Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Форум клана ЧПУшников

Форум клана ЧПУшников

Меню навигации

  • Форум
  • Наш фирменный клуб. «Форум А»
  • «Мы в «Одноклассниках»»
  • «Мы в ВКонтакте»
  • «3d Сканирование»
  • Написать нам
  • Участники
  • Правила
  • Поиск
  • Регистрация
  • Войти

Пользовательские ссылки

  • Активные темы

Информация о пользователе

Вы здесь » Форум клана ЧПУшников » Станки с ЧПУ » Самопроизвольное изменение направления вращения шагового двигателя.

Самопроизвольное изменение направления вращения шагового двигателя.

Сообщений 1 страница 6 из 6

Поделиться113-07-2012 08:30:21

  • Автор: Domin
  • Местный
  • Откуда: Омск
  • Зарегистрирован : 11-08-2011
  • Приглашений: 0
  • Сообщений: 211
  • Уважение: [+56/-0]
  • Позитив: [+103/-4]
  • Пол: Мужской
  • Возраст: 65 [1956-03-04]
  • Провел на форуме:
    15 дней 15 часов
  • Последний визит:
    27-08-2021 23:04:17

Вчера я решил на оси Z заменить мотор на новый, давно приобретенный в Питере на Электроприводе модель FL57STH56-2804A.
И столкнулся со странным явлением ОН ВРАЩАЕТСЯ В КАКУЮ ЗАХОЧЕТ СТОРОНУ.
Его направление движения не завит от команд . Подключал к контроллеру другой оси – тоже самое, крутил настройки в Mach не помогло. В режиме полного шага «дрожит» и не вращается.
Контроллеры собраны на TA8435H. Поставил старый управляется нормально , другие шаговики этого класса ведут себя тоже нормально. Контроллеров другого типа нет не могу проверить может он не «живет» с TA8435H.
Может кто-то сталкивался с таким явлением? Или просто шаговик неисправен.

  • Цитировать Сообщение 1

Поделиться213-07-2012 09:28:50

  • Автор: valb
  • Гуру
  • Откуда: Пенза
  • Зарегистрирован : 07-12-2009
  • Приглашений: 55
  • Сообщений: 1525
  • Уважение: [+169/-2]
  • Позитив: [+293/-5]
  • Пол: Мужской
  • Возраст: 63 [1958-05-04]
  • Провел на форуме:
    2 месяца 28 дней
  • Последний визит:
    12-01-2021 00:46:24

В режиме полного шага «дрожит» и не вращается.

Заводской брак. Смещены «зубчики» на роторе.

  • Цитировать Сообщение 2

Поделиться313-07-2012 11:50:30

  • Автор: cncuser
  • Заблокирован
  • Зарегистрирован : 10-07-2012
  • Приглашений: 0
  • Сообщений: 11
  • Уважение: [+8/-0]
  • Позитив: [+0/-0]
  • Провел на форуме:
    6 часов 16 минут
  • Последний визит:
    20-07-2012 19:32:21

Вчера я решил на оси Z заменить мотор на новый, давно приобретенный в Питере на Электроприводе модель FL57STH56-2804A.
И столкнулся со странным явлением ОН ВРАЩАЕТСЯ В КАКУЮ ЗАХОЧЕТ СТОРОНУ.
Его направление движения не завит от команд . Подключал к контроллеру другой оси – тоже самое, крутил настройки в Mach не помогло. В режиме полного шага «дрожит» и не вращается.
Контроллеры собраны на TA8435H. Поставил старый управляется нормально , другие шаговики этого класса ведут себя тоже нормально. Контроллеров другого типа нет не могу проверить может он не «живет» с TA8435H.
Может кто-то сталкивался с таким явлением? Или просто шаговик неисправен.

Попробуйте два провода из четырех выходящих из двига поменять между собой местами, главное чтобы эти два провода были с одной обмотки. Возможно у Вас одна обмотка крутит двиг в одну сторону, а другая в другую.

  • Цитировать Сообщение 3

Поделиться413-07-2012 13:30:40

  • Автор: Карпуха
  • Долгожитель
  • Откуда: Новосибирск
  • Зарегистрирован : 20-01-2011
  • Приглашений: 0
  • Сообщений: 580
  • Уважение: [+310/-2]
  • Позитив: [+1103/-4]
  • Пол: Мужской
  • Возраст: 47 [1974-01-08]
  • Провел на форуме:
    30 дней 9 часов
  • Последний визит:
    20-12-2019 12:26:33

Попробуйте два провода из четырех выходящих из двига поменять между собой местами, главное чтобы эти два провода были с одной обмотки

Вот этот способ как раз меняет направление движения на нормальном исправном шаговом двигателе. Тут в данном случае, думаю, что он не поможет.

Двигатель постоянного тока, L293D и Arduino

В статье рассмотрен пример управления направлением и скоростью вращения ротора небольшого двигателя постоянного тока с использованием Arduino и чипом для драйвера двигателя L293D.

Для управления скоростью вращения мотора в проекте используется потенциометр. Для изменения направления вращения используется кнопка.

Необходимое оборудование

Для того, чтобы собрать предложенную схему и реализовать поставленную задачу вам понадобятся:

1 небольшой двигатель постоянного тока с напряжением питания около 6 В;

1 чип L293D, который используется в качестве драйвера для двигателя;

1 переменный резистор (потенциометр) сопротивлением 10 кОм;

1 тактовая кнопка;

1 монтажная плата;

1 плата Arduino Uno;

Основы работы с чипом L293D

Перед тем как подключать Arduino для управления мотором, стоит поэксперрментировать с чипом L293D. Как минимум, это даст вам понимание того, как именно он работает.

В данном случаем мы можем использовать Arduino исключительно для подачи питания 5 В на мотор.

Наша задача – отследить, в какую сторону вращается ротор мотора. Можете слегка зажать вал пальцами, и вы почувствуете направление вращения или прикрепить на вал какую-то метку (например, кусок бумажки). После первой проверки, подключите контакты, которые идут от 5V (питания) и от Gnd (земля) наоборот. После запуска, двигатель должен вращаться в противоположную сторону.

Читать еще:  В шкоде свистит ремень при холодном двигателе

По большому счету, это и является концептом, на основании которого работает чип L293D. Он управляет пинами, позволяя нам менять направление вращения ротора двигателя.

Схема подключения соответствует приведенной на рисунке ниже. Питание мотора все еще обеспечивается от Arduino, но мы можем поэкспериментировать с «управляющими» пинами перед тем как полностью передать управление Arduino.

Три контакта L293D, которые нас интересуют, это: Pin 1 (Enable), Pin 2 (In1) и Pin 7 (In2). Они подключаются к контакту 5V или к контакту GND с использованием фиолетового, желтого и оранжевого коннектора.

Как показано на рисунке выше, мотор должен вращаться в определенном направлении, давайте назовем это направлением A.

Если вы подключите Pin 1 (Enable) к GND, мотор остановится вне зависимости от управляющих пинов In1 и In2. Контакт Enable все включает и выключает. Это очень полезно при использовании ШИМ контактов для управления скоростью мотора. Переподключите Pin 1 к 5V, чтобы двигатель вновь начал вращаться.

Теперь попробуйте переподключить In1 (pin 2, желтый). Вместо 5V подключите его к GND. Оба контакта In1и In2 теперь подключены к GND, так что двигатель опять остановится.

Перемещение In2 от GND к 5V приведет к вращению мотора в противоположном направлении (направление В).

Если вы подключите In1 обратно к 5V и в результате In1 и In2 будут подключены к 5V, мотор опять-таки перестанет двигаться.

Схема подключения Arduino, L293D и потенциометра

После того как мы разобрались с непосредственным управлением двигателя с помощью контактов и микросхемы L293D , можно передавать все управление на плату Arduino. Микроконтроллер в данном случае будет управлять контактами Enable, In1 и In2.

Внимательно соберите схему на основании рисунка, который приведен ниже. Если вы перепутаете контакты, очень вероятно, что работать ничего не будет.

Скетч Arduino

Загрузите скетч, приведенный ниже на Arduino.

Изменение направления и частоты вращения двигателя постоянного тока

с использованием чипа L293D, потенциометра и кнопки-переключателя

Шаговые электродвигатели. Виды и работа. Особенности

Шаговые электродвигатели легко решают проблему точного позиционирования, не затратив больших средств. Моторы чаще применяются в роботах, станках с программным управлением. Рассмотрим устройство и действие двигателей.

Устройство

Шаговые электродвигатели являются двигателями переводящими электричество в механическое движение. Главным отличием его от других электромоторов в методе действия. Благодаря этому методу вал вращается. Моторы с шагом созданы для прерывистого вращения, этим они отличаются от других. Их вращение состоит из шагов, от этого получилось название.

Шаг является частью оборота вала мотора . Размер шага зависит от механической части двигателя и от метода управления. Шаговые двигатели подключаются к различным типам питания. В отличие от своих собратьев, шаговый мотор имеет управление импульсами, преобразующимися в градусы, а затем во вращение. Например, 2,2 0 шаговый мотор вращает вал на 2,2 0 при каждом поданном импульсе. Эта характеристика дает повод называть их цифровыми.

Метод действия

Обмотки в количестве 4-х штук стоят по кругу равномерно между собой на статоре. В зависимости от того, как подключены эти обмотки будет определяться тип шагового двигателя. В нашем случае обмотки разделены, мотор с шагом, углом поворота в 90 градусов. Обмотки подключены по кругу. Порядок подключения направление вращения двигателя с шагом. На рисунке видно, что вал вращается на 90 градусов в то время, как ток поступит в катушку, через 1 секунду.Стандартными составляющими шаговых двигателей являются ротор и статор. Ротор включает в себя сердечники, изготовленные из магнитов. Схематически дано изображение.

Режимы управления

При разной подаче тока на катушки вал двигателя вращается по-разному.

Волновое управление

Метод практически нами рассмотрен, волновое действие на катушку. Ток идет через одну катушку. Такой метод редко применяется, характерен пониженным потреблением энергии, дает возможность получения меньше 50% момента вращения двигателя. Большую нагрузку при таком управлении шаговые электродвигатели не выдержат. На один оборот вала приходится четыре шага.

Управление полным шагом

Широко применяемый метод — полношаговый. По этому способу напряжение питания на катушки подается попарно. От того, как подключены обмотки, двигателю необходим двойной ток. Электродвигатель при такой схеме выдаст 100% момента вращения по номиналу.

Полный оборот двигателя соответствует четырем шагам, число шагов по номинальному значению.

Режим полушага

Это оригинальный метод получения двойной точности позиционирования, не изменяя конструкцию двигателя. Чтобы работать по этому способу, подключают одновременно все имеющиеся пары. Ротор поворачивается на 0,5 шага. Такой способ имеет место при применении двух или одной катушки.

Читать еще:  Я создал двигатель что с ним делать

Режим с 1 обмоткой Режим с 2 обмотками

По этому способу один и тот же мотор может выдать шагов в 2 раза больше на один оборот. Это значит, что система позиционирования работает с двойной точностью. Наш мотор выдает восемь шагов на один оборот.

Микрошаговый режим

Смысл микрошага заключается в подаче на катушки двигателя напряжения питания сигнала определенной формы, похожей на синус, а не импульсов. При таком методе изменения положения дает возможность получения плавного перемещения.

Благодаря микрошаговому режиму шаговые электродвигатели широко применяются в позиционировании, в программно управляемых станках. Рывки деталей, работающих с двигателем, толчки самого механизма понижаются. В микрошаговом режиме двигатель вращается плавно, как моторы постоянного тока.

Конфигурация графика тока, проходящего по обмотке, сходна с синусоидой. В эксплуатации применяются цифровые сигналы. Их примеры показаны на рисунках.

Способ микрошага — подключение питания двигателя, не управления катушками.

Отсюда следует, что микрошаг применяется при волновом типе.

В микрошаговом типе шаги не увеличиваются, хотя визуально это представляется. Для увеличения точности механизма применяют шестерни с трапецеидальными зубьями, чтобы обеспечить плавный ход.

Типы моторов
Шаговые электродвигатели с постоянным магнитом

Ротор оборудован постоянным дисковым магнитом с несколькими полюсами. Действует по такому же принципу, как микрошаговый мотор. Катушки статора отталкивают и притягивают магнит, расположенный на роторе, образуя момент вращения.

Размер шага с постоянным магнитом находится в интервале от 45 до 90 градусов.

Шаговые электродвигатели с сопротивлением переменной величины

Ротор не имеет постоянных магнитов. Вместо них сердечник ротора производится из металла, похожего на диск с зубьями, или на шестерню. На статоре расположены обмотки в количестве более 4-х штук. Катушки подключаются в парах друг к другу.

Крутящий момент уменьшается, так как постоянные магниты отсутствуют. Однако, имеется положительная сторона — у шаговых моторов отсутствует момент стопорения. Стопорящий момент вращения создан постоянными магнитами, притягивающимися к корпусу статора при отключенном питании в катушках.

Можно просто определить, какой момент, если попробовать повернуть отсоединенный мотор. Сразу будут понятны ощутимые щелчки в двигателе при каждом шаге. Эти ощущения и будут являться моментом фиксации. Момент притягивает к себе магниты корпуса. На рисунке изображено действие мотора.

Шаг равен интервалу от 5 до 15 градусов.
Шаговый мотор гибридного типа

Шаговые электродвигатели называются «гибридными», потому что включают в себя разные типы характеристик. Они имеют хорошие моменты, малый размер шага, находящийся в интервале от 0,9 до 5 градусов. При этом он обеспечивает высокую точность.

Механическая конструкция вращается со значительными скоростями. Такие виды моторов применяются в станках с программным управлением, в роботах. Недостатком является высокая цена. Обыкновенный двигатель вместе с восьмью катушками.

Из-за невозможности изготовления магнита, нашли оригинальное решение. Взяли два диска с зубьями 50 штук, постоянный магнит. Приварили диски к полюсам. Получилось, что два диска имеют соответственно каждый полюс.

Оригинальность конструкции в том, что диски размещены так, что, смотря на них сверху, они похожи на один диск со 100 зубьями. Вершина зуба на одном диске совпадает со впадиной. На рисунке изображено действие гибридного мотора 75 шагов на один оборот. Шесть обмоток сделаны парами, которые имеют катушку на противоположных краях. Первая пара – это пара вверху и внизу обмотки, тогда 2-я пара смещена на угол 60+5 градусов от первой, а 3-я смещена на 65 градусов от второй.

Разница углов позволяет вращаться валу двигателя. Управляющие режимы применяются, как волновые для экономии электроэнергии.

Когда катушка задействована, имеется три положительных полюса в 5 градусов сзади, они притягиваются в сторону вращения, и три отрицательных полюса в 5 градусов впереди, толкают ротор в сторону вращения вала. Рабочая обмотка всегда расположена между отрицательным и положительным полюсами.

Схема подключения обмоток

Шаговые моторы принадлежат к моторам с несколькими фазами. Чем больше фаз, тем работа двигателя мягче, но и выше стоимость. Момент вращения не зависит от числа фаз. Большое применение получили двигатели с 2-мя фазами. Двигатели подключают тремя типами схем для 2-фазных шаговых моторов. Катушки соединены друг с другом, применено разное количество проводов для соединения двигателя с контроллером.

Биполярный двигатель

Это самая простая конструкция, применяется четыре провода для соединения мотора с контроллером. Катушки подключены параллельно или последовательно.

Параллельное или последовательное подключение

Двигатель имеет 4 контакта. Два желтых экрана подключают вертикальную катушку, два розовых – горизонтальную. Проблема в изменении полярности, можно изменить направление тока, драйвер станет сложнее.

Читать еще:  Что такое компрессор в реактивном двигателе
Униполярный двигатель

Применяя общий провод, изменяют полюса магнитов. Если соединить общий провод с землей, один и другой вывод катушки к питанию, то полюса изменятся. Схема соединения двигателя биполярного типа простая для понимания, она обычно состоит из 2-х транзисторов на одну фазу.

Подключение с общим проводом

Недостаток – применение половины катушек, как при волновой управляемости электромотором. Момент вращения получается равным половине возможного значения. Униполярные электромоторы необходимо изготавливать по двойным размерам, для обеспечения сопоставимого момента. 1-полярный электромотор имеет возможность применяться в качестве биполярного мотора. Для этой цели необходимо провод отключить.

Униполярные шаговые электродвигатели имеют несколько вариантов подключения.

Общий провод соединен внутри

Шаговый мотор с 8-ю выводами
Это мотор с гибким подключением, обмотки оснащены выводами с обеих сторон. Можно подключать двигатель по любому методу:
  • Униполярный с 5 или 6 выводами.
  • Биполярный с последовательной схемой.
  • С параллельной схемой.
  • С малым током.

Подключение 4 обмоток

Шаговые электродвигатели Лавета

Моторы Лавета используются в электрических часах. Их конструкция сделана для эксплуатации с одним фазовым сигналом. Моторы Лавета обладают возможностью делать их конструкцию миниатюрной, применяются для исполнительной части часов ручного ношения. Этот тип моторов изобрел инженер Мариус Лавет . По его имени назвали тип шаговых двигателей.

Лавет – выпускник школы электрики изобрел двигатель, который дал ему известность во всем мире. Вид статора похож на статор электромотора с расщепленными полюсами. Имеется одна обмотка, полюса созданы витками с одним проводом из медной жилы толстого сечения, расположены на магнитном проводе, образуют необходимую фазу. Токи индукции образуют необходимый момент вращения.

Магнитное поле распространяется с задержкой, применяется для сдвига фаз, на прямой угол 90 градусов, чтобы имитировать напряжение из двух фаз. Конструкция ротора создана в виде постоянного магнита. Конструкции такого типа имеют широкую сферу применения в технике для быта (миксерах, блендерах). Моторы Лавета отличаются тем, что из-за зубцов вал стопорится с определенным шагом. Результатом этого возможно движение стрелки секунд. Разновидность двигателя Лавета не предназначена для реверсивной работы, как и большинство шаговых моторов.

Библиотека для шагового двигателя Arduino v1.15

ОБНОВЛЕНИЯ

  • v1.13 – исправлены мелкие баги, оптимизация
  • v1.14 – исправлены ошибки разгона и торможения в KEEP_SPEED
  • v1.15 – оптимизация, исправлены мелкие баги, stop() больше не сбрасывает maxSpeed

ТЕОРИЯ

Для подключения шаговых моторов к Arduino нужно использовать драйверы. Очень дешёвые и популярные моторы 28byj-48-5v часто продаются вместе со своим драйвером (транзисторная сборка ULN2003), подключить можно к любым 4-м пинам Ардуино и использовать.

Для работы с большими шаговиками (типа Nema 17) нужно использовать специализированные драйверы, ниже вы найдёте описания и схемы подключения для A4988, DRV8825 и TMC2208, драйверы такого формата подключаются и работают практически одинаково, т.к. разработаны для CNC шилдов и взаимозаменяемы. У этих драйверов нужно настроить ток при помощи крутилки на плате. Это можно сделать “на глаз”, заставив мотор вращаться и регулируя крутилку. Мотор должен вращаться, но не вибрировать как перфоратор и сильно не нагреваться. Лучше настроить ток по опорному напряжению Vref, у каждого драйвера оно считается по своей формуле (см. картинки ниже). Берём ток своего мотора из описания, подставляем в формулу вместо current, считаем, и накручиваем полученное напряжение крутилкой. Для измерения опорного напряжения нужно подключить щупы вольтметра к самой крутилке и пину GND.

Главное преимущество дорогущих драйверов TMC – отсутствие шума/свиста/вибраций при работе, так как драйвер своими силами интерполирует сигнал до микрошага 1/256.

БИБЛИОТЕКА

GyverStepper v1.15

Производительная библиотека для управления шаговыми моторами с Arduino

  • Поддержка 4х пинового (шаг и полушаг) и STEP-DIR драйверов
  • Автоматическое отключение питания при достижении цели
  • Режимы работы:
    • Вращение с заданной скоростью. Плавный разгон и торможение с ускорением
    • Следование к позиции с ускорением и ограничением скорости
    • Следование к позиции с заданной скоростью (без ускорения)
  • Быстрый алгоритм управления шагами
  • Два алгоритма плавного движения
    • Мой планировщик обеспечивает максимальную производительность: скорость до 30’000 шагов/сек с ускорением (активен по умолчанию)
    • Модифицированный планировщик из AccelStepper: максимальную плавность и скорость до 7’000 шагов/сек с ускорением (для активации пропиши дефайн SMOOTH_ALGORITHM)
  • Поддержка “виртуальных” драйверов
Совместимость

Совместима со всеми Arduino платформами (используются Arduino-функции)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector