Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговый двигатель как генератор на ветряк

Шаговый двигатель как генератор на ветряк

С началом дачного сезона я решил перейти от теории к практике в части постройки ветряка для своих дачных нужд. Но поскольку не зная броду я в воду соваться не люблю, я решил для начала подсобрать статистики в плане ветра. А для этого – построить анемометр. Анемометр я решил делать на основе шагового двигателя. Во первых, он выдает практически синусоиду, частота которой зависит от частоты вращения вала (читай, скорости ветра, который будет вращать крыльчатку – пропеллер). Во-вторых, шаговый моторчик – это практически генератор мощностью в несколько Ватт и в дальнейшем его можно будет использовать для каких то нужд. Например, пусть аккумулятор заряжает, от которого будет освещаться садовый туалет, стоящий на отшибе. Тем более, что этот электрогенератор мне обходился куда дешевле провода, если бы его пришлось тянуть к этому туалету. Или воду пусть греет…

Выбрав из своего барахла шаговый моторчик с наименьшим залипанием вала (есть у них такой неприятный эффект) и с максимально большим числом шагов на один оборот, я озаботился изготовлением пропеллера. Решение проблемы обнаружило себя в виде крыльчатки от старого напольного вентилятора, который уж Бог весть когда был вывезен на дачу ради находящегося в нем электродвигателя. Ее и решено было использовать в качестве пропеллера. К тому же, вал шагового двигателя и отверстие в пропеллере чудесным образом подошли друг к другу. Даже не потребовалось делать какой либо переходник. Диаметр пропеллера был почти 40 см, что сулило, вобщем неплохую снимаемую мощность при сильном ветре ( 50 Ватт при 8-9 м/сек!) . Разумеется, потребовался бы другой двигатель – генератор.

Почему именно ветряк пропеллерного типа? Ведь обычно анемометр — это 3-4 чашечки, закрепленные на оси и вращающиеся при любом направлении ветра, не отслеживая его направление. Однако их ометаемая площадь достаточно мала, и я опасался, что скорость ветра при которой начнет вращаться анемометр будет достаточно высокой. Я просто упущу информацию о слабых ветрах. Не скажу, что бы меня это сильно волновало, поскольку ветры менее 3 м/с мало интересны в плане энергетики. Но все же. Да и насадить готовый винт на готовый мотор – это куда как проще, чем городить вертушку из чашек, балансировать ее, делать датчик, отслеживающий скорость вращения. А в конце концов — мне надо просто собрать статистику ветров. А не суть, каким способом.

Насадив на ось двигателя пропеллер, я опробовал его «в деле». К моей радости, пропеллер раскручивался даже от очень слабого ветра. Это и понятно — «лопухи» пропеллера работали как ветряк парусного типа и занимали практически всю ометаемую площадь пропеллера. Это сулило очень высокую чувствительность, хотя и невысокую быстроходность. Впрочем, это компенсировалось большим числом полюсов шагового моторчика.

Всю внешнюю арматуру самодельного анемометра я сделал из совершенно подручных материалов, нашедшихся в моем сарае. Несущую траверсу решил сделать из двутавровой дюралевой балочки, держатель двигателя в виде хомута — из обрезка 2-х миллиметрового алюминия, а киль — из обрезка дюралевого отлива, оставшегося при установке пластиковых окон. Т.е. практически весь прибор у меня получался из «крылатого» металла, что было несколько символично. Да и с коррозией вопрос отпадал. А ведь анемометру предстояло работать практически целый год, накапливая статистику. В жару и мороз, под солнцем и в дождь и в снегопад.

Оставалось найти точку равновесия на траверсе и устроить крепление ветряка, что бы он свободно вращаться при изменении направления ветра.

После того, как точка равновесия была найдена, была выпилена часть тавра в нижней части балки. В качестве оси вращения использован небольшой отрезок дюралевой трубки диаметром 10 мм. Вдоль трубки сделан пропил, в который вставлялась вертикальная часть балки и просверлены два отверстия. Винтами с гайками оси крепилась к несущей траверсе достаточно надежно. (на фото достаточно крупно изображен этот узел).

При устройстве поворотного узла было решено пока отказаться от подшипников. В конце – концов, ось в любой момент можно было и заменить. В качестве направляющей муфты был подобран отрезок другой дюралевой трубки, чуть больше диаметром, чем ось, и ось вращалась внутри муфты совершенно свободно.

рлась о муфту и не создавала дополнительное трение повороту, проложены несколько шайб, обильно смазанных машинным маслом. И таким образом вращение флюгера – анемометра стало весьма легким и он практически мгновенно реагировал на изменение направления ветра.

На время «ходовых» испытаний я просто прикрутил муфту в длинному металлическому профилю с помощью широкой специальной изоленты. Разумеется, после калибровки и при установки анемометра на штатное рабочее место, я применю либо хомуты, либо какой либо другой надежный способ крепления муфты к мачте.

В качестве испытательной мачты послужил металлический пофиль 20 х 20 мм, длиной метра 3,5. И уже на такой высоте, ветер дует немного сильнее, чем у поверхности. И анемометр вращался со скоростью несколько оборотов в секунду при хорошем, крепком ветре.

Таким образом, после испытаний и установки анемометра стационарно на высоту 6-8 метров, можно будет приступать к сбору статистики о ветровой обстановке в месте будущей эксплуатации большого ветряка. Разумеется, перед этим его надо откалибровать и устроить систему сбора статистики. Но это темя для других статей.

Следует сказать, что не всем требуется анемометр. Кому то пригодится и походный ветроэлектрогенератор. В данном случае — это практически готовая конструкция. Только желательно, конечно использовать более мощный шаговый моторчик (Ватт на 10-15) и сделать конструкцию легко разборной. Ну и на выход генератора поставить диодные мосты, что бы можно было заряжать аккумуляторы.

Читать еще:  Что такое двигатели tga и tgx

Ветрогенератор из шагового двигателя

Ветрогенератор в домашних условиях может стать дополнительным источником электроэнергии. Особенно он будет полезен в тех случаях, когда отключили свет, а вам необходимо зарядить какое-либо устройство. Можно такой ветрогенератор подключить и к фонарю уличного освещения во дворе, при этом экономить на электроэнергии. Вообще, найти применение в хозяйстве этому устройству всегда можно. Тем более что сделать его можно практически из подручных материалов.

В этой статье мы расскажем, как сделать простой ветрогенератор из шагового двигателя.

Что понадобится для сборки ветрогенератора?

Для того чтобы собрать ветрогенератор из шагового двигателя, понадобятся следующие детали:

  • собственно мотор;
  • листовой металл;
  • алюминиевая трубка;
  • фланец (1/4″);
  • квадратная труба;
  • диск от пилы;
  • штифт;
  • хомуты (можно использовать от автомобиля);
  • трубы ПВХ разных размеров (например, 8×4, 30×8);
  • шайбы, болты и прочее для крепления деталей;
  • диоды.

Из инструментов пригодятся ножовка, разводной и газовый ключ, наждачка, рулетка, дрель, транспортир и рулетка.

Принцип работы ветрогенератора

Детально останавливается на том, как же работает ветрогенератор из шагового двигателя, не стоит. Ведь все такие генераторы имеют одинаковый принцип работы: ветер заставляет вращаться лопасти ветряка, в результате чего начинает работать генератор, который и вырабатывает электричество.

Изготовление ветрогенератора

Первое с чего следует начать – это вырезать лопасти. Для этого мы будем использовать ПВХ-трубы.

Что нужно учесть, вырезая лопасти?

  • Длину каждой лопасти – чем она больше, тем легче они будут крутиться при слабом ветре, но при этом они будут иметь довольно низкую скорость вращения.
  • Вращение будет больше на концах лопастей генератора – этот момент необходимо учесть заранее и рассчитать отношение скорости ветра к скорости вращения лопастей.
  • Помните, что мощность, получаемая из ветра, будет приравниваться к скорости ветра в третьей степени. Хотя не забывайте и о законе Беца, который говорит, что от энергии ветра можно получить приблизительно 59,3 процентов энергии.
  • Чем выше поднять ветряк от земли, тем более эффективен он будет (энергии будет вырабатываться больше).

Изготовить лопасти не составит больших проблем. Для этого нужно будет разрезать трубу из ПВХ на три части: две по 150 градусов и одна 60, как показано на рисунках.

Заметим, что два отрезка трубы (150 0 ) подойдут для широких лопастей. При желании вы сможете их подрезать до нужной ширины.

Далее необходимо будет скруглить края лопастей, как показано на фотографии.

Следующая задача изготовить хаб – узел крепления лопастей. Для этих целей подойдет диск для пилы со сточенными зубьями. В нем нужно будет сделать шесть отверстий (три группы по 2 в каждой). Отверстия делаются со смещением в 120 0 , а расстояние между ними в одной группе должно быть около дюйма. Размещение отверстий на диске показано на рисунке:

В данном случае мы используем три лопасти, хотя можно установить и шесть: тогда группы отверстий будут смещаться на 60 0 . К заготовленному диску с отверстиями прикручиваем лопасти – крепим их посредством болтов и гаек.

Следующий этап работ – это шарнир для поворота и флюгер. Потребуется и поворотная платформа, на которую мы закрепим генератор. Выглядеть все это будет так:

Для изготовления этой конструкции нужна квадратная труба из ПВХ, кусок листового металла и фланец. «Хвост» ветрогенератора вырезаем из железа. В квадратной трубе делаем разрез 20-25 сантиметровдлиной и вставляем туда наш флюгер – закрепляем эту конструкцию болтами.

Кстати, не мешало бы продумать и защиту генератору от осадков. Например, ее можно сделать из трубы так, как показано на фотографии:

Дальше окрашиваем все детали нашего ветряка и даем им высохнуть. После этого собираем все в одно целое, крепим двигатель, чехол к трубе посредством автомобильных хомутов. Также необходимо установить фланец (его располагают ближе к двигателю) с помощью саморезов.

Теперь остается только сделать матчу для ветрогенератора. Для этих целей подойдет труба из ПВХ и фурнитура, которая используется с пластиковыми трубами. Сделать мачту можно так:

Последним этапом будет непосредственное крепление ветрогенератора к мачте и его установка. Перед этим на вал мотора насаживаем ранее изготовленный хаб с лопастями. Вот и все.

В заключение несколько слов о батарейном отсеке ветряка. Для него могут быть использованы два аккумулятора (например, автомобильные). Между генератором и аккумуляторами нужно будет припаять диоды, чтобы ток поступал именно в аккумуляторы, а не шел в генератор.

Такой домашний ветрогенератор подойдет для зарядки аккумуляторов и других целей. Вы также можете поэкспериментировать и сделать более мощный ветряк: например, добавить лопасти, изменить их размер и пр.

​Ветряк или ветряные установки для выработки электроэнергии

Ветроэлектростанции (ВЭС), или как их еще называют ветряки – это устройства, преобразующие энергию движения ветра в электричество. Электричество, получаемое при помощи ветряков, является простым и экологичным источником энергии, поэтому в некоторых частях земли построены огромные комплексы, объединяющие множество ветрогенераторов в единую сеть. Такие массивы способны обеспечивать электроэнергией крупные населенные пункты, и даже целые регионы. Но для питания частного дома достаточно одного небольшого ветряка, и получать электричество при его помощи можно практически в любой местности.

Содержание

  • Классификация ВЭС
  • Принципы работы
  • Сколько стоит ветряк
  • Выбор конструкции ветрогенератора
  • Ветряки в Европе

Классификация ВЭС

Существует множество разновидностей ВЭС, и все их можно классифицировать по различным признакам. Основным отличительным признаком являются конструктивные особенности. По конструкции они подразделяются на роторные и крыльчатые. По способу расположения выделяют следующие виды:

  • Наземные;
  • Прибрежные;
  • Плавающие;
  • Офшорные.
Читать еще:  Kia picanto сколько масла в двигателе

А по функциональному назначению ветряные электростанции бывают стационарные и мобильные.

Наиболее популярной конструкцией для промышленного получения электрической энергии являются ветряки крыльчатого типа. Они позволяют вырабатывать больше энергии, но, при этом, роторные конструкции издают меньше шума и не так сильно зависят от направления ветра.

Принцип работы

Все современные ветряки работают по проверенному веками принципу ветряной мельницы. Только в данном случае энергия вращения лопастей передается не на механический привод, а на генератор, при вращении ротора которого вырабатывается электричество. Затем электроэнергия накапливается в блоке аккумуляторных батарей и через инвертор передается к потребителям. Для обеспечения электроснабжения большого количества потребителей требуется объединение ветряков в единую сеть.

Для изготовления ветряка применены следующие элементы:

  • Лопасти;
  • Ротор турбины;
  • Редуктор;
  • Контроллер;
  • Ось электрического генератора;
  • Генератор
  • Инвертор;
  • Аккумулятор.

Для изготовления пропеллера можно использовать практически любые материалы, обеспечивающие достаточную парусность. Это может быть парусный ветряк из прочной ткани, ветряк из бочки или пластиковых бутылок. При изготовлении миниатюрной установки ветряк можно сделать даже из бумаги.

При изготовлении ветряка своими руками можно использовать ротор из шуруповерта или двигатель от любой бытовой техники. Для изготовления самодельного генератора для ветряка подойдет шаговый двигатель от принтера, а автомобильный генератор можно использовать практически без переделки.

Электрическая схема генератора на шаговом двигателе

С появлением на российском рынке неодимовых магнитов, популярность приобрела схема изготовления низкооборотистого аксиального генератора для ветряка на этих магнитах.

Подключение ветряка к генератору

При изготовлении своими руками ветряка мощностью до 3 кВт и рабочим напряжением 220В можно воспользоваться идеей разработки российской компании Аэрогрин. В конструкции данного ветряка применен принцип роторной авиационной турбины. В качестве лопастей используются небольшие лопатки из полимерных материалов. Вся конструкция укрыта кожухом из звукопоглощающего материала. Такой ветряк не тратит энергию на поиск ветра, создает минимум шума и не раздражает соседей постоянно вращающимися лопастями.

Сколько стоит ветряк

Для того чтобы купить ВЭС заводского производства в России можно сравнить цены на ветряки для выработки электроэнергии от различных производителей. Лучше всего для этого указать в запросе поисковой системы свой регион, это позволит быстрее найти поставщиков, которые работают ближе к планируемому месту установки ветряка и сэкономить на доставке и установке. Например, при необходимости организовать электроснабжение дачи в Ленинградской области, в поисковой строке можно набрать следующий запрос: «купить ветряк для частного дома цена СПб».

Приобрести можно как комплекс целиком, так и отдельные детали. Если лопасти и ротор можно изготовить самостоятельно, то генератор для ветряка можно купить по сравнительно низким ценам.

Выбор конструкции ветрогенератора

Основной проблемой при выборе конструкции ветряка является выбор между ветряками с горизонтальной и вертикальной осью вращения. Однозначного ответа на вопрос, какой ветряк лучше горизонтальный или вертикальный, не существует.

Классический ветрогенератор имеет горизонтальную ось вращения и механизм поиска ветра, работающий по принципу флюгера. Для его раскручивания необходим ветер, дующий со скоростью 7 – 8 м/с.

Тогда как спиралевидные ветряки с вертикальной осью вращения не так сильно зависят от скорости и направления ветра.

Но самое широкое распространения ВЭС получили на территории Крымского полуострова. В силу своего географического положения Крым имеет возможность использовать энергию ветра с максимальной пользой. Ветряки в Крыму расположены практически везде, где позволяет местность. Здесь расположено несколько крупных ветряных электростанций. На самой крупной из них работают 127 ветрогенераторов.

В прошлом году в Ульяновске был запущен комплекс из 14 ветряков общей мощностью более 30МВт. Строительство ветряной электростанции начато и в республике Адыгея. Планируется, что ветряки, установленные в Адыгее, будут давать мощность в 150МВт.

Также в прошлом году начало свою работу совместное российско-испанское предприятие по выпуску ветряков в Таганроге. Производство организовано на заводе «Красный котельщик».

Ветряки в Европе

Для многих европейских стран наличие ветряков в некоторых регионах уже давно стало привычным делом. Причем устанавливают их не только на суше но и в море.

Лидерами по производству и использованию ветряков являются Франция, Германия и скандинавские страны.

В последнее время в европейских странах построено множество гигантских ветряков. Например, одним из крупнейших ветряков в Германии является огромная башня высотой 120м с ротором, каждая из трех лопастей которого имеет длину 52 м, ширину 6 м и весит 20 т. Это гигантское сооружение построено под Магдебургом в 2002 году и его мощность составляет 4,5 МВт.

На данный момент самым большим в мире ветряком считается ветрогенератор мощностью 7 МВт и высотой 141 м, расположенный рядом с немецким городом Эмден. Но в ближайшее время в Норвегии планируется запуск ветряка высотой 162 м, который сможет обеспечить электроэнергией около 2000 домов.

Простой самодельный ветроэлектрогенератор на основе шагового двигателя. Ветряк, энергия ветра.

Я уже писал в начале лета о самодельном ветряке – анемометре.

Его целью было организовать сбор статистики о ветре и принятие на ее основе решения о постройке большого серьезного ветряка. К сожалению, не нашлось ни программиста, желающего написать программу обработки данных с анемометра, ни специалиста по микроконтроллерам, для создания соответствующего прибора. Поэтому, увы пришлось наблюдать за ветром визуально, благо флюгер был всегда на виду. И к сожалению, наблюдения эти крайне удручающие…

Дело в том, что ветер в средней полосе европейской части России обладает крайней турбулентностью в своих приземных слоях. Буквально в течении 3-5 минут ветряк многократно и останавливается (или сильно замедляется) и раскручивается так, что лопастей не видно. При этом и направление ветра меняется в секторе до 90-120 градусов. Крайне редко бывают дни когда дует относительно сильный и ровный ветер. За все лето в моей местности таких дней было всего 4. Было несколько штилевых дней. А в остальные — ветер был очень турбулентный, и по скорости, и по направлению.

Читать еще:  Что является холодильником в ракетном двигателе самолета

В таких условиях делать «глобальный» ветроэлектрогенератор (на 1-2 КВт или более) совершенно бессмысленно. Он не только себя никогда не окупит, но вообще будет плохо работать. Поскольку мощный генератор потребует больших лопастей, а они будут обладать большой инерцией и следовательно — «пропускать» порывы сильного ветра. Т.е. попросту не будут успевать раскручиваться. Порой такие порывы, несущие в себе основную мощность «среднего» ветрового потока длятся всего 15-30 секунд.

Кроме того, любой вращающийся предмет обладает значительным моментом инерции в плоскости вращения и представляет собой, по сути, гироскоп. Надеюсь, читатель помнит простой школьный опыт по демонстрации гироскопического эффекта с велосипедным колесом. Будучи раскрученным, оно легко удерживается буквально «двумя пальцами» за один из торчащих концов своей оси. И его чрезвычайно трудно повернуть в бок и заставить крутиться в другой плоскости. Примерно тоже самое будет происходить и с пропеллером ветряка при изменении направления ветра. И ось, и лопасти пропеллера будут испытывать чудовищные боковые знакопеременные нагрузки.

Эти обстоятельства фактически ставят жирный крест на надеждах обойтись одним большим ветряком. Работать он, конечно же будет. Но редко и бестолково. При слабых турбулентных ветрах он будет все равно выдавать мизерную мощность, а при сильных – вы не будете знать куда девать излишек. И уж конечно, следует забыть про его окупаемости. Он будет просто дорогой и красивой игрушкой, самым бестолковым вложением средств и труда, которое только можно представить.

Перспективными же конструкции ветряков – это небольшие маломощные ветрогенераторы, имеющие практически нулевую инерционность. Именно они способны взять от ветра практически всю энергию, которую он несет. Таких, что бы успевали быстро раскручиваться и отрабатывать смену галса. А для получения большой мощности потребуется устройство своеобразного ветропарка ветряных генераторов, расположенных на разновысоких мачтах (что бы не экранировать друг друга от ветра). Это же, кстати, значительно повысит буреустойчивость, решение проблем с мощными тяжелыми мачтами и растяжками (мачты будут держать друг друга), с надежностью «электростанции» — ведь все сразу генераторы сломаться не могут и плановый ремонт и обслуживание не приведут к полной остановке генерирующих мощностей.

Придя к таким неутешительным выводам, я решил переделать свой анемометр в рабочую модель ветрогенератора. Т.е. вместо бестолкового созерцания флюгера начать получать от него практическую пользу. Тем более, что генератор ветряка представляет собой шаговый двигатель с 200 «шагами» на оборот и довольно шустро генерит электричество даже на малых оборотах. Мощность генератора примерно Ватт 7-8

Прежде всего потребовалась замена лопастей на менее инерционные. Лопухи от вентилятора все же довольно тяжелы. Новые лопасти ветряка я сделал их из остатков дюралюминиевого отлива для пластиковых окон. Диаметр пропеллера — примерно сантиметров 50. Что сулит выход на максимальную мощность для генератора уже при ветре 4 м/с. Вырезал из толстой фанеры треугольник. Вклеил в него (эпоксидной смолой) втулку, внутренний диаметр которой совпадал в диаметром оси шагового моторчика. Тщательно разметив, сделал пропилы в фанерном «кокпите» и вклеил в прорези лопасти. Дополнительно зафиксировал их небольшими винтами. Пока эпоксидка не застыла, постарался максимально отбалансировать винт, что он не вибрировал при вращении. После застывания эпоксидной смолы еще раз проверил балансировку и довел ее до совершенства путем срезания тончайших полосок дюраля с краев лопастей.

Вообще говоря, маломерные ветрогенераторы обладают приятным свойством. Практически нет смысла заморачиваться сложнейшими расчетами КИЭВ, профилей лопасти и их изготовлением. Будут прекрасно работать и простейшие, плоские. А нужную мощность можно получить простым их удлинением (следовательно, увеличением площади ометания).

Все это чрезвычайно удешевляет ветрогенератор, появляется смысл его изготовления и использования. В частности, на свой я потратил примерно 3-4 часа времени (включая флюгер) и без учета времени полимеризации эпоксидной смолы. Затраты составили «ноль», так как делалось все «из мусора», т.е. подручных материалов.

Казалось бы, где можно использовать такой маломощный генератор? В перспективе, я собираюсь использовать его на… нагреве воды. Вернее, для компенсации теплопотерь воды, нагретой солнцем. Простейший расчет показывает абсолютную состоятельность моих надежд.

Допустим, есть некий бак – термос, литров на 50, куда вечером сливается нагретая до 50 градусов вода из солнечного коллектора. Размер бака примерно 40 х 40 х 40 см. Соответственно площадь поверхности будет равна 1 кв. метру. Бак окружен теплоизоляцией с Ктеплопроводности 0,15 Вт/м*град и толщиной 30 см. и теплопотери будут составлять примерно 0,5 Вт/град. Т.е. для того, что бы поддерживать разность температур в 20-25 градусов между горячей водой в баке-термосе и окружающим воздухом, достаточно генератора мощностью всего 10-15 Вт! Он будет компенсировать теплопотери и однажды нагретая вода уже никогда не остынет. А случись крепкий ветерок — так еще и подогреется.

Сейчас мой генератор крутится пока без нагрузки, проходит «ходовые испытания». Но в ближайшее время я его заставлю заряжать аккумуляторы в освещении дачного туалета и подсветки дорожки к нему. А то тащить сетевой провод туда и лень и затруднительно, а менять батарейки в китайском фонаре уже надоело.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector