Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конденсаторы для асинхронных двигателей в однофазной сети

Конденсаторы для асинхронных двигателей в однофазной сети

Наиболее распространенный, простой и недорогой способ включения трехфазного двигателя в однофазную сеть — при помощи фазосдвигающего конденсатора, чаще всего двух конденсаторов — пускового и рабочего, иногда (для электродвигателей малой мощности, работающих при небольших нагрузках) одного конденсатора для запуска и работы, через которые запитывается одна из обмоток асинхронного двигателя, причем:

    обмотки статора могут быть соединены, как в «звезду», так и в «треугольник»;

  • общая (суммарная) емкость конденсатора (рабочего и пускового или одного для запуска и работы) Сп = Ср + Со, где Ср — рабочая емкость (емкость рабочего конденсатора), Со — отключаемая емкость (емкость пускового конденсатора), а Сп = (2,5—3)Ср;
  • рабочая емкость (емкость рабочего конденсатора) Ср = К*Jф/U, где К — коэффициент, определяемый видом соединения обмоток (для соединения «звезда» К = 2800, для соединения «треугольник» К = 4800), Jф — номинальный фазный ток электродвигателя, U — напряжение однофазной сети с частотой магистрали, а Ср = 66*Рном, где Рном — номинальная мощность электродвигателя (ориентировочно 6–7 мкФ рабочей емкости на каждые 0.1 кВт мощности электродвигателя);
  • рабочий конденсатор подключается последовательно с обмоткой двигателя, а пусковой (отключаемый) — параллельно рабочему конденсатору и обязательно с разрядным резистором, снимающим остаточное напряжение в пусковом конденсаторе после отключения от силовой сети;
  • Справка: ГОСТ IEC 60252-2-2011 (и IEC 60252-2:2010+A1:2013) в п. 2.3.4 раздела 2.3 «Требования безопасности» регламентирует, что при постоянном присоединении конденсатора к обмотке двигателя, а также в случае недоступного положения конденсатора разрядный резистор можно не устанавливать, причем иногда разрядное устройство служит не для обеспечения безопасности, а ориентировано на предотвращение электрической перегрузки моторного конденсатора. В случае установки устройства для разряда, оно должно за 1 мин с момента отключения конденсатора снизить напряжение на выводах от максимально номинального значения до 50 В.

    • для мощных электродвигателей возможна наборка рабочей емкости Ср = С1 + С2 + С3 . Сн с параллельным соединением конденсаторов.

    Силовые моторные конденсаторы асинхронных двигателей в отечественной и международной нормативно-правовой базе.

    IEC 60252-2:2013 «AC motor capacitors — Part 2: Motor start capacitors» (IEC 60252-2:2010+A1:2013) (в России для сертификации моторных конденсаторов используется отечественная рецепция в виде аутентичного перевода IEС 60252-2:2003 — ГОСТ IEC 60252-2-2011 «Конденсаторы для двигателей переменного тока. Часть 2. Пусковые конденсаторы») формализует в терминах и определениях:

    • motor running capacitor (или рабочий конденсатор двигателя), как подключаемый к вспомогательной обмотке асинхронного трехфазного двигателя мощный конденсатор, выполняющий функцию защиты двигателя при запуске и за счет сдвига фаз увеличивающий момент вращения двигателя в условиях эксплуатации и помогающий пусковому конденсатору при запуске двигателя;
    • motorstarting capacitor (или пусковой конденсатор двигателя), как подключаемый к вспомогательной обмотке асинхронного трехфазного двигателя мощный конденсатор, поддерживающий опережающий по фазе ток в цепи обмотки и отключаемый в момент выхода электродвигателя в рабочий режим эксплуатации;
    • capacitor for continuous and starting operation (или конденсатор для непрерывной работы и запуска), как подключаемый к вспомогательной обмотке асинхронного трехфазного двигателя мощный конденсатор, способный обеспечивать выполнение задач рабочего и пускового конденсаторов, и работать при одном напряжении во время эксплуатации, и более высоком напряжении во время запуска электродвигателя.

    В качестве моторных конденсаторов международный (и отечественный) стандарт определяет пропитанные и непропитанные металлизированные конденсаторы с бумажным или пленочным диэлектриком, или комбинацией бумажных и пленочных диэлектриков, электролитические пусковые конденсаторы с нетвердым электролитом, а также формализует классы защиты (class of safety protection) для пусковых конденсаторов в виде кодов, которые обязательно должны быть промаркированы на корпусе каждого моторного конденсатора наряду с: данными об изготовителе или торговой марке; типом конденсатора; номинальной емкостью (в микрофарадах) и допустимом отклонении (в процентах); номинальным напряжением (в вольтах); длительностью рабочего цикла; климатической категорией в формате минимально допустимая рабочая температура/максимально допустимая рабочая температура/степень жесткости воздействия влажного тепла (в цифрах); датой (кодом даты) изготовления; знаками качества (сертификационные знаки).

    Справка: Отечественный ГОСТ IEC 60252-2-2011 определяет 3 класса (кода) защиты моторных конденсаторов Р0, Р1 и Р2, IEC 60252-2:2013 «AC motor capacitors — Part 2: Motor start capacitors» (IEC 60252-2:2010+A1:2013) — 4 класса (кода) защиты моторных конденсаторов S0, S1, S2, S3, где класс S0 без защиты (аналогичный классу Р0 ГОСТ IEC 60252-2-2011), S1 с защитой от возгорания, взрыва и поражения электрическим током при отказе размыкания цепи и/или коротком замыкании (аналогичный классу Р1 ГОСТ IEC 60252-2-2011), S2 с защитой от возгорания, взрыва и поражения электрическим током при отказе размыкания цепи (аналогичный классу Р2 ГОСТ IEC 60252-2-2011), S3 (для моторных конденсаторов с сегментной металлизацией слоя диэлектрика) с защитой от возгорания, взрыва и поражения электрическим током при отказе размыкания цепи, и гарантией производителем остаточной емкости

    Конденсатор для электродвигателя: как правильно выбрать и как пользоваться

    Многие владельцы довольно часто оказываются в ситуации, когда требуется подключить в гараже или на даче такое устройство, как трехфазный асинхронный двигатель к различному оборудованию, в качестве которого может выступать наждачный или сверлильный станок. При этом возникает проблема, поскольку источник рассчитан на однофазное напряжение. Что же здесь делать? На самом деле эту проблему решить довольно легко путем подключения агрегата по схемам, используемым для конденсаторных. Чтобы реализовать этот замысел, потребуются рабочее и пусковое устройство, часто именуемые как фазосдвигающие.

    Выбор ёмкости

    Для обеспечения правильной работы электродвигателя нужно рассчитать определённые параметры.

    Для рабочего конденсатора

    Чтобы подобрать эффективную емкость устройства, необходимо выполнить расчеты по формуле:

    • I1 – номинальный показатель тока статора, для измерения которого применяют специальные клещи;
    • Uсети – напряжение сети с одной фазой, (В).

    После выполнения расчетов получится емкость рабочего конденсатора в мкФ.

    Возможно для кого-то будет затруднительно рассчитать этот параметр по приведенной выше формуле. Однако в этом случае можно воспользоваться и другой схемой расчета емкости, где не нужно проводить столь сложных операций. Этот метод позволяет достаточно просто определить необходимый параметр на основании только мощности асинхронного двигателя.

    Здесь достаточно помнить о том, что 100 Ватт мощности трехфазного агрегата должно соответствовать около 7 мкФ емкости рабочего конденсатора.

    При расчётах нужно следить за током, который поступает на фазную обмотку статора в выбранном режиме. Недопустимым считается, если ток имеет большее значение, нежели номинальный показатель.

    Для пускового конденсатора

    Бывают ситуации, когда электродвигатель приходится включать в условиях большой нагрузки на валу. Тогда одного рабочего конденсатора будет недостаточно, поэтому к нему придется добавить пусковой конденсатор. Особенностью его работы является то, что он будет работать лишь в период пуска аппарата не более 3 секунд, чего используется ключ SA. Когда же ротор выйдет на уровень номинальной частоты вращения, прибор отключается.

    Если по недосмотру владелец оставил включенными пусковые устройства, это приведет к образованию существенного перекоса по токам в фазах. В таких ситуациях высока вероятность перегрева двигателя. При определении емкости следует исходить из того, что величина этого параметра должна в 2,5-3 раза превосходить емкость рабочего конденсатора. Действуя подобным образом, можно добиться того, что пусковой момент двигателя достигает номинального показателя, в результате чего во время его запуска не возникает осложнений.

    Для создания требуемой емкости конденсаторы могут подключаться по параллельной и последовательной схеме. Следует иметь в виду эксплуатация трехфазных агрегатов мощностью не более 1 кВт допускается в том случае, если их подключение осуществляется к однофазной сети при наличии исправного устройства. Причем здесь можно обойтись и без пускового конденсатора.

    Читать еще:  Что такое удельный расход масла двигателя

    После расчетов нужно определить, какой тип конденсатора может использоваться для выбранной схемы

    Наилучший вариант, когда применяется аналогичный тип для обоих конденсаторов. Обычно работу трехфазного двигателя обеспечивают бумажные пусковые конденсаторы, облаченные в стальной герметичный корпус типа МПГО, МБГП, КБП или МБГО.

    Большая часть этих устройств выполнена в виде прямоугольника. Если взглянуть на корпус, то там приведены их характеристики:

    • Емкость (мкФ);
    • Рабочее напряжение (В).

    Применение электролитических устройств

    Используя бумажные пусковые конденсаторы, нужно помнить о следующем негативном моменте: они имеют довольно большие размеры, обеспечивая при этом небольшую емкость. По этой причине для эффективной работы трехфазного двигателя небольшой мощности приходится использовать достаточно большое количество конденсаторов. При желании бумажные можно заменить и электролитическими. В этом случае их необходимо подключать несколько иным способом, где обязательно должны присутствовать дополнительные элементы, представленные диодами и резисторами.

    Однако специалисты не советуют использовать электролитические пусковые конденсаторы. Это связано с наличием у них серьезного недостатка, который проявляется в следующем: если диод не справится со своей задачей, на устройство начнет продаваться переменный ток, а это уже чревато его нагревом и последующим взрывом.

    Другая причина состоит в том, что сегодня на рынке можно встретить улучшенные с металлизированным покрытием полипропиленовые пусковые модели переменного тока типа СВВ.

    Чаще всего они рассчитаны на работу с напряжением 400-450 В. Как раз им и следует отдать предпочтение, учитывая, что они неоднократно показывали себя с хорошей стороны.

    Напряжение

    Рассматривая различные типы пусковых выпрямителей трехфазного двигателя, подключаемого к однофазной сети, следует принимать во внимание и такой параметр, как рабочее напряжение.

    Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый. Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов.

    В то же время не стоит рассматривать модели, в которых напряжение имеет меньший показатель, нежели напряжение сети. Устройства с такими характеристиками не смогут эффективно выполнять свои функции и довольно скоро выйдут из строя.

    Чтобы свести к не ошибиться при выборе рабочего напряжения , следует придерживаться следующей схемы расчета: итоговый параметр должен соответствовать произведению фактического напряжения сети и коэффициента 1,15, при этом расчетное значение должно составлять не менее 300 В.

    В том случае, если выбираются бумажные выпрямители для работы в сети переменного напряжения, то их рабочее напряжение нужно разделить на 1,5-2. Поэтому рабочее напряжение для бумажного конденсатора, для которого производитель указал напряжение в 180 В, в условиях работы в сети переменного тока составит 90-120 В.

    Дабы понять, как на практике реализуется идея подключение трехфазного электродвигателя к однофазной сети, выполним эксперимент с использованием агрегата АОЛ 22-4 мощностью 400 (Вт) . Главная задача, которая должна быть решена – запуск двигателя от однофазной сети с напряжением 220 В.

    Используемый электродвигатель имеет следующие характеристики:

    • показатель мощности вчера– 400 кВт;
    • напряжение сети 220В переменного напряжения;
    • Ток, все характеристики которого были определены при помощи электроизмерительных клещей в трехфазном режиме работы– 1,9А;
    • Схема подключения обмоток «звезда».

    Помня о том, что используемый электродвигатель имеет небольшую мощность, при подключении его к однофазной сети можно купить лишь рабочий конденсатор.

    Расчет емкости рабочего выпрямителя:

    Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата.

    Теперь нам необходимо купить выпрямители, в качестве последних будут использоваться конденсаторы типа МБГО. Далее на основе подготовленных выпрямителей выполняется сборка требуемой емкости.

    В процессе работы следует помнить, что каждый такой выпрямитель имеет емкость 10 мкФ.

    Если взять два конденсатора и соединить их друг с другом по параллельной схеме, то итоговая емкость составит 20 мкФ. При этом показатель рабочего напряжения будет равен 160В. Для достижения требуемого уровня в 320 В необходимо взять эти два выпрямитель и подключить их еще к такой же паре, конденсаторов, соединенных параллельно, но уже применив последовательную схему. В итоге суммарная емкость составит 10 мкФ. Когда батарея рабочих конденсаторов будет готова, подключаем ее к двигателю. Далее останется только запустить его в однофазной сети.

    В процессе проведенного эксперимента с подключением двигателя к однофазной сети работа потребовала меньше времени и сил. Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 % от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю.

    Важно: если используемый двигатель рассчитан на сеть напряжением 380/220 В, то при подключении к сети следует использовать схему «треугольник».

    Обращайте внимание на содержание бирки: бывает так, что там приведено изображение звезды с напряжением 380 В. В этом случае правильную работу двигателя в сети можно обеспечить, выполнив следующие условия. Сперва придется «распотрошить» общую звезду, после чего соединить с клеммником 6 концов. Искать общую точку следует в лобовой части двигателя.

    Видео: подключение однофазного двигателя в однофазную сеть

    Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий, чаще всего оказывается достаточно рабочего. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатацию рекомендуется остановить. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу агрегата.

    Конденсатор для пуска электродвигателя

    Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

    Что такое конденсатор

    Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

    Широко распространены следующие виды накопителей электрического заряда:

    • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
    • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
    • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

    Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

    Описание разновидностей конденсаторов

    Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

    Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

    Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

    Различные виды конденсаторов

    Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

    Выбор емкости

    С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

    Для рабочего конденсатора

    Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

    На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

    Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

    Для пускового конденсатора

    Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

    Читать еще:  Что то течет двигатель ваз 2112

    Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

    Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

    Простые способы подключения электродвигателя

    Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

    Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

    При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

    • треугольник;
    • звезда.

    Подключение двигателя по схемам «звезда» и «треугольник»

    При реализации подключения этими способами важно свести к минимуму потери по мощности.

    Схема подключения «треугольник»

    Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

    Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

    В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

    Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

    Схема подключения «звезда»

    В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

    С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

    Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

    При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

    Рабочее напряжение

    После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

    Оптимальный запас по напряжению — 15-20%.

    Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

    Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

    Использование электролитических конденсаторов

    Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

    Разновидности устройства электролитического конденсатора

    Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

    Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

    Как подобрать конденсатор для трехфазного электродвигателя

    Для вычисления емкости основного конденсатора применяют формулу:

    • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
    • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
    • U- напряжение сети.

    Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

    Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

    Емкость пускового накопителя принимают в 2-3 раза больше основного.

    Подключение трехфазного электродвигателя к сети

    После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

    Как подобрать пусковой конденсатор для однофазного электромотора

    До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

    При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

    Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

    Конструкция асинхронного однофазного электродвигателя

    Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

    Почему однофазный электродвигатель запускают через конденсатор

    Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

    В трехфазном двигателе обмотки и так размещены под углами 120 ° . Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить пусковой момент вращения.

    Конденсаторы для асинхронных двигателей

    Добрый день, уважаемые читатели блога nasos-pump.ru

    В рубрике «Принадлежности» рассмотрим конденсаторы для однофазных асинхронных двигателей переменного тока. У трехфазных двигателей при подключении к сети питания возникает вращающееся магнитное поле, за счет которого и происходит запуск двигателя. В отличие от трехфазных двигателей, у однофазных в статоре имеется две обмотки рабочая и пусковая. Рабочая обмотка подключена к однофазной сети питания напрямую, а пусковая последовательно с конденсатором. Конденсатор необходим для создания сдвига фаз между токами рабочей и пусковой обмоток. Самый большой вращающий момент в двигателе возникает тогда, когда сдвиг фаз токов обмоток достигает 90°, а их амплитуды создают круговое вращающееся поле. Конденсатор является элементом электрической цепи и предназначен для использования его ёмкости. Он состоит из двух электродов или правильней обкладок, которые разделёны диэлектриком. Конденсаторы имеют возможность накапливать электрическую энергию. В Международной системе единиц СИ за единицу ёмкости принимается ёмкость конденсатора, у которого на один вольт возрастает разность потенциалов при сообщении ему заряда в один кулон (Кл). Емкость конденсаторов измеряется в фарадах (Ф). Емкость в одну фараду очень большая. На практике используются более мелкие единицы измерения микрофарады (мкФ) одна мкФ равняется 10 -6 Ф, пикофарады (пФ) одна пФ равняется 10 -12 мкФ. В однофазных асинхронных двигателях в зависимости от мощности используются конденсаторы емкостью от нескольких до сотен мкФ.

    Читать еще:  В какую сторону крутится двигатель лифан

    Основные электрические параметры и характеристики

    К основным электрическим параметрам конденсаторов для асинхронных двигателей относятся: номинальная емкость конденсатора и номинальное рабочее напряжение. Кроме этих параметров существует еще температурный коэффициент емкости (ТКЕ), тангенс угла потерь (tgd), электрическое сопротивление изоляции.

    Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрический заряд характеризуется его емкостью. Емкость (С) определяется как отношение накопленного в конденсаторе заряда (q), к разности потенциалов на его электродах или приложенному напряжению (U). Емкость конденсаторов зависит от размеров и формы электродов, их расположения друг относительно друга, а также материала диэлектрика который разделяет электроды. Чем емкость конденсатора больше, тем и накопленный им заряд больше Удельная ёмкость конденсатора – выражает отношение его ёмкости к объёму. Номинальная ёмкость конденсатора – это ёмкость, которую имеет конденсатор согласно нормативной документации. Фактическая же ёмкость каждого отдельного конденсатора отличается от номинальной, но она должна быть в пределах допускаемых отклонений. Значения номинальной ёмкости и ее допустимое отклонение в различных типах конденсаторов постоянной ёмкости установлена стандартом.

    Номинальное напряжение – это то значение напряжения обозначенное на конденсаторе, при котором он работает в заданных условиях длительное время и при этом сохраняет свои параметры в допустимых пределах. Значение номинального напряжения зависит от свойств используемых материалов и конструкции конденсаторов. В процессе эксплуатации рабочее напряжение на конденсаторе не должно превышать номинальное. У многих типов конденсаторов при увеличении температуры допустимое номинальное напряжение снижается.

    Температурный коэффициент емкости (ТКЕ) – это параметр выражающий линейную зависимостью емкости конденсатора от температуры внешней среды. На практике ТКЕ определятся как относительное изменение емкости при изменении температуры на 1°С. Если эта зависимость нелинейная, то ТКЕ конденсатора характеризуется относительным изменением емкости при переходе от нормальной температуры (20±5°С) к допустимому значению рабочей температуры. Для конденсаторов используемых в однофазных двигателях этот параметр важный и должен быть как можно меньше. Ведь в процессе эксплуатации двигателя его температура повышается, а конденсатор находится непосредственно на двигателе в конденсаторной коробке.

    Тангенс угла потерь (tgd). Потеря накопленной энергии в конденсаторе обусловлена потерями в диэлектрике и его обкладках. Когда через конденсатор протекает переменный ток, то векторы тока и напряжения сдвинуты относительно друг друга на угол (d). Этот угол (d) и называют углом диэлектрических потерь. Если потери отсутствуют, то d=0. Тангенс угла потерь это отношение активной мощности (Pа) к реактивной (Pр) при напряжении синусоидальной формы определённой частоты.

    Электрическое сопротивление изоляции – электрическое сопротивление постоянному току, определяется как отношение приложенного к конденсатору напряжения (U) , к току утечки (I ут ), или проводимости. Качество применяемого диэлектрика и характеризует сопротивление изоляции. Для конденсатора с большой емкостью сопротивление изоляции обратно пропорционально его площади обкладок, или его ёмкости.

    На конденсаторы оказывает очень сильное воздействие влага. Асинхронные электродвигатели используемые в насосном оборудовании перекачивают воду, и высока вероятность попадания влаги на двигатель и в конденсаторную коробку. Воздействие влаги приводит к снижению сопротивления изоляции (возрастает вероятность пробоя), увеличению тангенса угла потерь, коррозии металлических элементов конденсатора.

    Кроме всего при эксплуатации двигателя на конденсаторы воздействует различного вида механические нагрузки: вибрация, удары, ускорение и т.д. Как следствие могут появится обрыв выводов, трещины и уменьшение электрической прочности.

    Рабочий и пусковой конденсаторы

    В качестве рабочих и пусковых используются конденсаторы с оксидным диэлектриком (ранее они назвались электролитическими) Рабочие и пусковые конденсаторы для асинхронных двигателей включаются в сеть переменного тока, и они должны быть неполярными. Они имеют сравнительно большое 450 вольт для оксидных конденсаторов рабочее напряжение, которое в два раза превышает напряжение промышленной сети. На практике применяются конденсаторы с емкостью порядка десятков и сотен микрофарад. Как мы говорили выше, рабочий конденсатор используется для получения вращающего магнитного поля. Пусковая же емкость используется для получения магнитного поля, необходимого для повышения пускового момента электродвигателя. Пусковой конденсатор подключается параллельно рабочему через центробежный выключатель. Когда есть пусковая емкость вращающееся магнитное поле асинхронного двигателя в момент пуска приближается к круговому, а магнитный поток увеличивается. Это повышает пусковой момент и улучшает характеристики двигателя. При достижении асинхронным двигателем оборотов достаточных для отключения центробежного выключателя, пусковая емкость отключается и двигатель остается в работе только с рабочим конденсатором. Схема включения рабочего и пускового конденсаторов приведены на (Рис. 1).

    Схема с рабочим и пусковым конденсаторами

    В таблице приведены обособленные характеристики рабочих и пусковых конденсаторов для асинхронных двигателей .

    Эксплуатация, обслуживание и ремонт

    В процессе эксплуатации насосного оборудования с однофазным асинхронным двигателем особое внимание следует обращать на питающее напряжение электрической сети. В случае пониженного напряжения сети, как известно, снижается пусковой момент и частота вращения ротора, из-за увеличения скольжения. При низком напряжении увеличивается также нагрузка на рабочий конденсатор и возрастает время запуска двигателя. В случае значительного провала напряжения питания более 15% высока вероятность того, что асинхронный двигатель не запустится. Очень часто при низком напряжении выходит из строя рабочий конденсатор из-за повышенных токов и перегрева. Он расплавляется и из него вытекает электролит. Для ремонта необходимо приобрести и установить новый конденсатор соответствующей емкости. Очень часто случается, что нужного конденсатора под рукой нет. В этом случае можно подобрать требуемую емкость из двух или даже трех и четырех конденсаторов, подключив их параллельно. Здесь следует обратить внимание на рабочее напряжение, оно должно быть не ниже, чем напряжение на заводском конденсаторе. Общая емкость конденсатора(ов) должна отличаться от номинала не более чем 5%. Если установить емкость большего номинала, то двигатель запустится в работу и будет работать, но при этом начнет греться. Если с помощью клещей измерить номинальный ток двигателя, то ток будет завышен. Так как полное электрическое сопротивление цепи в обмотках двигателя состоит из активного сопротивления цепи и реактивного сопротивления обмоток двигателя и емкости, то с увеличением емкости общее сопротивление возрастает. Сдвиг фаз токов в обмотках из-за увеличения полного сопротивления электрической цепи обмоток после запуска двигателя сильно уменьшится, магнитное поле из синусоидального превратится в эллиптическое, и рабочие характеристики асинхронного двигателя очень сильно ухудшаются, снижается КПД и возрастают тепловые потери.

    Иногда бывает, что вместе с конденсатором выходит из строя и пусковая обмотка однофазного двигателя. В такой ситуации стоимость ремонта резко возрастает, ибо надо не только заменить конденсатор, но еще и перемотать статор. Как известно, перемотка статора одна из самых дорогих операций при ремонте двигателя. Очень редко, но бывает и такая ситуация когда при низком напряжении выходит из строя только пусковая обмотка, а конденсатор при этом остается рабочим. Для ремонта двигателя нужно перематывать статор. Все эти ситуации с двигателем случаются при низком напряжении однофазной питающей сети. Для решения этой проблемы в идеальном случае необходим стабилизатор напряжения.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector