Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пуск электродвигателя

Пуск электродвигателя

30 августа 2021 г. 13:05

Первый пробный пуск смонтированного электродвигателя производится после окончаний наладочных работ по настройке схемы управления и после испытания неподвижной машины. Для установления полной исправности и надежности двигателя желательно предварительно испытать его в режиме холостого хода при отсоединенном механизме и редукторе. Пробный пуск без механизма обусловливается, как правило, не проверкой исправности двигателя, а необходимостью произвести настройку схемы управления.

В практике наладочных работ принято предварительно испытывать без механизмом все крупные и средние двигатели постоянного тока, синхронные и асинхронные двигатели с фазным ротором, а также двигатели приводов, имеющих тяжелый запуск (насосы, компрессоры). Пуск двигателя без нагрузки или с механизмом должен быть тщательно подготовлен и произведен с максимальной осторожностью.

Подготовка пробного пуска. Перед подачей на схему рабочего напряжения должны быть выполнены следующие подготовительные операции:

осмотр внутренней части машины для проверки положения щеток, отсутствия посторонних предметов, контроля соединений между обмотками и др.

проверка состояния подшипников и наличия в них масла

проверка надежности заземления корпуса машины

проверка свободного хода ротора электродвигателя

реле максимальной защиты временно устанавливаются на ток срабатывания, не превышающий 200% номинального тока двигателя

при ступенчатом пуске реле ускорения временно исключается из схемы

мегомметром проверяется изоляция силовых цепей

в цепь обмоток включается амперметр для контроля пусковых токов.

Следует предусмотреть аварийное снятие напряжения в случае отказа действия схемы управления. Для этого рекомендуется обеспечить быстрое отключение автомата ввода.
В некоторых случаях необходимо предусмотреть возможность осуществления электрического или механического торможения.
Необходимо принять меры защиты персонала: установить ограждения, вывесить плакаты, пользоваться резиновым ковриком, перчатками и т. п.

Первое включение электродвигателя производится толчком продолжительностью 1-2 сек. Двигатель разгоняется и тормозится на выбеге. При толчке двигателя проверяются: а) направление вращения; б) состояние ходовой части; в) величина пускового тока и надежность действия отключающих устройств; г) действие максимальной защиты и других элементов схемы управления.

Толчок двигателя целесообразно повторить 2-3 раза, постепенно увеличивая длительность включения.
Кратковременное включение и разгон до полной скорости. Убедившись в надежности пусковых устройств и исправности механической части, можно произвести включение двигателя на более продолжительное время. Двигатель разгоняется и достигает установившейся скорости вращения, соответствующей введенному пусковому сопротивлению. Асинхронные двигатели с короткозамкнутым ротором при этом разгоняются полностью, а синхронные – входят в синхронизм. После достижения установившейся скорости двигатель отключается.

За время включения двигателя нужно убедиться в хорошем состоянии ходовой части: отсутствии вибрации, у машин постоянного тока оценивается коммутация щеток. Если состояние двигателя и работа схемы управления оказывается стабильными, производятся повторные включения. В дальнейшем ходе испытаний двигателей, для которых схемой управления предусмотрено регулирование скорости вращения, проверяется их работа на повышенных скоростях.

Длительное включение двигателя и обкатка совместно с механизмом. При удовлетворительных результатах пробных пусков двигатель включается на 20-30 мин. Проверяется нагревание подшипников, обмоток и железа. За это время детали даже небольшой машины не успевают нагреться до установившейся температуры, но по характеру ее нарастания можно судить, нет ли в какой-либо части машины избыточного выделения тепла. Повреждение обмоток машины проявляется также характерным запахом горелой изоляции, который во многих случаях обнаруживается раньше, чем обмотка успевает заметно нагреться.

Если двигатель соединен с механизмом, работающим продолжительное время, например, с транспортером или вентилятором с закрытой задвижкой, то пуск и проверка его работы выполняются аналогично испытанию двигателя без механизма.

После пробного включения на 20-30 мин производится длительное включение двигателя с механизмом на обкатку. Обкатка, производимая в течение 8 ч или более служит для прошлифовки подвижных связей механизмов, определения слабых мест схемы управления и проверки электрооборудования на нагревание.

Читать еще:  Что такое передув турбины дизельного двигателя

Узнайте условия проведения наладки станков, отправив запрос на [email protected]

Время выполнения запроса: 0,0068781375885 секунд.

Схемы подключения трехфазных электродвигателей

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

Читать еще:  Что такое суммарное превышение объема двигателя

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Принципиальная схема электродвигателя

Любой электрический двигатель представляет собой устройство, превращающее электрическую энергию в механическую. Подобно генератору, принципиальная схема электрического двигателя включает в себя статор и ротор, что позволяет отнести его к разряду вращающихся электрических машин.

  1. Устройство двигателя
  2. Особенности электрических двигателей
  3. Схема подключения двигателя по реверсивной схеме

Устройство двигателя

Применение короткозамкнутого трехфазного асинхронного двигателя сделало его наиболее популярным для большинства машин и механизмов. Обмотка его ротора состоит из системы, объединяющей алюминиевые или медные стержни, расположенные в пазах ротора параллельно между собой. Концы этих стержней соединяются друг с другом при помощи специальных короткозамкнутых колец. Кроме ротора и статора устройство электродвигателя включает в себя вал и корпус.

Регулирование скорости вращения производится ступенчатым способом, при помощи статорной обмотки, где количество полюсов может переключаться. Этот принцип используется в асинхронных двигателях с различным количеством скоростей. Плавное регулирование скорости осуществляется с помощью регулируемого преобразователя частоты, подающего питание к электродвигателю.

Основными положительными характеристиками короткозамкнутых асинхронных электродвигателей являются их высокая надежность, незначительная масса, компактность, более высокий срок службы, чем у двигателей внутреннего сгорания аналогичной мощности. Изготовление таких электродвигателей производится в очень широком диапазоне мощностей, где номинал устройства может составлять всего лишь несколько ватт, а может иметь мощность и в десятки мегаватт. Электродвигатели малой мощности, чаще всего, выпускаются однофазными.

Особенности электрических двигателей

Устройство синхронных электродвигателей очень напоминает синхронный генератор. Таким образом, принципиальная схема электрического двигателя данной модификации, отличается от асинхронных моделей. При одинаковой частоте электрического тока в сети, скорость их вращения остается постоянной, вне зависимости от нагрузки. В отличие от асинхронных, у этих моделей не происходит потребления из сети реактивной энергии. Эта энергия отдается в сеть, таким образом, перекрывая реактивную энергию, потребляемую другими источниками.

Применение синхронных электродвигателей не допускает частых пусков, поэтому, как правило, их используют в условиях относительно неизменной нагрузки, при необходимости обеспечения постоянной скорости вращения.

Следует отдельно отметить двигатели постоянного тока, используемые в условиях необходимости плавного регулирования скоростей. Эти действия производятся с помощью изменяемого тока в якоре или с применением устройств на полупроводниках. Однако, такие двигатели стали применяться все реже из-за их больших размеров, высокой стоимости и значительных потерь в процессе эксплуатации.

Читать еще:  Что такое егр на двигателях детройт

Схема подключения двигателя по реверсивной схеме

Принципиальная схема генератора

Принципиальная электрическая схема лифта

Принципиальная электрическая схема энергосберегающей лампы

Асинхронный двигатель с короткозамкнутым ротором схема

Электрик по эл двигателями его схемам

Частотно-регулируемый привод на 6 кВ* предназначен для плавного управления скоростью средневольтных электродвигателей различных приводных механизмов. К таким механизмам относятся синхронные и асинхронные двигатели вентиляторов, высоковольтных насосов, компрессоров, миксеров, конвейеров, экструдеров и т.д рассчитанные на питание от промышленной сети 6 кВ. Привод напрямую подключается к электродвигателю, благодаря чему лишен многих проблем получаемых при соединении двигателя через трансформатор (например, в двухтрансформаторных схемах).

* Примечание: есть привода на 3 кВ, 10 и 11кВ.

Функциональная схема прямоточного подключения привода показана на рисунке ниже:

Привод можно подключать к двигателю и по более сложными схемам, например с резервным источником питания или так называемая схема управления синхронизированным байпасом на промышленную сеть:

Каскадное включение двух и более электродвигателей позволяет в максимальной степени реализовать преимущества частотно-регулируемого привода 6 кВ. Реализация таких достаточно сложных схем требует правильного и оптимального подбора оборудования, его технически грамотной настройки в соответствии с проектом и методиками предложенными производителем привода.

Привод 6кВ работает следующим образом: от внешнего источника питания переменное напряжение через входной многообмоточный фазосдвигающий трансформатор подается на однофазные инверторные ячейки, которые в фазе соединены последовательно, для создания требуемого трёхфазного напряжения для двигателя. 6кВ привод большинства известных производителей содержит в плече одной фазы по шесть последовательно соединенных ячеек (см. рис. ниже). Выходное переменное напряжение такой инверторной ячейки 640 В.

Японская компания TMEIC вывела на рынок новую 740В силовую инверторную ячейку на базе современных высоковольтных IGBT. Новинка позволила сократить количество ячеек в фазе и количество вторичных витков трансформатора, а следовательно и уменьшить размеры всего привода. Теперь привод на 6 кВ известный во всем мире под товарной маркой TMdrive-MVG2 обладает самыми компактными в своем классе весогабаритными характеристиками и самой большой наработкой на отказ — 100 000 часов. Такая модернизация сделала TMdrive-MVG2 на 6 кВ привлекательным для специалистов и заказчиков.

Привод TMdrive-MVG2 на 6 КВ имеет следующие характеристики:

  • Низкое влияние на питающую сеть и двигатель (не требуются компенсаторы реактивной мощности и дополнительных фильтров гармоник).
  • Привод 6кВ обслуживается только с одной (лицевой) стороны.
  • Высокий КПД ( более 97%) и коэффициент мощности.
  • Экономия электроэнергии и средств на внедрение и обслуживание.
  • Небольшая стоимость и короткие сроки поставки, быстрое и удобное подключение и обслуживание.
  • впечатляющее количество опций: векторное управление с энкодером, управление синхронизированным байпасом на промышленную сеть, поддержка большинства наиболее известных сетей (Profibus-DP, DeviceNet™, Modbus RTU), русифицированный дисплей и др.
  • Самые низкие в своем классе весогабаритные характеристики см. таблицу ниже:

Из таблицы видно, что привод 6 кВ / 1090 кВА умещается в шкаф размерами: 4000х2690х900 мм. Внешний вид такого TMdrive-MVG2 представлен на рисунке ниже:

Настраивается ЧРП TMdrive-MVG2 при помощи программы Drive Navigator. Программа управляет параметрами привода, отображает текущие значения параметров и ошибок, ведёт запись аварий и архив ошибок, помогает оператору быстро определить причины аварий и последовательность их устранения. Внешний вид программы Drive Navigator показан на рисунке ниже.

Наша компания имеет опыт внедрения приводов 6 кВ на отечественых промышленных предприятиях. В перечень услуг входят:

  • Обследование объекта.
  • Разработка и выпуск проектной документации.
  • Поставка, сборка и пуско-наладка 6 кВ привода TMdrive-MVG2.
  • Обучение персонала и семинары.
  • Гарантийное и сервисное обслуживание.

Дополнительная техническая информация по TMdrive-MVG2:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector