Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговый двигатель что это такое где при

Шаговый двигатель что это такое где при

Шаговый двигатель — что это такое и как им управлять.

Автор: Поздеев Андрей aka moLCHec
Опубликовано 20.07.2007

Сегодня шаговые двигатели (далее ШД) активно используются в различных приводах и позиционирующих системах, что объясняется их невысокой ценой и достаточной надёжностью, также применение шаговых двигателей позволяет обойтись без дорогого контура скорости и положения, при этом не накапливается ошибка положения. Первые модели ШД имели малое число шагов и большие габариты, что сильно ограничивало их использование.
Существует 3 типа ШД:
Реактивные:

Поперечное сечение реактивных ШД.
а) трехфазный б) четырёхфазный.

На постоянных магнитах:

Поперечное сечение четырехфазного ШД на постоянных магнитах.

Конструкция гибридного ШД:
1 — магнитопровод статора, 2 — обмотки, 3 — магнитопровод ротора, 4 — обмотка статора, 5 — постоянный магнит.

Структура ротора гибридного ШД:
1 — шихтовая сталь, 2- постоянный магнит.

Из доступных радиолюбителю являются движки от принтеров которые являются гибридными ШД, других я просто не встречал, поэтому в дальнейшем речь пойдёт о них.
Ну вот из чего состоит ШД и, что он себя представляет разобрались самое время вникать как этим добром управлять. Различают одно и двухфазное возбужде-ние. В дальнейшем я буду рассматривать четырехфазный ШД т.к. именно с ним я работал в трехфазном всё аналогично.

Одним из недостатков ШД является колебательность ротора при установке в новое положение это обусловлено прежде всего инерцией ротора. Согласно теории при двухфазном возбуждении колебания затухают быстрее, чем при однофазном, однако при этом возрастают броски коммутирующего тока. На практике же я не об-наружил существенной разницы, обмотки при двухфазном управлении грели лучше батареи, колебания тока затухали дольше, чем при однофазном. В механике может оно быстрее, однако максимальная шаговая скорость не увеличилась.
Кроме одно- и двухфазного управления существует полушаговый режим. В этом режиме за цикл ротор делает половинный шаг, данный режим осуществляется особым управление обмотками.

Как оно там происходит видно на рисунке ниже:

Сравнение однофазного, двухфазного и полушагового управления:
а) однофазное; б) двухфазное; в) полушаговое.

Также у гибридных двигателей есть режим микрошага для этого на обмотки подаётся синусоидальное напряжение, при этом осуществляется почти плавное перемещение ротора, однако сказывается фиксирующий эффект обусловленный зубцами ротора и статора. При использовании датчиков положения ШД работает аналогично вентильному двигателю.
Теории думаю хватит, будем считать что к чему разобрались. Руки чешутся всё это попробовать. Начнём со схемы, я правда обычно начинаю с печатки, а схема это лишь следствие.

Несколько слов по схеме, в EAGLE почему-то не было ATMEGA8 в DIP корпусе, взял TQFP поэтому номера выводов для DIP корпуса отличны. Транзисторы Т1-Т4 составные BD677A, BD679A, BD681 или КТ829Б, я использовал последние, позже купил BD681, но проверить ещё не успел. При питании ШД от 5В можно применить BD675A, возможны и другие аналоги аналогичной мощности и коэффициентом передачи тока более 750, что обусловлено большими бросками тока в фазах при коммутации. Изначально я поставил КТ814 в результате транзюки нагрелись так что отпаялись, текстолит потемнел, МК естественно отправился в мир иной.
Диоды D1-D4 любые выдерживающие ток от 1А и напряжение от 50В. Светодиоды в принципе любые, сопротивление R3 выбирается в зависимости от тока светодиодов. L1-L4 это обмотки ШД, номера обмоток обозначены условно главное чтоб по порядку. Мой ШД по документации работает при напряжении до 24В, я гонял на 12В и 22В, обмотки и транзисторы при этом греются сильно, так что аккуратнее. Питание на обмотки подаётся через переключатель S4, он должен быть рассчитан на ток порядка 3-4А. Переключатель S3 включает защитные диоды, это сделано для того что-бы можно было осциллографом проследить коммутационные процессы с ними и без них. Ставить их вообще не обязательно работать будет. Основная функция диодов — защита транзисторов он бросков напряжения при коммутации.

Печатную плату можно стырить в конце статьи.
Свою плату я делал давно и рисунок потерял. Этот вариант рисовал для ленивых, советую проверить перед изготовлением я мог и ошибиться. Разъём под программирование разводить не стал т.к. у различных программаторов по разному, про-сто вывел соответствующие пины кому надо разведёт, места много.

Настало время браться за прошивку (которая так же доступна в виде файла в конце статьи). Пишу я на Си в компиляторе ICC for AVR, если используете другой компилятор то часть кода в части обработчика пре-рывания и включения файлов регистров и п.т.
Немного расскажу о программе. Таймер счётчик работает в режиме СТС(4) сброс при совпадении, предделитель = 1, соответственно значение шаговой частоты F=fclk/OCR1A, в программе за частоту отвечает глобальная переменная time тина int. Выбор скорости осуществляется нажатие кнопки SPEED, для кварца 4000 кГц в данной версии прошивки значения шаговой частоты будет 0,1; 0,2; 1 и 5 кГц. При переключении скорости соответственно загораются светодиоды LED1. LED4. Пере-ключатель switch в обработчике прерывания при инкременте переменной driver, обеспечивает полушаговое управление, однако если выделить только нечётные зна-чения получится однофазный режим, чётные — двухфазный, для того что бы обеспе-чивалось соответствующее изменение driver введена дополнительно переменная step, когда выбран режим 1или 2 (переменная tip) переменная step =1 и driver инкремен-тируется на 2, при step =0 drive rинкрементируется на 0. При установке режима 1 или 2, переменной присваивается значение этого режима, таким образом осуществ-ляется выделение нечётных для 1-го и чётных для 2-го режима. Для индикации ре-жима предназначены светодиоды LED5 и LED6, при 0-м выключенном режиме они не горят при этом напряжение с обмоток снимается во избежании из перегрева. В целом я считаю код довольно понятным и не требует особых знаний. При желании его можно адаптировать под себя.

Читать еще:  Генераторы фубаг сколько масла в двигателе

Ну и в заключениии — фото на память:

Файлы:
Прошивка (с исходником) — 01.rar
Печатная плата — 02.rar

Серводвигатели и шаговые двигатели

Приобретение предприятием фрезерного станка с ЧПУ для изготовления фасадов из МДФ поднимает вопрос о необходимости переплачивать за те или иные механизмы и силовые агрегаты, установленные на дорогостоящем и высокотехнологичном оборудовании. Для позиционирования силовых агрегатов станков с ЧПУ используют, как правило, шаговые двигатели и серводвигатели (сервоприводы). Шаговые двигатели – дешевле. Однако сервоприводы обладают широким рядом достоинств, в том числе высокой производительностью и точностью позиционирования. Так что же выбрать?

Что такое шаговый электродвигатель

Шаговый электродвигатель – это безщеточный синхронный электродвигатель постоянного тока, имеющий несколько обмоток статора. При подаче тока в одну из обмоток ротор поворачивается, а затем фиксируется в определенном положении. Последовательное возбуждение обмоток через контроллер управления шаговым двигателем позволяет вращать ротор на заданный угол.

Шаговые электродвигатели широко применяются в промышленности, так как имеют высокую надежность и длительный срок службы. Главное преимущество шаговых двигателей – точность позиционирования. При подаче тока на обмотки ротор провернется строго на определенный угол.

Положительные стороны шагового двигателя

· Устойчивость в работе;

· Высокий крутящий момент на малых и нулевых скоростях;

· Быстрый старт, остановка и реверс;

· Работа под высокой нагрузкой без риска выхода из строя;

· Единственный механизм износа, влияющий на длительность эксплуатации – подшипники;

Отрицательные стороны шагового двигателя

· Высокий уровень шума;

· Возможность появления резонанса;

· Постоянный расход электроэнергии вне зависимости от нагрузки;

· Падение крутящего момента на высоких скоростях;

· Отсутствие обратной связи при позиционировании;

· Низкая пригодность к ремонту.

Что такое серводвигатель (сервопривод)

Серводвигатель (сервопривод) – это электрический мотор с управлением через обратную отрицательную связь, которая позволяет точно управлять параметрами движения, чтобы достичь необходимой скорости или получить нужный угол поворота. В состав серводвигателя входят непосредственно сам электродвигатель, датчик обратной связи, блок питания и управления.

Конструктивные особенности электродвигателей для сервопривода мало чем отличаются от обычных электродвигателей имеющих статор и ротор, работающих на постоянном и переменном токе, с щетками и без щеток. Особую роль здесь играет датчик обратной связи, который может быть установлен как непосредственно в самом двигателе и передавать данные о положении ротора, так и определять его позиционирование по внешним признакам. С другой стороны, работа серводвигателя немыслима без блока питания и управления (он же инвертор или сервоусилитель), который преобразует напряжение и частоту тока, подаваемого на электродвигатель, тем самым управляя его действием.

Положительные стороны серводвигателя (сервопривода)

· Высокая мощность при малых размерах;

· Высокий крутящий момент;

· Быстрый разгон и торможение;

· Постоянное и бесперебойное отслеживание положения;

· Низкий уровень шума, отсутствие вибраций и резонанса;

· Широкий диапазон скорости вращения;

· Высокая скорость разгона;

· Стабильная работа в широком диапазоне скоростей;

· Малая масса и компактная конструкция;

· Низкий расход электроэнергии при малых нагрузках.

Отрицательные стороны серводвигателя (сервопривода)

· Требовательность к периодическому обслуживанию (например, с заменой щеток);

· Сложность устройства (наличие датчика, блока питания и управления) и логики его работы.

Сервопривод или шаговый двигатель?

Сравнивая характеристики сервопривода и шагового двигателя, следует обратить внимание, прежде всего, на их производительность и стоимость. Для производства фасадов МДФ на небольшом предприятии, работающем с малыми объемами, думаю, нет необходимости переплачивать за установку на фрезерный станок с ЧПУ дорогостоящих серводвигателей. С другой стороны, если предприятие стремится выйти на максимально возможные объемы производства, то дешевить на низкопроизводительных шаговых двигателях для ЧПУ не имеет смысла.

Электродвигатель – это датчик! Часть I: технологии stallGuard™ и coolStep™ от Trinamic

Микросхемы для управления шаговыми двигателями от компании Trinamic хорошо знакомы отечественным разработчикам. Они отличаются широким функционалом, позволяют максимально упростить создание приводов и сократить время на разработку. Одним из факторов популярности драйверов и контроллеров Trinamic стали встроенные фирменные технологии: stallGuard2™, coolStep™, spreadCycle, stealthChop™, dcStep™, microPlyer™, sensOstep™. В данном цикле статей мы попробуем рассказать о каждой из этих технологий, чтобы помочь разработчикам, которые только знакомятся с продукцией компании Trinamic.

Рис. 1. Фирменные технологии TRINAMIC рассматривают двигатель как датчик

Шаговые двигатели наравне с бесколлекторными двигателями являются основой современных подвижных механизмов, начиная от игрушек и заканчивая медицинским и промышленным оборудованием. При этом шаговые двигатели оказываются проще в обращении и управлении, что делает их чрезвычайно привлекательными для широкого круга пользователей.

Читать еще:  В чем различие двигателя qr20 и qr20de

Для построения сложных прецизионных систем, таких как, например, станки с числовым программным управлением (ЧПУ), необходимо обеспечить максимальную точность позиционирования и плавность движения. Для этого потребуется не только создать силовую схему, но и как следует потрудиться с программными алгоритмами. К счастью, появляются интегральные микросхемы, в которых встроены все необходимые компоненты – от микроконтроллера и системы питания до силового каскада и программных функций. Примером таких решения являются драйверы и контроллеры шаговых двигателей от Trinamic.

Если рассмотреть номенклатуру продукции Trinamic, то окажется, что для каждой из микросхем производитель указывает не только базовые характеристики, понятные даже начинающему электронщику (рабочее напряжение, ток, число шагов, корпус и т. д.), но и перечень поддерживаемых фирменных технологий: stallGuard2™, coolStep™, spreadCycle, stealthChop™, dcStep™, microPlyer™, sensOstep™. Что это за технологии? Зачем они нужны? Если для опытных разработчиков, давно работающих с драйверами Trinamic, ответы на эти вопросы очевидны, то у новых пользователей могут возникнуть трудности. В данном цикле статей мы последовательно разберем каждую из перечисленных технологий и попробуем помочь разработчикам, которые только знакомятся с продукцией компании Trinamic.

Рис. 2. Микросхемы драйверов шаговых двигателей от TRINAMIC

Рис. 3. Микросхемы контроллеров шаговых двигателей от TRINAMIC

Системы управления шаговыми двигателями с замкнутым контуром обратной связи нуждаются в датчиках положения, что значительно усложняет и удорожает схему привода. Системы с разомкнутым контуром обратной связи не используют датчиков положения. С одной стороны они оказываются дешевыми, а с другой стороны им недостает точности, следовательно, их нельзя применять в прецизионных приложениях. Системы управления, использующие фирменные технологии TRINAMIC, занимают промежуточное положение между замкнутыми и разомкнутыми системами, так как используют только один датчик – сам двигатель.

«Электродвигатель – это датчик!» – девиз, который помещен на странице веб-сайта TRINAMIC. И это не просто слова, так как контроллеры и драйверы от TRINAMIC действительно получают всю информацию о параметрах вращения из сигналов обратной ЭДС и токов обмоток. Полученные данные позволяют добиться прецизионного управления мотором. В настоящий момент TRINAMIC предлагает шесть базовых технологий:

  • stallGuard2™ – основополагающая технология, позволяющая оценивать момент на валу двигателя по обратной ЭДС и токам обмоток;
  • coolStep – вторая по важности технология, позволяющая оптимизировать ток обмоток с учетом прикладываемой нагрузки;
  • spreadCycle – технология, позволяющая обеспечивать прецизионное плавное движение двигателя;
  • stealthChop – технология, обеспечивающая беспрецедентное снижение шума до уровня характерного для обычных двигателей постоянного тока;
  • dcStep – технология, гарантирующая защиту от пропуска шагов и от потери положения вала двигателя;
  • microPlyer™ – технология разбиения шагов управления на 16 дополнительных микрошагов с автоматической подстройкой длительности.

В данной статье мы рассмотрим две основополагающие технологии stallGuard2™ и coolStep™. Начнем с базовой технологии stallGuard2™, которую используют практически все остальные.

stallGuard2™ – технология, позволяющая измерять нагрузку на валу двигателя. На самом деле название этой технологии весьма говорящее. Применительно к двигателям слово «stall» в переводе с английского означает «останавливаться», а сама stallGuard первоначально разрабатывалась как программная альтернатива концевым датчикам. Когда подвижный механизм упирается в препятствие, нагрузка двигателя возрастает, что и обнаруживает stallGuard. Однако сейчас данная технология шагнула далеко вперед и позволяет использовать получаемые измерения в качестве сигналов обратной связи для прецизионного управления движением. Рассмотрим принцип работы stallGuard.

Схема измерения определяет электрическую энергию, подаваемую в двигатель (EI) и энергию, которая возвращается в источник питания (EB) (рис. 4). Разница между этими показателями определяет энергию, которая была передана механической системе (EM). stallGuard2 контролирует значение EB, и, если оно приближается к нулю, это значит, что вся энергия передается в систему и подвижный механизм, скорее всего, уперся в препятствие.

Рис. 4. Принцип измерения нагрузки двигателя в технологии StallGuard2 от TRINAMIC

Любой электродвигатель имеет потери, поэтому часть энергии рассеивается в виде тепла ET (рис. 5). Кроме того, в разных приложениях используются разные двигатели, которые отличаются по параметрам и работают при разных условиях с различной нагрузкой. Чтобы учесть эти особенности, вводится коэффициент ограничения SGT.

Рис. 5. Настройка параметров StallGuard2

Коэффициента SGT определяет максимальный допустимый момент на валу в данном конкретном приложении (рис. 6). Если момент превышает это значение, можно считать, что двигатель остановился. После того, как значение SGT задано, StallGuard2 пересчитывает величину ST таким образом, чтобы при максимально допустимом моменте его значение было равно нулю. Обычно SGT выбирают с некоторым запасом с учетом калибровки.

Рис. 6. Оценка показаний StallGuard2

Калибровку системы управления проводят при работе двигателя без нагрузки (рис. 7). Подробно рассматривать механизм калибровки мы не станем, скажем лишь, что ее следует выполнять в среднем диапазоне частот, что связано с особенностями измерения обратной ЭДС двигателя. Дело в том, что при низких частотах значение обратной ЭДС двигателя оказывается слишком мало и работа StallGuard2 затруднена. При больших частотах также возникают проблемы. Поэтому эффективная работа StallGuard2 возможна только в среднем диапазоне частот.

Рис. 7. Особенности настройки параметров StallGuard2

coolStep™– еще одна базовая технология от Trinamic. Она позволяет управлять током питания обмоток с учетом прикладываемой нагрузки.

Читать еще:  Что шумит в двигателе на ауди 80

Если не углубляться в тонкости, то принцип работы coolStep достаточно прост. Микросхема драйвера с помощью StallGuard2 определяет нагрузку на двигателе и ток в обмотках, а coolStep использует эти данные для подстройки тока (рис. 8). Если нагрузка растет, ток увеличивается. И наоборот, если нагрузка падает, то ток уменьшается вслед за ней.

Рис. 8. Принцип работы технологии coolStepот TRINAMIC

Использование coolStep дает следующие преимущества:

  • Повышение КПД до 75%;
  • Минимизация перегрева двигателя;
  • Возможность отказа от принудительного охлаждения двигателя;
  • Возможность использования менее мощных и менее дорогих двигателей.

coolStep поддерживает оптимальное значение тока, что позволяет снизить потери, и, как следствие, значительно повысить КПД системы. В примере, представленном на рис. 9, на частотах выше 60 об/мин использование coolStep приводит к росту КПД на 20%. Здесь стоит отметить, что, так как данная технология использует данные от StallGuard2, она также эффективно работает только на средних частотах.

Рис. 9. Повышение КПД при использовании coolStepTRINAMIC

Технология coolStep позволяет значительно снизить избыточное тепловыделение, что становится важным преимуществом при создании лабораторного медицинского оборудования, в котором требуется поддержание высокой стабильности температуры.

Стоит отметить, что технологии StallGuard2 и coolStep являются базовыми для остальных интеллектуальных технологий от TRINAMIC, о которых будет рассказано в следующей статье.

Характеристики микросхемы драйвера шагового двигателя TMC2130-LA:

  • Интерфейс управления: Step/ Dir;
  • Диапазон питающих напряжений: 4,75…46 В;
  • Постоянный выходной ток (среднеквадратичный): 1,2 А;
  • Пиковый выходной ток: 2,5 А;
  • Коммуникационный интерфейс: SPI;
  • Поддерживаемые фирменные технологии: stallGuard2™, coolStep™, stealthChop™, spreadCycle™, dcStep™, microPlyer™;
  • Диапазон температур кристалла: -40…125°C;
  • Корпусное исполнение: 5×6 мм QFN36.
Связаться с нами:

Москва, Новохохловская ул. д. 23, стр. 1, БП Ринг Парк
Телефоны: +7 (495) 221-78-04

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию.

§ 3.1. Общие сведения о шаговых двигателях

В современных системах управления широко используются устройства, оперирующие с цифровой формой сигнала. Цифровая форма представления сигнала привела к созданию нового типа двигателей – шаговых двигателей (ШД).

Шаговые двигатели – это электромеханические устройства, преобразующие сигнал управления в угловое (или линейное) перемещение ротора с фиксацией его в заданном положении без устройств обратной связи.

Современные ШД являются по сути синхронными двигателями без пусковой обмотки на роторе, что объясняется не асинхронным а частотным пуском ШД. Роторы могут быть возбужденными (активными) и невозбужденными (пассивными).

Рассмотрим принцип действия простейшего однофазного шагового двигателя.

Двухполюсный ротор из магнитомягкой стали с клювообразными выступами помещен в четырехполюсный статор (рис.3.1). Одна пара полюсов выполнена из постоянных магнитов, на другой – находится обмотка управления.

Пока тока в обмотках управления нет, ротор ориентируется вдоль постоянных магнитов и удерживается около них с определенным усилием, которое определяется магнитным потоком полюсов Фпм.

При подаче постоянного напряжения на обмотку управления возникает магнитный поток Фупримерно вдвое больший, чем поток постоянных магнитов. Под действием электромагнитного усилия, создаваемого этим потоком, ротор поворачивается, преодолевая нагрузочный момент и момент, развиваемый постоянными магнитами, стремясь занять положение соосное с полюсами управляющей обмотки. Поворот происходит в сторону клювообразных выступов, т.к. магнитное сопротивление между статором и ротором в этом направлении меньше, чем в обратном.

Рис. 3.1. Схема простейшего однофазного ШД

Следующий управляющий импульс отключает напряжение с обмотки управления и ротор поворачивается под действием потока постоянных магнитов в сторону клювообразных выступов.

Достоинством однофазных ШД с постоянными магнитами является простота конструкции и схемы управления. Для фиксации ротора при обесточенной обмотке управления не требуется потребление энергии, угол поворота сохраняет свое значение и при перерывах в питании. Двигатели этого типа отрабатывают импульсы с частотой до 200-300 Гц. Их недостатки – низкий КПД и невозможность реверса.

§ 3.2. Реверсивные шаговые двигатели

Для осуществления реверса зубцы статора и ротора ШД должны быть симметричными (без клювообразных выступов). Рассмотрим работу двухфазного двухполюсного ШД с активным ротором в виде постоянного магнита. Будем считать, что намагничивающие силы фаз (НС) распределены по синусоидальному закону.

При включении фазы под постоянное напряжение (условно положительной полярности) вектор НС статора совпадет с осью фазы А. В результате взаимодействия НС статора с полем постоянного магнита ротора возникнет синхронизирующий момент Мс = Mmaxsinq, где q — угол между осью ротора и вектором НС.

При отсутствии тормозного момента ротор займет положение, при котором его ось совпадет с осью фазы А (рис. 3.2, первый такт). Если теперь отключить фазу А и включить фазу В, вектор НС и ротор повернуться на 90 о (второй такт на рис. 3.2). При включении фазы А на напряжение обратной полярности (третий такт на рис. 3.2) НС и ротор повернутся еще на 90 о и т.д.

Если к ротору ШД приложен момент нагрузки, то при переключении фаз ротор будет отставать от вектора НС на некоторый угол qн= arcsin(Mн/Mmax).

Рис. 3.2. Устойчивые положения ротора при включении фаз

Рассмотренный способ переключения обмоток можно представить в виде табл.1

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector