еще и от положения щеток в пространстве в плоскости вращения якоря.

Со временем щетки изнашиваются и заменяются. Коллектор в местах контакта со щетками тоже истирается. Периодически якорь демонтируют и протачивают коллектор на токарном станке. После протачивания изоляция между ламелями коллектора срезается на некоторую глубину, так как она прочнее материала коллектора и при дальнейшей выработке будет разрушать щетки.

Схемы включения двигателя постоянного тока

Наличие обмоток возбуждения – отличительная особенность машин постоянного тока. От способов их подключения к сети зависят электрические и механические свойства электродвигателя.

Независимое возбуждение

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Схема независимого возбуждения

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.

Последовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.

Схема последовательного возбуждения

Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Схема смешанного возбуждения

Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений.

Электрические схемы схема включения электрического двигателя

Наиболее распространена в промышленности схема управления асинхронным трехфазным двигателем. Тысячи таких двигателей, работающих на заводах и фабриках, нужно уметь включать и выключать. Для этого используют специальные схемы управления.

Мы уже узнали, что самым простым аппаратом для включения и выключения электрических схем является рубильник. Схема управления двигателем получается простой (рис. 14.5, а), но не очень удобной. Такие схемы применяют только тогда, когда двигатель включается крайне редко, например раз в сутки или еще реже.

Удобнее схема на рис. 14.5, б. Здесь мы включаем двигатель при помощи контактора КМ, а катушку контактора включаем выключателем ЙЛ. Получилось две цепи управления. Одна изображена на рисунке жирными линиями — это силовая цепь. Все элементы силовой цепи рассчитаны на большой ток, потребляемый двигателем из сети. Вторая — цепь управления. В ней коммутируются малые токи. Здесь используют маломощные аппараты, рассчитанные на небольшие токи.

Схемы, изображенные на рис. 14.5, обладают общим недостатком — в них нет нулевой защиты.

Попробуем разобраться, что это такое. Предположим, что мы включили двигатель рубильником или выключателем.

Рис. 14.5. Улравление асинхронным двигателем: а — рубильником; б — контактором

Двигатель приводит в движение станок или другую производственную машину. Началась работа. Внезапно произошел перерыв в подаче электроэнергии. В цехе сработал защитный автомат, и все станки остановились. Остановился и наш двигатель. Как видим, пока ничего страшного не произошло.

Однако после того, как авария в цехе будет ликвидирована, напряжение в сети восстановится и наш двигатель самопроизвольно придет в движение. Это может привести к аварии оборудования и даже вызвать несчастный случай. Ведь для рабочего, обслуживающего этот станок, запуск двигателя может быть неожиданным.

Выход можно найти, если на стене цеха повесить большой плакат:

Читать еще:  Электронный датчик температуры двигателя ваз 2106

Отключи рубильник после самопроизвольной остановки станка!

Но как быть, если этот плакат не привлечет внимания рабочего и он все равно забудет отключить рубильник?

Хорошая электрическая схема должна предусмотреть все возможные неприятности и заранее их ликвидировать.

Попробуем такую схему разработать. Силовую часть схемы оставим неизменной (рис. 14.6, а). Обмотка статора двигателя включается в сеть главными контактами контактора КМ. Будем изменять цепь управления. Прежде всего попробуем включить катушку контактора кнопкой SB (рис. 14.6, б). Получилась очень интересная схема. Двигатель работает, пока кнопка нажата. Это так называемый «толчковый режим», он используется для наладки оборудования. При длительной работе постоянно держать палец на кнопке утомительно. Попробуем улучшить работу схемы. Для этого снабдим контактор еще одной парой вспомогательных замыкающих контактов. Как это сделать, наглядно показано на рис. 14.7. Включим контакт параллельно кнопке (рис. 14.6, в). Это очень важный шаг в наших рассуждениях.

Рис. 14.6. Нереверсивный магнитный пускатель: а — силовая схема; б — толчковый режим; в — цепь самоблокировки до нажатия кнопки SB; г — после кратковременного нажатия кнопки SB контактор ставится на самопитание; д — для отключения контактора необходимо добавить еще одну кнопку (SB1)

Рис. 14.7. Монтажная схема нереверсивного магнитного пускателя

Теперь после кратковременного нажатия на кнопку вспомогательные контакты контактора замкнутся и возникнет дополнительная цепь питания катушки контактора. Она показана пунктиром на рис. 14.6, г. Говорят, что контактор «встал на самопитание» или произошла «самоблокировка» катушки контактора.

Теперь схема обладает нулевой защитой. Действительно, если напряжение в сети исчезнет, катушка контактора обесточится, рабочие контакты разомкнутся, разомкнется и вспомогательный контакт, цепь катушки разорвется. После восстановления напряжения цепь катушки так и остянется разомкнутой и для повторного включения двигателя нужно опять нажать на кнопку SB.

Мы вытянули одну ногу, а у нас увязла другая. В схеме появилась нулевая защита, но теперь двигатель невозможно остановить. После нажатия на кнопку он будет работать до тех пор, пока не отключится напряжение в сети. Приходится ставить еще одну кнопку. Теперь у нас в схеме две кнопки — одна для пуска двигателя (SB2), а другая — для его остановки SB1 (рис. 14.6, д). Они так и называются: Пуск и Стоп. Мы уже знаем, что отключение цепи — более важная задача. Поэтому кнопку Стоп делают более заметной. Часто ее закрашивают в красный цвет или выполняют в виде выступающего грибочка.

Типовые схемы управления

Для управления силовым электрооборудованием в электрических цепях используют разнообразные устройства дистанционного управления, защиты, телемеханики и автоматики, воздействующие на коммутационные аппараты его включения и отключения или регулирования.

На рис.5.4 приведена принципиальная схема управления асинхронным электродвигателем с короткозамкнутым ротором. Данная схема широко используется на практике при управлении приводами насосов, вентиляторов и многих других.

Перед началом работы включают автоматический выключатель QF. При нажатии кнопки SВ2 включается пускатель КМ и запускается двигатель М. Для остановки двигателя необходимо нажать кнопку SВ1, при этом отключаются пускатель КМ и двигатель М.

Рис.5.4. Схема включения асинхронного электродвигателя с короткозамкнутым ротором

При перегрузке электродвигателя М срабатывает электротепловое реле КК, размыкающее контакты КК:1 в цепи катушки КМ. Пускатель КМ отключается, двигатель М останавливается.

В общем случае схемы управления могут осуществлять торможение электропривода, его реверсирование, изменять частоту вращения и т.д. В каждом конкретном случае используется своя схема управления.

В системах управления электроприводами широко используются блокировочные связи. Блокировкой обеспечивают фиксацию определенного состояния или положения рабочих органов устройства или элементов схемы. Блокировка обеспечивает надежность работы привода, безопасность обслуживания, необходимую последовательность включения или отключения отдельных механизмов, а также ограничение перемещения механизмов или исполнительных органов в пределах рабочей зоны.

Различают механическую и электрическую блокировки.

Примером простейшей электрической блокировки, применяемой практически во всех схемах управления, является блокировка кнопки «Пуск» SB2 (рис. 5.4.) контактом КМ2. Блокировка этим контактом позволяет после включения двигателя кнопку SB2 отпустить, не прерывая цепи питания катушки магнитного пускателя КМ, которое идет через блокировочный контакт КМ2.

В схемах реверсирования электродвигателей (при обеспечении движения механизмов вперед-назад, вверх-вниз и т.д.), а также при торможении применяются реверсивные магнитные пускатели. Реверсивный магнитный пускатель состоит из двух нереверсивных. При работе реверсивного пускателя необходимо исключить возможность их одновременно включения. Для этого в схемах предусматриваются и электрическая, и механическая блокировки (рис. 5.5). Если реверсирование двигателя выполняется двумя нереверсивными магнитными пускателями, то роль электрической блокировки играют контакты КМ1:3 и КМ2:3, а механическая блокировка обеспечивается кнопками SВ2 и SВ3, каждая из которых состоит из двух контактов, связанных между собой механически. При этом один из контактов-замыкающий, другой — размыкающий (механическая блокировка).

Схема работает следующим образом. Предположим что при включении пускателя КМ1 двигатель М вращается по часовой стрелке и против часовой — при включении КМ2. При нажатии кнопки SВ3 сначала размыкающий контакт кнопки разорвет цепь питания пускателя КМ2 и только потом замыкающий контакт SВ3 замкнет цепь катушки КМ1.

Рис.5.5. Механическая и электрическая блокировки при реверсировании привода

Пускатель КМ1 включается, запускается с вращением по часовой стрелке двигатель М. Контакт КМ1:3 размыкается, осуществляя электрическую блокировку, т.е. пока включен КМ1, цепь питания пускателя КМ2 разомкнута и его нельзя включить. Для осуществления реверса двигателя необходимо его остановить кнопкой SВ1, а затем, нажав кнопку SВ2, запустить в обратную сторону. При нажатии SВ2 сначала размыкающим контактом SВ2 разрывается цепь питания катушки КМ1 и далее замыкается цепь питания катушки КМ2 (механическая блокировка). Пускатель КМ2 включается и реверсирует двигатель М. Контакт КМ2:3, размыкаясь, осуществляет электрическую блокировку пускателя КМ1.

Читать еще:  Греется асинхронный двигатель на холостом ходу

Чаще реверсирование двигателя выполняется одним реверсивным магнитным пускателем. Такой пускатель состоит из двух простых пускателей, подвижные части которых между собой связаны механически с помощью устройства в виде коромысла. Такое устройство называется механической блокировкой, не позволяющей силовым контактом одного пускателя КМ1 одновременно замыкаться силовым контактам другого пускателя КМ2 (рис. 5.6).

Рис. 5.6. Механическая блокировка «коромыслом» подвижных частей двух пускателей единого реверсивного магнитного пускателя

Электрическая схема управления реверсом двигателя при помощи двух простейших пускателей единого реверсивного магнитного пускателя такая же, как и электрическая схема управления реверсом двигателя с использованием двух нереверсивных магнитных пускателей (рис. 5.5), с применением в электрической схеме таких же электрических и механических блокировок.

При автоматизации электроприводов поточных линий, конвейеров и т.п. применяется электрическая блокировка, которая обеспечивает пуск электродвигателей линии в определенной последовательности (рис. 5.7). При такой схеме, например, включение второго двигателя М2 (рис. 5.7) возможно только после включения первого двигателя М1, включение двигателя М3 – после включения М2. Такая очередность пуска обеспечивается блокировочными контактами КМ1:3 и КМ2:3.

Рис.5.7. Схема последовательного включения двигателей

Пример 5.1. Используя электрическую схему (рис. 5.4) управления асинхронным электродвигателем с короткозамкнутым ротором, необходимо включить в эту схему дополнительные контакты, обеспечивающие автоматическую остановку электродвигателя рабочего механизма в одной и в двух заданных точках.

Решение. Требование задачи обеспечить остановку электродвигателя в одной заданной точке может быть выполнено путевым выключателем SQ1 с нормально закрытым контактом, установленным последовательно с блок-контактом KM2, шунтирующим кнопку SB2. Для остановки электродвигателя рабочего механизма в двух заданных точках последовательно с контактом путевого выключателя SQ1 размещают контакт второго путевого выключателя SQ2. На рис. 5.8 приведены электрические схемы остановки электродвигателя в одной и в двух заданных точках. После пуска двигателя механизм приходит в движение и при достижении места остановки нажимает на путевой выключатель, например SQ1, и электродвигатель останавливается. После выполнения необходимой технологической операции вновь нажимаем на кнопку SB2, и механизм продолжает движение до следующего путевого выключателя SQ2, где технологическая операция заканчивается.

Рис. 5.8 К примеру 5.1

Пример 5.2. В электрическую схему (рис. 5.5) управления реверсом короткозамкнутого асинхронного двигателя с помощью блокировочных связей следует ввести элементы световой сигнализации для контроля направления вращения двигателя.

Решение. Схема световой сигнализации контроля направления вращения двигателя при реверсе, совмещённая со схемой управления реверсом двигателя, приведена на рис. 5.9. При вращении двигателя, например вправо, горит лампа HL1, включаемая контактом KM1.4 магнитного пускателя KM1, при этом лампа HL2 погашена, т.к. магнитный пускатель KM2 не включён. При вращении двигателя влево горит лампа HL2, включённая контактом KM2.4 магнитного пускателя KM2. Таким образом, лампа HL1 сигнализирует о вращении двигателя вправо, а лампа HL2 — о вращении двигателя влево. В результате блокировочными связями световая сигнализация обеспечивает контроль над направлением вращения двигателя при реверсе.

Рис. 5.9 К примеру 5.2

1. Как подразделяются электрические схемы по видам и типам?

2. Каковы основные правила построения электрических схем?

3. Приведите примеры буквенного обозначения электрических элементов.

4. Приведите примеры графического обозначения электрических элементов.

5. Нарисуйте схемы включения двигателя, приведенные на рис. 5.1, 5.2 и 5.4.

6. Объясните работу схем на рис. 5.5 и 5.7.

Дата добавления: 2019-02-08 ; просмотров: 1597 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ЭЛЕКТРИК в Ступино

Оставить отзыв:

Меню

Статьи

Выполнение технических условий МОЭСК 15кВт 380В на опоре ЛЭП

Монтаж серверной стойки

Гибридные ртутно-вольфрамовые (ДРВ)

Проходной выключатель — для чего он нужен?

Экономия электроэнергии — не будьте наивны!

Инфракрасные обогреватели — устройство и применение

Применение галогенных 12 вольтовых ламп

Клеммные соединители для распределительных коробок фирмы WAGO

Люминесцентные лампы дома: польза или вред?

Замена счетчиков электроэнергии

Схемы управления электроприводами

Управление приводами включает в себя пуск электродвигателя в работу, регулирование скорости вращения, изменение направления вращения, торможение и останов электродвигателя. Для управления приводами применяются электрические коммутационные аппараты, такие как автоматические и неавтоматические выключатели, контакторы и магнитные пускатели. Для защиты электродвигателей от ненормальных режимов (перегрузок и коротких замыканий) применяются автоматические выключатели, предохранители и тепловые реле.

Управление электродвигателями с короткозамкнутым ротором. На рис. 2.8 приведена схема управления асинхронным двигателем с короткозамкнутым ротором с помощью магнитного пускателя.

Рис. 2.8. Схема управления асинхронным электродвигателем с короткозамкнутым ротором с помощью магнитного пускателя: Q – выключатель; F – предохранитель;

КМ – магнитный пускатель, КК1, КК2 – тепловое реле; SBC – кнопочный выключатель включения двигателя; SBT – кнопочный выключатель отключения двигателя

Магнитные пускатели широко применяются для двигателей мощностью до 100 кВт. Они применяются в продолжительном иповторнократковременном режиме работы привода. Магнитный пускатель позволяет осуществлять дистанционный пуск. Для включения электродвигателя М первым включается выключатель Q. Пуск двигателя в работу осуществляется включением кнопочного выключателя SBС. Катушка (электромагнит включения) магнитного пускателя КМ получает питание от сети и замыкает контакты КМ в главной цепи и в цепи управления. Вспомогательный контакт КМ в цепи управления шунтирует кнопочный выключатель SBС и обеспечивает продолжительную работу привода после снятия нагрузки нажатия с кнопочного выключателя. Для защиты электродвигателя от перегрузки в магнитном пускателе имеются тепловые реле КК1 и КК2, включаемые в две фазы электродвигателя. Вспомогательные контакты этих реле включаются в цепь питания катушки КМ магнитного пускателя. Для защиты от коротких замыканий в каждой фазе главной цепи электродвигателя устанавливаются предохранители F. Предохранители могут устанавливаться и в цепи управления. В реальных схемах неавтоматический выключатель Q и предохранители Fмогут быть заменены автоматическим выключателем. Отключение электродвигателя осуществляется нажатием на кнопочный выключатель SBТ.

Простейшая схема управления электродвигателем может иметь только неавтоматический выключательQи предохранителиF или автоматический выключатель.

Во многих случаях при управлении электроприводом необходимо изменять направление вращения электродвигателя. Для этого применяются реверсивные магнитные пускатели.

Читать еще:  Вибрация при холодном двигателе на хонда цивик

На рис. 2.9 приведена схема управления асинхронным электродвигателем с короткозамкнутым ротором с помощью реверсивного магнитного пускателя. Для включения электродвигателя М должен быть включен выключатель Q. Включение электродвигателя для одного направления, условно «Вперед», производится нажатием кнопочного выключателя SBС1в цепи питания катушки КМ1 магнитного пускателя.При этом катушка (электромагнит включения) магнитного пускателя КМ1 получает питание от сети и замыкает контакты КМ1 в

главной цепи и в цепи управления. Вспомогательный контакт КМ1 в цепи управления шунтирует кнопочный выключатель SBС1 и обеспечивает продолжительную работу привода после снятия нагрузки нажатия с кнопочного выключателя.

Рис. 2.9. Схема управления асинхронным электродвигателем с короткозамкнутым ротором с помощью реверсивного магнитного пускателя: Q – выключатель; F – предохранитель; КМ1, КМ2 – магнитный пускатель, КК1, КК2 – тепловое реле; SBC1, SBC2 – кнопочный выключатель включения двигателя; SBT – кнопочный выключатель отключения двигателя

Для пуска электродвигателя в противоположном направлении, условно

«Назад», необходимо нажать кнопочный выключатель SBС2. Кнопочные выключатели SBС1и SBС2 имеют электрическую блокировку, исключающую возможность одновременного включения катушек КМ1 и КМ2. Для этого в цепь катушки КМ1 включается вспомогательный контакт пускателя КМ2, а в цепь катушки КМ2 – вспомогательный контакт КМ1.

Для отключения электродвигателя от сети при его вращении в любом направлении необходимо нажать на кнопочный выключатель SBТ. При этом цепь любой катушки и КМ1 и КМ2 разрывается, их контакты в главной цепи электродвигателя размыкаются, и электродвигатель останавливается.

Схема реверсивного включения может в обоснованных случаях применяться для торможения двигателя противовключением.

Управление электродвигателями с фазным ротором. На рис. 2.10 приведена схема управления асинхронным двигателем с фазным ротором.

с фазным ротором
» height=»271″ src=»http://www.eti.su/images/articles/uprpriv/uprpriv.003.jpg» width=»280″ />Рис. 2.10. Схема управления асинхронным двигателем

с фазным ротором: QF – выключатель; КМ – магнитный пускатель в цепи статора, КМ1 – КМ3 – магнитный пускатель ускорения; SBC – кнопочный выключатель включения двигателя;R – пусковой реостат; SBT – кнопочный выключатель отключения двигателя

» height=»240″ src=»http://www.eti.su/images/articles/uprpriv/uprpriv.004.jpg» width=»310″ />В приведенной схеме защита двигателя М от коротких замыканий и перегрузок осуществляется автоматическим выключателем QF. Для уменьшения пускового тока и увеличения пускового момента в цепь ротора включен трехступенчатый пусковой реостат R. Количество ступеней может быть различным. Пуск электродвигателя осуществляется линейным контактором КМ и контакторами ускорения КМ1 – КМ3. Контакторы снабжены реле времени. После включения автоматического выключателя QF кнопочным выключателем SBC включается линейный контактор КМ, который мгновенно замыкает свои контакты в главной цепи и шунтирует контакты кнопочного выключателя SBC. Двигатель начинает вращаться при полностью введенном пусковом реостате R (механическая характеристика 1 на рис. 2.11). Точка П является точкой трогания.

Рис. 2.11. Механические характеристики асинхронного двигателя с фазным ротором: 1, 2, 3

при включении ступеней пускового реостата; 4 – естественная;

Контакт реле времени КМ в цепи катушки контактора КМ1 с выдержкой времени t1 (рис. 2.12) включает контактор КМ1, который замыкает контакты первой ступени в цепи пускового реостата. С выдержкой времени t2включается контактор КМ2. Аналогично проходит процесс переключения ступеней пускового реостата R до перехода электропривода на естественную характеристику (кривая 4).

Изменение тока статора Iи частоты вращения ротора n2во время пуска электродвигателя показано на рис. 2.12.

Рис. 2.12. Изменение тока статора и частоты вращения ротора асинхронного двигателя с фазным ротором во время пуска

На естественной характеристике ток статора и частота вращения ротора достигают номинальных значений.

Остановка электродвигателя осуществляется кнопочным выключателем SBT.

Электрическая блокировка в приводах. В многодвигательных приводах или приводах механизмов, связанных общей технологической зависимостью, должна быть обеспечена определенная очередность включения и отключения электродвигателей. Это достигается применением механической или электрической блокировки. Электрическая блокировка осуществляется путем применения дополнительных вспомогательных контактов коммутационных аппаратов, участвующих в управлении приводами. На рис. 2.13 приведена схема блокировки последовательности пуска и остановки двух электродвигателей.

Рис. 2.13. Схема блокировки последовательности управления двух электродвигателей: Q1, Q2 – выключатель; F1, F2 – предохранитель; КМ1, КМ2 – магнитный пускатель, КК1, КК2 – тепловое реле; SBC1, SBC2 – кнопочный выключатель включения двигателя;SBT1, SBT2 – кнопочный выключатель отключения двигателя; Q3 – вспомогательный выключатель

В схеме исключена возможность пуска электродвигателя М2 раньше пуска двигателя М1. Для этого в цепь управления магнитного пускателя КМ2, осуществляющего пуск и остановку электродвигателя М2, включен замыкающий вспомогательный контакт КМ1, связанный с пускателем КМ1. В случае остановки электродвигателя М1 этот же контакт произведет автоматическое отключение двигателя М2. При необходимости самостоятельного пуска электродвигателя при опробовании механизма в цепи управления имеется выключатель Q3, который необходимо предварительно замкнуть. Включение электродвигателя М2 осуществляется кнопочным выключателем SBC2, а отключение – SBТ2. Включение двигателя М1 осуществляется выключателем SBC1, а отключение – SBT1. При этом отключается и выключатель М2.

Регулирование скорости рабочего органа машины или механизма. Скорость рабочего органа машины можно изменить за счет применения редукторов или путем изменения частоты вращения электродвигателя. Частоту вращения электродвигателя можно изменить несколькими способами. В строительных машинах и механизмах применяют редукторы с зубчатой, ременной и цепной передачами, позволяющими изменять передаточное число. В приводах, где применяются двигатели с короткозамкнутым ротором, частоту вращения электродвигателя изменяют путем изменения числа пар полюсов. Для этих целей применяют либо электродвигатель с двумя обмотками статора, каждая из которых имеет разное количество пар полюсов, либо электродвигатель с переключением секций фазных обмоток статора.

Возможно регулирование частоты вращения изменением напряжения на обмотке статора. Для этих целей используются автотрансформаторы с плавным регулированием напряжения, магнитные усилители, тиристорные регуляторы напряжения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector