Характеристики двигателей постоянного тока
Характеристики двигателей постоянного тока. Обычно рассматривают три основные характеристики двигателей постоянного тока:
Обычно рассматривают три основные характеристики двигателей постоянного тока:
Все характеристики, отражающие взаимосвязь между током якоря, механическим моментом на валу двигателя и частотой вращения якоря зависят от способа возбуждения двигателя, поэтому они рассматриваются отдельно для каждой схемы возбуждения двигателя.
3.4.1. Характеристики двигателей с независимым
и параллельным возбуждением
Скоростной характеристикой называют зависимость частоты вращения якоря от тока якоря двигателя при постоянном напряжении питания U = const, равном номинальному напряжению, и постоянном токе возбуждения Iв = const.
Для получения функциональной зависимости скорости вращения якоря от тока воспользуемся уравнением электрического равновесия двигателя
.
Из этого уравнения получаем выражение для частоты вращения
.
В полученной формуле от тока якоря зависят две составляющие: произведение Rя Iя и результирующий магнитный поток машины .
![]() |
Произведение RяIя, равное падению напряжения на сопротивлении цепи якоря, приводит к пропорциональному уменьшению частоты вращения при увеличении тока якоря. Магнитный поток машины при увеличении тока якоря из-за реакции якоря несколько уменьшается. Эта зависимость магнитного потока от тока якоря нелинейная, поэтому и скоростная характеристика двигателей с независимым и параллельным возбуждением нелинейная (рис. 3.4).
В зависимости от соотношения влияния на частоту вращения падения напряжения Rя Iя и изменения магнитного потока двигателя характеристика скорости может иметь различный вид. На рис. 3.4 кривая 1 представляет собой характеристику скорости двигателя, у которого влияние Rя Iя преобладает перед влиянием потока , кривая 3 представляет собой скоростную характеристику двигателя, у которого влияние потока
преобладает перед влиянием падения напряжения на сопротивлении цепи якоря Rя Iя .
Чаще всего встречаются двигатели, у которых уменьшение частоты вращения за счет падения напряжения на сопротивлении цепи якоря преобладает перед влиянием реакции якоря, приводящей к уменьшению магнитного потока.
Характеристикой момента называют зависимость механического момента на валу двигателя от тока якоря при постоянном номинальном напряжении питания U = Uн = const и при постоянном номинальном токе возбуждения Iв= Iвн = const.
Ток якоря ненагруженного двигателя не равен нулю. Это объясняется наличием потерь в двигателе, работающем без нагрузки. Такой ток называется током холостого хода Iяо двигателя.
Используя ранее полученную формулу для определения механического момента на валу двигателя, получаем для двигателя, работающего в режиме холостого хода, формулу: .
Нагруженный двигатель при токе якоря Iя развивает механический момент . Этот развиваемый момент называют электромагнитным.
Механический момент на выходе двигателя равен разности электромагнитного момента и момента холостого хода .
![]() |
При неизменной величине магнитного потока зависимости
и
являются прямыми линиями. Однако магнитный поток машины несколько уменьшается при увеличении тока якоря Iя из-за реакции якоря, поэтому характеристики
и
не являются прямолинейными (рис. 3.5). Максимальное значение тока якоря, при котором якорь ненагруженного двигателя (М2 = 0) начинает вращаться, называют током трогания. Электромагнитный момент в этом случае равен моменту холостого хода.
Особый интерес представляет график зависимости КПД машины от тока якоря (см. рис. 3.5). КПД равен нулю при токах, меньших тока холостого хода или тока трогания (М2 = 0 и Р2 = 0). При дальнейшем увеличении тока КПД увеличивается и достигает максимального значения при токе якоря, равном примерно 0,75Iян. При больших токах КПД начинает уменьшаться. КПД двигате-
лей средней и большой мощности при номинальном токе достига-ет 85 – 95 %.
Основной характеристикой двигателя постоянного тока является механическая характеристика.
Механической характеристикой называют зависимость частоты вращения якоря n от механического момента на валу двигате-
ля M2 при постоянном напряжении питания и постоянном токе возбуждения, т. е. . В дальнейших рассуждениях будем предполагать, что электромагнитный момент равен механическому моменту на выходе двигателя
.
Особую роль играет механическая характеристика двигателя при номинальном напряжении питающей сети U = Uн = const и номинальном токе возбуждения Iв = Iвн = const. Такую механическую характеристику называют естественной. Рассматривают и другие механические характеристики, выражающие ту же зависимость , но при других условиях работы, т. е. при других значениях напряжения, при других токах возбуждения и при различных сопротивлениях реостатов, включенных последовательно с якорем. Такие механические характеристики называют искусственными.
Найдем аналитическое уравнение, описывающее механическую характеристику.
В уравнении электрического равновесия . ПротивоЭДС обмотки якоря
. Следовательно,
= . Из полученного уравнения
. Но из уравнения для определения момента
и
.
Тогда .
Обозначим и
. Можно написать
.
Полученное уравнение является уравнением прямой линии.
Уравнение состоит из двух слагаемых. Первое слагаемое не зависит от момента, а второе слагаемое прямо пропорционально механическому моменту М.
Очевидно то, что механическая характеристика (рис. 3.6) двигателя постоянного тока выражается прямой линией. Такую прямую можно провести через две точки, положение которых на графике можно найти следующим образом: в режиме идеального холостого хода момент двигателя равен нулю , и якорь вращается с частотой
, а при номинальном напряжении
.
Это первая точка механической характеристики. Положение другой точки определяется из условий пуска двигателя. При подключении двигателя в сеть в начальный момент времени из-за инерционности якоря частота вращения равна нулю n= 0. Противо-ЭДС обмотки якоря тоже равна нулю, и тогда приложенное напряжение падает только на сопротивлении якорной цепи. Ток якоря в этом случае достигает больших величин из-за малости Rя. Его называют пусковым током Iяп. Сила пускового тока определяется из уравнения .
![]() |
Механический момент, развиваемый двигателем, в этом случае называют пусковым моментом Мп , и его величина определяется формулой
.
Общий вид естественной механической характеристики показан на рис. 3.7.
Двигатели с параллельным возбуждением имеют пусковой момент в 10…20 раз больше номинального, поэтому рабочая часть механической характеристики, ограниченная режимом холостого хода (М = 0) и номинальным значением момента на валу , занимает лишь начальную часть полной характеристики (см. рис. 3.6), в пределах которой частота вращения изменяется незначительно. Такая механическая характеристика, когда при изменении механического момента от нулевого значения до номинального значения частота вращения изменяется незначительно, называется жесткой (см. рис. 3.7). Величина
весьма невелика.
Механические характеристики электродвигателей и производственных механизмов
При проектировании электропривода электродвигатель должен выбираться так, чтобы его механические характеристики соответствовали механическим характеристикам производственного механизма. Механические характеристики дают взаимосвязь переменных в установившихся режимах.
Механической характеристикой механизма называют зависимость между угловой скоростью и моментом сопротивления механизма, приведенными к валу двигателя) ω = f(Mс).
Рис. 1. Механические характеристики механизмов
Среди всего многообразия выделяют несколько характерных типов механических характеристик механизмов:
1. Характеристика с моментом сопротивления, не зависящим от скорости (прямая 1 на рис. 1). Независимая от скорости механическая характеристика графически изображается прямой, параллельной оси вращения, в данном случае вертикалью. Такой характеристикой обладают, например, подъемные краны, лебедки, поршневые насосы при неизменной высоте подачи и др.
2. Характеристика с моментом сопротивления линейно зависящим от скорости (прямая 2 на рис. 1). Такая зависимость присуща, например, приводу генератора постоянного тока с независимым возбуждением, работающему на постоянную нагрузку.
3. Характеристика с нелинейным возрастанием момента (кривая 3 на рис. 1). Типичными примерами емогут служить характеристики вентиляторов, центробежных насосов, гребных винтов. Для этих механизмов момент Мс зависит от квадрата угловой скорости ω . Это т.н. параболичская (вентиляторная) механическая характеристика.
4. Характеристика с нелинейно спадающим моментом сопротивления (кривая 4 на рис. 1). Здесь момент сопротивления обратно пропорционален скорости вращения. Мощность в этом случае остается постоянной на всем диапазоне рабочей скорости механизма. Например, у механизмов главного движения некоторых металлорежущих станков (токарных, фрезерных, расточных) момент Мс изменяется обратно пропорционально ω , а мощность потребляемая механизмом, остается постоянной.
Механической характеристикой электродвигателя называется зависимость его угловой скорости от вращающего момента ω д = f(M).Здесь следует иметь ввиду, что момент М на валу двигателя независимо от направления вращения имеет положительный знак — момент движущий. Вместе с тем момент сопротивления Мс имеет знак отрицательный.
В качестве примеров на рис. 2 приведены механические характеристики: 1 — синхронного двигателя; 2 – двигателя постоянного тока независимого возбуждения; 3 – двигателя постоянного тока последовательного возбуждения.
Для оценки свойств механических характеристик электропривода используют понятие жесткости характеристики. Жесткость механической характеристики определяется по выражению
где d М – изменение момента двигателя; d ω д – соответствующее изменение угловой скорости.
Для линейных характеристик значение β остается постоянным, для нелинейных – зависит от рабочей точки.
Используя это понятие, характеристики, приведенные на рис. 2, можно качественно оценить так: 1 – абсолютно жесткая ( β = ∞ ); 2 – жесткая; 3 – мягкая.
Абсолютно жесткая характеристика — скорость вращения двигателя остается неизменной при изменении нагрузки двигателя в пределах от нуля для номинальной. Такой характеристикой обладают синхронные двигатели.
Жесткая характеристика — скорость вращения меняется незначительно при изменении нагрузки от нуля до номинальной. Такой характеристикой обладает двигатель постоянного тока с параллельным возбуждением, а также асинхронный двигатель в области линейной части характеристики.
Жесткой характеристикой принято считать такую, у которой изменение скорости не превышает приблизительно 10% номинальной скорости при изменении нагрузки от нуля до номинальной.
Мягкая характеристика — скорость вращения двигателя меняется значительно при сравнительно небольших изменениях нагрузки. Такой характеристикой обладает двигатель постоянного тока с последовательным, смешанным или с параллельным возбуждением, но с добавочным сопротивлением в цепи якоря, а также асинхронный с сопротивлением в цепи ротора.
Для большинства производственных механизмов используют асинхронные двигатели с короткозамкнутым ротором, имеющие жесткую механическую характеристику.
Все механические характеристики электродвигателей делятся на естественные и искусственные.
Естественная механическая характеристика относится к условиям работы двигателя с номинальными значениями параметров.
Например, для двигателя с параллельным возбуждением естественная характеристика может быть построена для случая, когда напряжение на якоре и ток возбуждения имеют номинальные значения, а в цепи якоря отсутствует добавочное сопротивление.
Естественная характеристика асинхронного двигателя соответствует номинальному напряжению и номинальной частоте переменного тока, подводимого к статору двигателя при условия отсутствия добавочного сопротивления в цепи ротора.
Таким образом, для каждого двигателя естественная характеристика может быть построена только одна, а искусственных — неограниченное количество. Например, каждому новому значению сопротивления якоря двигателя постоянного тока или в цепи ротора асинхронного двигателя отвечает своя механическая характеристика.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Естественная механическая характеристика двигателя постоянного тока
Дата добавления: 2015-09-15 ; просмотров: 1028 ; Нарушение авторских прав
Естественная механическая характеристика двигателя постоянного тока паралельного возбуждения ( рис. 8.5 ) – жёсткая, потому что ее жёсткость
β = Δ / Δω ≤ 10%.
Рис. 10.2 Естественная механическая характеристика двигателя постоянного тока параллельного возбуждения
Это означает, что при изменении электромагнитного момента двигателя в широких пределах его скорость достаточно стабильна (т.е. изменяется незначительно).
Такие двигатели применяются там, где при изменении нагрузки механизма в широких пределах скорость двигателя не должна изменяться резко – в электроприводах насосов, вентиляторов и т.п.
Рис. 10.3 Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения
Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения (рис. 10.3 ) – мягкая, потому что ее жёсткость
β = Δ / Δω > 10%.
Это означает, что при изменении электромагнитного момента двигателя даже в небольших пределах его скорость изменяется значительно.
Напомним две характерные особенности этого двигателя двигателя постоянного тока последовательного возбуждения:
1. При уменьшении механической нагрузки на валу или ее отсутствии ( =
)
скорость двигателя резко увеличивается, двигатель «идет вразнос». Поэтому этот двигатель нельзя оставлять без нагрузки на валу;
2. При пуске двигатель развивает пусковые моменты
больше, чем у двигателей других типов.
Эти двигатели не применяются на судах, но применяются на берегу, например, в электротранспорте, в частности, в троллейбусах, где они не остаются без нагрузки на валу и где нужны большие пусковые моменты (при трогании троллейбуса с места).
Рис. 10.4 Естественные механические характеристики двигателей постоянного тока смешанного возбуждения: 1 с – параллельно-последовательным возбуждением;
2 — с последовательно –параллельным возбуждением
Естественная механическая характеристика двигателя постоянного тока смешанного возбуждения промежуточная между характеристиками двигателей паралельного и последовательного возбуждения, т.к. магнитный поток возбуждения создается совместным действием обеих обмоток – параллельной и последовательной.
Различают два вида двигателей смешанного возбуждения:
1. с паралельно – последовательным возбуждением, у которых основную часть результирующего магнитного потока создает параллельная обмотка (до 70%, остальные 30% –последовательная);
2. с последовательно – параллельным возбуждением, у которых основную часть результирующего магнитного потока создает последовательная обмотка (до 70%, остальные 30% –параллельная).
Поэтому график механической характеристики двигателя первого вида более жесткий, чем у двигателя второго вида.
Обе механические характеристики – мягкие, потому что их жесткость
β = Δ / Δω > 10%.
На судах двигатели смешанного возбуждения применяются в регулируемых электроприводах – лебедках, кранах, брашпилях и шпилях.
Большая Энциклопедия Нефти и Газа
Механическая характеристика — двигатель — постоянный ток
Механическая характеристика двигателя постоянного тока с параллельным возбуждением приведена на рис. 15.4. Запуск двигателя осуществляется пусковым реостатом /, который имеет несколько секций и позволяет изменять сопротивление ступенчато. [2]
Механические характеристики двигателя постоянного тока с независимым возбуждением при различных значениях напряжения на якоре и потока возбуждения ( и соответственно тока возбуждения) показаны на рис. 27, а. Характеристики двигателя при других условиях называют искусственными. Частота вращения двигателя вниз от номинальной регулируется путем снижения напряжения на якоре ( первая зона регулирования, кривые 2, 3, 4), вверх от номинальной — путем регулирования тока и потока возбуждения. [3]
Механические характеристики двигателя постоянного тока независимого возбуждения , управляемого тиристор-ным выпрямителем, напоминают характеристики в системе Г — Д ( рис. 4.13), однако они отличаются рядом особенностей. [5]
Рассмотрим механические характеристики двигателей постоянного тока в зависимости от способа возбуждения. [6]
Какие механические характеристики двигателей постоянного тока называют искусственными. [7]
Почему механические характеристики двигателя постоянного тока независимого и параллельного возбуждения прямолинейны, а последовательного возбуждения — криволинейны. [8]
Особенностью механической характеристики двигателей постоянного тока с последовательным возбуждением является нижний предел допустимой нагрузки. Этому соответствует нагрузка около 10 % номинального момента, ниже которой двигатель не должен быть нагружен по условиям его механической прочности. Ограничение скорости может диктоваться и конструкцией самой рабочей машины или технологическими особенностями ее использования. Это требование в некоторых случаях заставляет отказываться от применения двигателей с последовательным возбуждением. [10]
Построить механическую характеристику двигателя постоянного тока с параллельным возбуждением, для которого известны следующие каталожные данные: Рн 5 8 кет; пн 800 об / мин; UH 220 в; 1 34 а; гя 0 22 ом. [11]
На графике изображена механическая характеристика двигателя постоянного тока . Какая величина должна быть отложена по оси ординат. [12]
В отличие от механических характеристик двигателя постоянного тока с независимым возбуждением, механические характеристики асинхронного двухфазного двигателя непрямолинейны. Однако в области невысоких скоростей ( примерно до 55 % синхронной скорости), являющейся рабочей областью для таких двигателей, механические характеристики достаточно точно аппроксимируются отрезками прямых. [13]
На рис. 3.9.3.4 представлены механические характеристики двигателя постоянного тока при двухзонном регулировании скорости. При регулировании потоком возбуждения с увеличением скорости жесткость механических характеристик уменьшается. Следует отметить, что в замкнутых системах регулирования скорости вид механических характеристик можно формировать в зависимости от поставленной задачи. При этом в некотором диапазоне изменения момента нагрузки можно создать практически абсолютно жесткую характеристику, а при определенном моменте практически абсолютно мягкую. [15]