Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Главный двигатель судна из чего состоит

Главный двигатель судна из чего состоит

Автоматизация судовых дизельных установок

Для прогресса техники последних лет характерно широкое и все углубляющееся внедрение автоматизации во все отрасли народного хозяй­ства, в том числе и на транспортный флот.

Как уже было сказано, автоматизация является одним из необходимых условий надежной и высокоэффективной эксплуатации судовых дизельных установок, особенно при работе экипажей методом совмещения профессий. В этих условиях особое значение приобретает комплексная автоматизация судовых силовых установок.

Автоматизация судовых дизельных установок повышает производи­тельность и улучшает условия труда судового экипажа, улучшает маневрен­ность судна, снижает вероятность аварийных случаев, обеспечивает экс­плуатацию судовых дизелей на заданных (в большинстве случаев оптималь­ных) режимах, благодаря чему снижается себестоимость перевозок, увели­чиваются надежность и срок службы двигателей.

По своему назначению автоматические устройства на судовых дизелях могут быть разделены на следующие типы:

1. Автоматическая предупредительная (аварийная) сигнализация.

2. Система автоматической защиты.

3. Автоматическое управление.

Автоматическая предупредительная сигнализация срабатывает в слу­чае выхода из нормальных пределов какого-либо из контролируемых ею рабочих показателей и тем самым дает возможность вахтенному штурману— механику своевременно предпринять необходимые меры для предупрежде­ния соответствующих аварийных последствий. Обычно предупредительная сигнализация срабатывает, т. е. начинает подавать световые и звуковые сигналы, если недопустимо снизится давление в системе смазки двигателя, либо перегреется охлаждающая вода или масло, либо чрезмерно повысится температура отработавших газов.

Типовая принципиальная схема автоматической предупредительной сигнализации показана на рис. 206.

Автоматическая система состоит из трех основных элементов: датчика (чувствительного элемента) 1; управляющего элемента (реле) 2 и исполни­тельных органов (сигнализаторов световых и звуковых) 3 и 4.

Указанные основные элементы схемы связаны между собой электри­ческими, гидравлическими или пневматическими связями, и, кроме того, имеется источник питания 6 (на схеме— аккумуляторная батарея). В цепи звукового сигнализатора обычно устанавливается выключатель 5, позволяю­щий в необходимых случаях выключить звуковой сигнал.

Датчики являются чувствительными элементами автоматической си­стемы, они реагируют на изменение давления, температуры, числа оборотов вала и других показателей работы.

Температурные датчики применяют биметаллические, жидкостные и паровые. В качестве датчиков давления на двигателях наибольшее приме­нение получили датчики мембранного сильфонного типа и датчики с труб­кой Бурдона.

Датчики, реагирующие на изменение числа оборотов вала двигателя, в большинстве случаев — центробежные.

Управляющий элемент — реле или гидравлический переключатель (золотник). Исполнительные органы — сигнализаторы в рассматриваемой схеме пояснений не требуют.

Как видно, автоматическая предупредительная сигнализация контро­лирует наиболее важные показатели работы дизеля и оповещает вахтенного штурмана — механика о нарушениях его нормальной работы. Благодаря этому штурман — механик имеет возможность меньше занимать свое внимание наблюдением за показаниями контрольных измерительных приборов двига­телей и, следовательно, в большей степени концентрировать свое внимание на внешних условиях судового хода, на выполнении маневров и на более рациональном выборе режимов движения судна и работы главного двига­теля.

Таким образом, автоматическая предупредительная сигнализация облег­чает условия работы вахтенного штурмана — механика, способствует лучшему выполнению маневров и уменьшению вероятности аварийных случаев.

Однако в отличие от других типов автоматических устройств предупре­дительная сигнализация выполняет пассивную роль, т. е. непосредственно в процессе управления дизелем участия не принимает.

Система автоматической защиты также состоит из трех основных эле­ментов: датчиков, реагирующих на изменения каких-либо показателей ра­боты; управляющего элемента и исполнительного органа. Однако в отличие от предыдущей схемы исполнительный орган (соленоид или сервомотор) здесь воздействует на топливные насосы, уменьшая число оборотов вала ди­зеля или останавливая его.

Например, если давление смазочного масла в системе работающего дизеля упадет ниже допустимого минимального значения, то система авто­матической защиты, обнаружив это с помощью своего датчика, должна сработать и, воздействуя своим исполнительным органом на топливные на­сосы дизеля, уменьшить или прекратить подачу топлива в рабочие цилиндры либо остановить с помощью специальной воздушной заслонки.

Автоматическая остановка главного двигателя по условиям безопас­ности плавания в одновальных силовых установках недопустима, в них автоматическая система снижает число оборотов и включает предупреди­тельные аварийные сигналы.

В двухзальных установках теплоходов и для большинства дизель- генераторов предусматривается автоматическая аварийная остановка.

Таким образом, системы автоматической защиты предохраняют двига­тели от аварий, связанных с перегрузкой либо с нарушениями нормальной работы систем охлаждения и смазки. Автоматическая защита при аварий­ной ситуации активно вмешивается в процесс управления двигателем.

Системы автоматического управления можно разделить на две группы:

А. Автоматические устройства, ограничивающие изменение или под­держивающие на определенном уровне значение какого-либо показателя работы двигателя.

Б. Системы автоматического управления, изменяющие режимы работы двигателя по определенной программе, заданной соответствующим положе­нием регулирующего органа (рукоятки) на посту управления.

В первую группу входят автоматические устройства, поддерживающие заданную температуру, давление или число оборотов вала двигателя. Эти устройства органически входят в конструкцию современных дизелей, опыт их применения исчисляется десятилетиями. Сюда входят редукционные и предохранительные клапаны, терморегуляторы (термостаты) в системах охлаждения и смазки и регуляторы числа оборотов вала двигателя.

Во вторую группу входят автоматика дистанционных систем управления и автоматические системы управления резервными или аварийными дизель- генераторами, которые срабатывают в зависимости от напряжения или час­тоты в контролируемой электрической сети.

Одним из основных условий, обеспечивающих возможность судовому экипажу работать с совмещением профессий, является наличие системы ди­станционного управления главными двигателями.

Дистанционное управление (сокращенно ДУ) позволяет производить запуск двигателя, изменять число оборотов его вала, реверсировать направ­ление вращения движителя и останавливать двигатель непосредственно из штурвальной рубки, которая находится на некотором расстоянии от ма­шинного отделения. Это управление должно быть надежным в работе, по­стоянно готовым к действию, допускать быстрый переход к непосредствен­ному управлению дизелем, обладать высокой точностью’ выполнения опе­раций управления и требовать небольших усилий для перемещения управ­ляющих рукояток и маховичков; управление двигателем с его помощью должно быть простым и удобным.

Наиболее удобны в работе те дистанционные системы управления, в которых все вышеперечисленные операции управления осуществляются одной рукояткой или маховичком.

По способу связи между постом управления и дизелем различают сле­дующие типы дистанционного управления:

1) механическое ДУ (тросиковая, рычажная или валиковая передача);

2) гидравлическое ДУ;

3) пневматическое ДУ;

4) электрическое ДУ;

5) комбинированное ДУ (пневмомеханическое, электропневматическое и др.).

Читать еще:  Шноркель на 402 двигатель своими руками

Достоинства и недостатки конкретных конструкций ДУ зависят не только от особенностей использованных связей, но и от конструкции си­стемы управления двигателя, расстояния между рубкой и машинным отде­лением, конструктивного решения отдельных узлов, качества их изготов­ления и многих других факторов.

Общим недостатком всех систем ДУ является необходимость раздель­ного выполнения судоводителем каждой операции управления двигателем, соблюдая строгую последовательность этих операций и контролируя их выполнение.

Для облегчения труда судоводителя и исключения возможных ошибок в производстве маневров в последние годы все большее применение полу­чают автоматизированные системы дистанционного управления (ДАУ), в которых перевод двигателя с одного режима работы на любой другой сво­дится к одной операции — перемещению рукоятки управления в нужное положение. При этом промежуточные операции управления для перехода на новый режим работы система ДАУ выполняет автоматически.

Например, если реверсивный двигатель работает на средних оборотах переднего хода и необходимо перевести его на средние обороты заднего хода, то на посту управления в рубке достаточно одним движением переставить рукоятку в соответствующее положение.

Получив это задание, ДАУ автоматически снижает обороты вала, оста­навливает и реверсирует дизель, запускает его для работы «назад» и увели­чивает обороты вала до значения, заданного положением управляющей рукоятки на посту.

Все перечисленные операции выполняются строго последовательно и с минимальной затратой времени на каждую из них.

Судовые дизель-генераторы в связи с работой экипажа методом совме­щения профессий также оборудуются системами дистанционного и автома­тического управления.

Дистанционное управление позволяет из рубки производить пуск и оста­новку дизель-генераторов и соответствующие переключения в электриче­ской сети.

ГОСТ 10032—62 устанавливает три степени автоматизации дизель- генераторов:

I степень — автоматическое поддержание нормальной работы дизель- генератора, аварийная сигнализация и защита;

II степень — дистанционное и автоматическое управление дизель-гене­ратором с частичным обслуживанием без постоянного наблюдения;

III степень — дистанционное и автоматическое управление без обслу­живания дизель-генераторов в течение 150 ч работы и более.

Автоматический пуск дизель-генератора происходит при срабатыва­нии специального реле вследствие понижения напряжения или изменения частоты тока валогенератора, питающего электрическую сеть многих типов судов на ходовых режимах работы силовой установки, если на пульте в рулевой рубке переключатель управления находится в положении «Автозапуск». При автоматическом пуске дизель-генератора до начала прокрутки его электростартером или с помощью сжатого воздуха производится про­качка его системы смазки и разогреваются пусковые свечи (если они имеются).

Если дизель после раскрутки вала начинает работать на топливе, то скорость вращения вала увеличивается, что и является сигналом к отклю­чению системы пуска.

При неудавшемся пуске система повторяет пусковые операции.

Перевод нагрузки с валогенератора на дизель-генератор может осуще­ствляться как вручную, так и автоматически.

Для сокращения промежутка времени от момента подачи команды «пуск» до переключения судовой электрической сети на резервный дизель-генератор обычно предусматривают постоянное поддержание его в прогре­том состоянии за счет какого-либо внешнего источника тепла.

С увеличением до нормального уровня напряжения или частоты тока от валогенератора последний может автоматически принять на себя на­грузку, после чего резервный дизель-генератор автоматически останавли­вается.

По аналогичной программе работают системы автоматического управ­ления аварийными дизель-генераторами. В системе автоматического управ­ления аварийными дизель-генераторами на пассажирских теплоходах типа «Родина» для их пуска и остановки при выходе из строя судовой электро­станции используется специальный программный механизм.

Системы автоматического управления судовыми двигателями совер­шенствуются и развиваются. Ведутся работы по созданию самонастраиваю­щихся автоматических систем управления, которые, исходя из внешних условий (атмосферного давления и температуры, технического состояния двигателя запаса глубины под килем и др.) и заданных требований (опре­деленной продолжительности рейса, наименьшего расхода топлива и др.), будут выбирать и поддерживать оптимальные для этих условий режимы ра­боты главных двигателей. Такие системы, кроме того, будут надежно защи­щать двигатели от опасных перегрузок, способствуя этим увеличению мото­ресурса.

В дальнейшем возможно создание таких автоматических систем, ко­торые с помощью своих датчиков будут непрерывно контролировать тех­ническое состояние двигателя и сигнализировать о необходимости ремонта тех или иных его узлов, о необходимости смены смазочного масла и необхо­димости выполнения других назревших работ .

Система запуска судового двигателя. Выхлопные газы.

Система запуска судового двигателя. Выхлопные газы.

Система запуска судового двигателя

Для того чтобы запустить двигатель внутреннего сгорания, как известно, его надо несколько раз провернуть, чтобы цилиндры заполнились рабочей смесью, она сжалась и воспламенилась, толкая поршни. Рукоятка, которой заводились старые советские автомобили, для двигателя размеров с дом не подойдёт, нужно что-то помощнее. На судах для этого традиционно используется сжатый воздух, хранящийся в баллонах под давлением 30 бар.

При этом главные двигатели малой мощности или вспомогательные двигатели могут заводиться с помощью электрических или пневматических стартовых моторов, работающих от аккумуляторов или сжатого воздуха. Для этого должна быть предусмотрена система зарядки аккумуляторных батарей, или компрессор для закачки воздуха в баллоны при работающем двигателе. Такой стартовый мотор прокручивает двигатель за зубчатый маховик, пока он не заведётся.

Когда двигатель заводится от сжатого воздуха, он подаётся в цилиндры через работающий от распредвала отдельный распределитель с клапанами, в том же порядке, как и при работе двигателя. Когда двигатель проворачивается, впрыскивается топливо и подача воздуха прекращается.

Для старта обычно достаточно 10 бар. Тем не менее, в баллонах обязательно должно быть давление в 30 бар, чтобы при необходимости завести мотор несколько раз.

Выхлопные газы

По составу выхлопные газы – это очень горячая смесь углекислого газа, водяного пара, несгоревшего топлива и смазки, оксида азота (продукт окисления атмосферного азота), диоксида серы (образуется при сгорании содержащейся в топливе серы) и углерода в виде сажи. Оксид серы реагирует с водой, образую серную кислоту, которая разъедает сталь выхлопных труб судна. Настройкой рабочего цикла двигателя получается в определенных пределах уменьшить количество вредных для экологии оксидов азота и серы.

В некоторых морских районах действует ограничение на использование судами тяжелого топлива с высоким содержанием серы (1.5% вместо обычных 3.5%), чтобы уменьшить выбросы оксида серы в атмосферу. Судно бывает вынуждено перейти на более «чистое» дизельное топливо. Также существуют системы фильтров, уменьшающих выброс оксидов азота, но они достаточно дороги.

Читать еще:  Ваз 2114 двигатель и его характеристики

Тепло от выхлопных газов можно утилизировать, например, для подогрева топлива, нагрева воды или отопления помещений судна. Иначе оно будет буквально выброшено на воздух. Эту функцию выполняют специальные теплообменники на выхлопных трубах, называемые экономайзерами.

Выхлопные газы могут нагревать специальное масло-теплоноситель, или производить водяной пар для судовых нужд, обычно для разогрева тяжелого топлива.

Несмотря на наличие таких «бесплатных» источников тепла, на корабле всё равно должны быть независимые от работы главного двигателя нагреватели, обеспечивающие отопление и другие нужды судна при стоянке в порту, или когда главный двигатель не работает на полную мощность.

Воздух для горения топлива на судне

Для сгорания топлива в цилиндрах необходим воздух. Он поступает из машинного отделения, при этом туда при помощи вентиляторов подаётся наружный свежий воздух, охлаждая помещение. Но всё равно там очень жарко. Поэтому во флоте ценятся русские мотористы и механики, закалённые паровой русской баней.

В цилиндры воздух подаётся с некоторым избытком, чтобы улучшить процесс горения и снизить температуру выхлопных газов.

Подача воздуха для горения под давлением может резко поднять мощность двигателя, поэтому часто используется турбина с теплообменником. В ней кинетическая энергия выхлопных газов используется для предварительного сжатия воздуха, который после охлаждения поступает в цилиндры.

Вот так воздух в разных видах используется в судовых энергетических установках.

Как работает судовой двигатель?

Большинство современных коммерческих и гражданских судов оборудуются энергетическими установками (главными и вспомогательными). Преобладающее распространение получили двигатели внутреннего сгорания (ДВС), которые работают на дизельном топливе, т.е. дизельные двигатели.

Конструкция и классификация дизельных двигателей

Основной конструкцией дизельного двигателя является рабочий цилиндр и кривошипно-шатунный механизм (КШМ). По конструктивным особенностям КШМ различают тронковые и крейцкопфные двигатели.

В тронковых двигателях верхняя часть шатуна крепится к поршню, а нижняя часть (тронк) служит направляющей при возвратно-поступательном движении поршня в цилиндре. В крейцкопфных верхняя часть шатуна крепится к крейцкопфу, который выполняет роль направляющей для всей поршневой группы.

В основе классификации дизельных двигателей – рабочие характеристики и принцип функционирования:

  • мощность (малая менее 74 кВт, средняя от 74 до 736 кВт, большая от 736 до 7360 кВт, сверхбольшая от 7360 кВт);
  • функциональное предназначение (главные и вспомогательные)
  • схема действия (четырехтактные и двухтактные двигатели);
  • рабочий объем цилиндров;
  • способ наполнения цилиндров (с наддувом и без наддува);
  • частота вращения коленвала (малооборотные, среднеоборотные, высокооборотные);
  • быстроходность (в зависимости от скорости передвижения поршня тихоходные от 4,5 до 7,0 м/с, средней быстроходности от 7,0 до 10,0 м/с, быстроходные от 10,0 до 15,0 м/с).

Существуют и другие параметры выбора. Большое значение имеют габариты установки. Они во многом зависят от типа конструкции, объема цилиндров, их количества и расположения (рядное или многорядное). Многорядные конструкции отличаются по расположению рядов цилиндров по отношению друг к другу, как правило, V-образное, другие схемы, в том числе оппозитная, применяются реже. Это предопределяет конструкцию таких вспомогательных систем как охлаждение, выхлопная, смазки, подачи топлива, впрыска. Обслуживание и ремонт энергетической установки, их специфика во многом определяются именно этими факторами.

Принцип работы

Принцип функционирования дизельного двигателя основан на преобразовании тепловой энергии (она формируется вследствие самовоспламенения и сгорания топливо-воздушной смеси) в механическую работу с последующей ее передачей потребителям (гребному винту, электрическому генератору, другим, в зависимости от конструкционной схемы и установленного оборудования).

Схема работы определяется количеством тактов (ходов поршня и количеством оборотов коленвала), их либо четыре (впуск, выпуск, сжатие и рабочий ход (сгорание и расширение), либо два (сжатие и рабочий ход, впуск и выпуск заменены продувкой).

Дизельные судовые двигатели Yanmar

Yanmar (Янмар) – японская компания, основанная в 1912 году. Одно из направлений деятельности – разработка и производство дизельных двигателей, начиная с 1933 года. Ассортимент включает высокооборотные и среднеоборотные энергетические установки.

Купить судовой дизельный двигатель Yanmar стоит по целому ряду причин. Среди них основные – надежность, продуманность конструкционных решений, высокая энергетическая эффективность и экономичность. Среди других преимуществ отметим:

  • долговечность эксплуатации;
  • простое обслуживание;
  • высокие рабочие характеристики.

Предлагаем приобрести судовой двигатель Yanmar с доставкой по всей территории РФ. Оказываем помощь в выборе, предоставим компетентную консультацию, гарантии. Обращайтесь!

Главный двигатель судна из чего состоит

Судовые двигатели внутреннего сгорания

  • Общее устройство, принцип действия и маркировка судовых двигателей внутреннего сгорания
  • Остов двигателя и кривошипно-шатунный механизм
  • Механизм газораспределения
  • Топливная система дизелей
  • Система охлаждения двигателя
  • Системы смазки двигателя
  • Пусковые и реверсивные устройства ДВС
  • Наддув судовых двигателей
  • Контроль за работой судовых дизелей
  • Основные ремонтные и монтажные работы
  • Правила технической эксплуатации дизелей

Классификация и маркировка судовых ДВС

Двигатель внутреннего сгорания (ДВС) — это тепловая машина, внутри цилиндра которой происходит сгорание топлива. При сгорании выделяется теплота, идущая на расширение, газов. Под давлением расширяющихся газов движется поршень. Таким образом в ДВС тепловая энергия превращается в механическую.

Судовые ДВС классифицируются по ряду признаков. Для работы двигателя необходимо обеспечить определенную последовательность процессов: наполнение цилиндра воздухом, сжатие его, подачу топлива и горение, расширение продуктов сгорания и удаление отработавших газов. Этот ряд последовательно протекающих в цилиндре процессов, обеспечивающих непрерывную работу двигателя, называется рабочим циклом. Часть рабочего цикла, протекающая за один ход поршня, называется тактом.

Таким образом, по осуществлению рабочего цикла двигатели подразделяются на четырехтактные, у которых рабочий цикл совершается за четыре хода поршня или за два оборота коленчатого вала, и двухтактные, у которых рабочий цикл осуществляется за два хода поршня или один оборот коленчатого вала.

По конструктивному выполнению двигатели подразделяются на тронковые, крейцкопфные и с противоположно движущимися поршнями (ПДП) в одном цилиндре.

Во время работы двигателя при сгорании топлива в цилиндре на поршень действует давление газов. Его можно представить в виде сосредоточенной силы Р (рис. 1, а), приложенной к оси поршневого пальца и направленной вниз. При повороте коленчатого вала на некоторый угол сила Р раскладывается по правилу параллелограмма на две силы: РШ, действующую вдоль оси шатуна и приводящую в движение коленчатый вал, и РН, действующую перпендикулярно направлению движения поршня. Сила РН прижимает поршень к стенке цилиндра и вызывает усиленный износ поршней и стенок цилиндров.

Читать еще:  Шевроле круз неисправности двигателя возможные неисправности

Рис. 1. Схема конструктивного выполнения двигателей: а — тронковый; б — крейцкопфный; в — с противоположно движущимися поршнями в одном цилиндре.

По такой схеме выполняются высокооборотные и среднеоборотные двигатели, называемые тронковыми (поршень у них имеет развитую нижнюю цилиндрическую часть — тронк).

У двигателей больших мощностей сила РН велика, поэтому их делают крейцкопфными (рис. 1, б). Поршень 2 такого двигателя жестко через шток 3 соединен с крейцкопфом 1, ползун 4 которого движется в направляющих параллелях 5. Боковое усилие PН в этом случае воспринимается не стенкой цилиндра, а через крейцкопф параллелями, которые жестко связаны со станиной двигателя. Крейцкопфы делают односторонними или двусторонними.

У двигателей с ПДП (рис. 1, в) топливо сгорает в камере, расположенной между двумя поршнями 1, которые работают в одном цилиндре и движутся в противоположные стороны. Такой двигатель имеет два коленчатых вала 2.

В зависимости от расположения цилиндров двигатели бывают однорядные с вертикальным расположением цилиндров (рис. 2, а) и V-образные (рис. 2, б).

Рис. 2. Схема двигателей: а — рядный; б — V-образный; в — без наддува; г — с наддувом.

По способу наполнения цилиндра свежим зарядом различают:

  • двигатели без наддува (рис. 2, в), у которых всасывание воздуха через клапан осуществляется поршнем (четырехконтактные) или заполнение цилиндра воздухом производится продувочным насосом при невысоком давлении, незначительно превышающем атмосферное (двухтактные);
  • двигатели, у которых топливо впрыскивается в рабочий цилиндр под давлением, создаваемым специальным насосом К (воздуходувкой).

По способу воспламенения горючей смеси в цилиндре различают:

  • двигатели, у которых топливо впрыскивается в рабочий цилиндр через специальное устройство (форсунку) под действием давления, создаваемого топливным насосом; оно мелко распыливается, смешивается в цилиндре с воздухом, сильно разогретым в результате сжатия, и самовоспламеняется (это дизели);
  • карбюраторные двигатели, т. е. такие двигатели, у которых топливо перемешивается с воздухом не в цилиндре, а в особом приборе — карбюраторе, из которого горючая смесь подается в цилиндр двигателя и воспламеняется там от электрической искры, получаемой от специальной системы.

По быстроходности двигатели условно подразделяют на тихоходные со средней скоростью поршня менее 6,5 м/с и быстроходные со средней скоростью поршня более 6,5 м/с. Среднюю скорость поршня СМ определяют по формуле

В настоящее время частота вращения в СИ характеризуется угловой скоростью ω, которая измеряется в радианах в секунду (1/с) и определяется по формуле

По частоте вращения двигатели подразделяют на

  • малооборотные (МОД) — 10. 25 с -1 (100. 250 об/мин),
  • среднеоборотные (СОД) — 25. 60 с -1 (250. 600 об/мин),
  • повышенной оборотности — 60. 100 с -1 (600. 1000 об/мин)
  • высокооборотные — свыше 1000 с -1 (10 000 об/мин).

По мощности двигатели подразделяются на

  • маломощные — до 73,5 кВт (100 л. с),
  • средней мощности — 73,5. 735 кВт (100. 1000 л. с.) и
  • сверхмощные — свыше 7350 кВт (10000л.с).

По назначению двигатели бывают главными, которые обеспечивают ход судна, приводят в движение гребные винты, и вспомогательными, служащими для привода электрогенераторов, компрессоров и других вспомогательных механизмов.

По способу изменения направления вращения вала двигатели подразделяют на реверсивные и нереверсивные. Передний и задний ход при гребном винте фиксированного шага может быть достигнут изменением направления вращения гребного винта. Для обеспечения заднего хода гребному винту можно придать вращение в обратную сторону двумя способами: либо изменить направление вращения коленчатого вала двигателя, либо только гребного.

В реверсивных двигателях можно изменить направление вращения коленчатого вала. Мощность этих двигателей, как правило, большая.

Коленчатые валы нереверсивных двигателей вращаются только в одном направлении. У быстроходных и маломощных нереверсивных двигателей направление вращения гребного винта изменяют с помощью реверсивной передачи, устанавливаемой между двигателем и валопроводом.

Для краткого обозначения типа двигателя дизелестроительные заводы пользуются условной маркировкой (табл. 1). Единая у отечественных дизелестроительных заводов, индивидуальная у заводов других стран маркировка типа двигателя обычно состоит из записываемых в определенной последовательности буквенных условных обозначений отдельных характеристик двигателя и цифр, обозначающих число цилиндров, диаметр, а также ход поршня (в см).

В соответствии с ГОСТ 4398 — 78 маркировка двигателей СССР состоит из цифрового обозначения числа цилиндров, условных буквенных обозначений характеристик двигателя,после которых дробью показаны диаметр цилиндра и ход поршня в см.

Так, марка 8DP 43/61 расшифровывается: восьмицилиндровый двухтактный реверсивный тронковый (отсутствие буквы К), без наддува (отсутствие буквы Н) двигатель с цилиндром диаметром 430 мм и ходом поршня 610 мм.

Точно так же марка 6DKPH 74/160 обозначает: двигатель шестицилиндровый двухтактный крейцкопфный реверсивный, с наддувом, с цилиндром диаметром 740 мм и ходом поршня 1600 мм.

В маркировку двигателей производства ГДР входит число цилиндров и ход поршня. Диаметр цилиндра либо дается в знаменателе, либо совсем не указывается. Например, марка двигателя 8ZD 72/48 расшифровывается: восьмицилиндровый двухтактный дизель с ходом поршня 720 мм и с цилиндром диаметром 480 мм.

В маркировке двигателей «Зульцер» ход поршня не указывается. Например, марка 8TD-48 присваивается восьмицилиндровому тронковому реверсивному двигателю с цилиндром диаметром 480 мм.

В маркировке двигателей МАН число цилиндров указывают между условными буквенными обозначениями конструкции двигателя и его тактностью, после чего дробью — диаметр цилиндра и ход поршня (в см), затем условное обозначение турбонаддува и показатель модификации. Так, марка двигателя K6Z 60/105Л означает, что двигатель крейцкопфный шестицилиндровый двухтактный с цилиндром диаметром 600 мм, ходом поршня 1050 мм, подпоршневые пространства у данной модификации используются как продувочный насос.

Двигатели заводов «Бурмейстер и Вайн» маркируются несколько иначе. Здесь диаметр цилиндра (в см) указывают впереди условных буквенных обозначений, за числом цилиндров, а ход поршня — после них. Так, марка 6-35 VBF62 присваивается шестицилиндровому двухтактному реверсивному дизелю с газотурбинным наддувом с цилиндром диаметром 350 мм и ходом поршня 620 мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector