Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Драйвер шагового двигателя с энкодером CWDS860H

Драйвер шагового двигателя с энкодером CWDS860H

CWDS860H – это новое поколение гибридных серводрайверов. Данный драйвер объединяет в себе преимущества серво- и шаговых систем.

Гибридный серводрайвер CWDS860H представляет собой бюджетную высокоэффективную сервосистему для управления различным крупным автоматизированным оборудованием, требующим рентабельности, низкого уровня вибрации и шума, высокой скорости и точности позиционирования.

Быстрота реакции и равномерная работа делают данную гибридную сервосистему идеальной для приложений, требующих быстрого передвижения на короткие расстояния и плавности работы (например, механизмы с ременным приводом либо механизмы низкой жесткости, где при остановке двигателя необходима очень малая вибрация).

Особенности:

  • замкнутая система управления, отсутствие потери шагов
  • высокий крутящий момент и высокая скорость вращения
  • высокое быстродействие
  • технология снижения нагревания двигателя и соответственно повышение эффективности эго работы
  • устойчивость при нулевой скорости
  • плавная работа и сверхнизкий шум двигателя
  • отсутствие настроек и постоянная устойчивость системы
  • рентабельность

Основные характеристики:

  • Напряжение питания: 20

110 VDC

  • Максимальный ток фазы: 8,0 А
  • Максимальная частота входного сигнала: 200 KHz
  • Ток логического сигнала: 7

    16 mA

  • Масса: 750 г
  • Размеры драйвера: 158х100х60 мм
  • Эффективность работы сервосистемы на основе драйвера CWDS860H обеспечивается его совместным использованием с гибридным серводвигателем 86BHH114-450P-40MP.

    Наш контроллер шагового двигателя с энкодером CWDS860H, управление шаговым двигателем с очень низким энергопотреблением, прочный и экономически эффективный. Драйвер с энкодером CWDS860H позволяет управлять биполярным двухфазным шаговым двигателем и взаимодействует с любой программой управления станками ЧПУ (CNC). Они пользуются высоким спросом в национальных, так и международных рынках.

    Мы стали популярными среди наших клиентов, предлагая широкий спектр, каталог драйверов шагового двигателя с энкодером CWDS860H. Мы предлагаем нашим клиентам Аналоговые драйверы шаговых двигателей, контроллер шагового двигателя после строгого контроля качества в различных параметров качества.

    Чтоб не делать драйвер шагового двигателя своими руками звоните нам и мы доставим его вам в короткое время. Шаговый двигатель купить можно у нас со склада в Ивано-Франковске. Кстати цена на Шаговые двигатели у нас самая низкая на рынке Украины. Мы доставляем товар по Украине, поэтому звоните будем рады сотрудничеству.

    Скачать:

    Цена с НДС за комплект* (драйвер CWDS860H + двигатель 86BHH114-450P-40MP + кабель) — 19418.00 грн.

    * — указанные цены не являются публичной офертой, носят исключительно информационный характер и могут отличаться от действительных цен.

    При питании драйверов с использованием трансформаторов или импульсных блоков питания желательно применять устройство плавного пуска для защиты оборудования от пусковых токов.

    Также возможное использование выпрямителя, если требуется питание постоянным током, а блоком питания служит трансформатор.

    Выбор замкнутого контура шагового привода

    Большинство систем перемещения на основе шаговых двигателей работают в разомкнутом контуре и поэтому большей частью недороги. По сути, шаговые системы предлагают единственно возможную технологию движения, которая способна осуществлять управление положением без обратной связи. Однако, когда шаговые двигатели работают на нагрузку в разомкнутом контуре, может произойти потеря синхронности заданных и реальных шагов.

    Управление по замкнутому контуру – это разновидность традиционного шагового перемещения. Оно является экономичной альтернативой в тех случаях, когда требуется большая надежность, безопасность или гарантия качества. Контур этих шаговых систем замыкается с помощью устройства обратной связи или одного из разнообразных непрямых методов считывания параметров, что дает возможность проверять/контролировать „пропущенные шаги“, определять потерю скорости двигателя и позволяет добиться большей величины вращающего момента. В последнее время управление по замкнутому контуру (CLC) шаговых приводов помогает реализовывать архитектуры распределенного интеллектуального перемещения.

    Доступные методы, выгода

    В настоящее время есть несколько технологий для осуществления управления по замкнутому контуру положением, скоростью и/или вращающим моментом шагового двигателя. По возрастанию степени управляемости эти технологии располагаются в следующем порядке: подсчет шагов, регистрация обратной электродвижущей силы и полный сервопривод (подробности – на рисунке „Методы CLC“).

    Рауль Кулкарни (Rahul Kulkarni), менеджер по продукции и управлению производством в компании National Instruments (NI), говорит о нескольких причинах и сценариях применения управления по замкнутому контуру:

    Последнее из перечисленных действий относится к заданию нужных размеров шагового двигателя в соответствии с требованиями нагрузки и инерции системы, на что не всегда обращают внимание.Кулкарни отмечает: „На практике вы можете немного снизить скорость двигателя, чтобы сократить издержки, при условии, что ваше приложение не требует перемещения по определенной траектории. Именно здесь может помочь управление шагом по замкнутому контуру».

    Он также поясняет, что все контроллеры перемещения компании NI: NI 733x (только шаговый двигатель), NI 734x и высокопроизводительная модель NI 735x (шаговый двигатель/серводвигатель) можно сконфигурировать для управления шаговым двигателем в замкнутом контуре. В режиме CLC на осях шагового двигателя для обеспечения обратной связи по скорости и положению используются квадратурные кодовые датчики или аналоговые входы.

    Джон Мазуркевич (John Mazurkiewicz), менеджер по производству двигателей в Baldor Electric Co. отмечает, что компания рассматривает шаговые двигатели как простые, недорогие механизмы, идеальные для позиционирования нагрузки. Причины, по которым используются шаговые двигатели, включают упрощенную работу (обычно используются в разомкнутом контуре), более легкое согласование вследствие работы с цифровыми входами и более низкую цену, так как обычно они не оснащены устройствами обратной связи.

    Intelligent Motion Systems устанавливает дополнительный энкодер на задней части двигателей серии MDrive, это объединяет контроллер перемещения и микрошаговый привод с шаговым двигателями 14, 17 и 34 стандарта NEMA. На рисунке представлено устройство MDrive17

    И все же при операциях в разомкнутом контуре существует риск потери шагов, что влечет за собой неправильное позиционирование. „Это может привести к большому объему брака прежде, чем будет обнаружена ошибка, – отмечает Мазуркевич. – Кроме того, при работе шагового двигателя в режиме с максимальным вращающим моментом или с более высоким ускорением в целях повышения производительности, существует риск самопроизвольной остановки двигателя“. Эти традиционные ограничения шагового двигателя можно обойти, если добавить обратную связь.

    Шаговые двигатели в замкнутом контуре могут работать с недорогими энкодерами в отличие от тех, что используются в сервосистемах. Это дополнительное преимущество. „Обычно с шаговыми двигателями могут использоваться энкодеры с несимметричным выходом. Не требуется также электронная коммутация сигналов обратной связи“, – отмечает Мазуркевич.

    Как показывает опыт компании Baldor, шаговые двигатели CLC особенно полезны при легких нагрузках и очень коротких перемещениях. Типичные промышленные приложения включают двухкоординатные и поворотные устройства позиционирования в системах числового программного управления (ЧПУ), средствах управления процессами, в полиграфии и упаковке.

    Компании Parker Hannifin Corp./ Compumotor рекомендуют шаговые электродвигатели с замкнутым контуром для применения там, где требуется стабильность двигателя при нулевой скорости и подтверждение позиции. Джон Вейлвендер (John Walewander), менеджер по проектированию, утверждает: „С этими регулярно возникающими задачами, которые можно назвать первостепенными, хорошо справляются шаговые двигатели“. Вместо использования устройств обратной связи компания Parker сделала большие инвестиции в технологии „без датчиков“ и разработала патентованные цифровые методы, которые выполняют эти задачи без внешних дополнительных устройств.

    Читать еще:  Горит лампа неисправности двигателя кашкай

    Эти методы – активное демпфирование и обнаружение самопроизвольной остановки двигателя без помощи энкодера – использованы в микрошаговых электродвигателях семейства Gemini компании Parker. Вейлвендер считает, что дальнейшее развитие этих сложных алгоритмов сделает их более эффективными, так что меньшие по размеру и более дешевые устройства также будут обладать этими преимуществами. Вейлвендер делает следующий вывод: „Поскольку постоянное совершенствование этих возможностей характерно для всего поколения, то обнаружение самопроизвольной остановки двигателя и методы подавления резонанса станут такими же привычными, как и микрошаговые двигатели сегодня“.

    Методы управления шаговым перемещением в замкнутом контуре

    Согласно мнению представителей компании Incremotion Associates, для управления шаговыми двигателями в замкнутом контуре используются разнообразные методы, среди них: подсчет шагов (или верификация шагов), определение обратной электродвижущей силы без датчиков, полный сервопривод с датчиками обратной связи.

    При верификации шагов, самом простом виде контроля позиции, для «подсчета» произведенных шагов используется оптический энкодер с низкими показателями. Простой контур сравнивает число шагов, которое должно было быть произведено с измеренным числом шагов, подтверждая, что шаговый двигатель переместился в нужную позицию.

    Как утверждает Дэн Джоунс, президент компании Incremotion, обратная электродвижущая сила (противоЭДС), метод определения без датчиков, использует сигналы противоЭДС двигателя для измерения и управления скоростью. Когда напряжение противоЭДС падает ниже определенного уровня, регулятор «замкнутого контура» переключается на разомкнутый контур для перемещения к окончательной позиции.

    Полный сервопривод предполагает постоянное использование энкодера, датчика углового положения или других устройств обратной связи с целью более точного управления положением и вращающим моментом шагового двигателя. Эти устройства поставляются рядом производителей по всему миру.

    Компания Parker Hannifin включает активное демпфирование и определение самопроизвольной остановки двигателя без энкодера как варианты управления с помощью противоЭДС. Привод шагового двигателя контролирует и измеряет обороты двигателя и использует информацию о напряжении и токе для совершенствования управления работой двигателя. Активное демпфирование использует эту информацию для ослабления колебаний скорости и позволяет добиться оптимальных показателей вращающего момента. Таким образом, вращающий момент не будет расходоваться на механические колебания (см. рисунок «Вращающий момент – скорость»). При определении самопроизвольной остановки двигателя без энкодера эта информация используется для того, чтобы определить потерю синхронной скорости. Это серьезная проблема при управлении двигателями в разомкнутом контуре.

    Боб Пеарент (Bob Parente), технический руководитель прикладных программ в компании Intelligent Motion Systems Inc., говорит: „Шаговые двигатели с замкнутым контуром используются в ответственных приложениях, когда необходимо подтверждение положения“. В качестве примера он приводит автоматический лабораторный химический анализатор/анализатор крови, в котором многочисленные оси перемещаются, чтобы установить тестируемый образец под соответствующий раздаточный автомат реактивов. В это время другие двигатели откатываются назад, загружая точное количество химического реагента, затем продвигаются вперед, чтобы распределить реагенты в определенной последовательности и нужном количестве. Этот процесс аналогичен использованию нескольких шприцев. Пеарент утверждает, что „любая ошибка в позиции любой из осей может привести к потере данных или неточности результатов“.

    Оправдывая добавленную стоимость

    Дополнительный узел или достижение в разработке означают превышение первоначальной стоимости. Это тот случай, когда небольшое превышение стоимости оправдывается значительным экономическим эффектом.

    „Даже при добавленной стоимости устройств обратной связи шаговые двигатели остаются экономически эффективными по сравнению с другими технологиями управления движением в замкнутом контуре, – поясняет Пеарент. – Дополнительная стоимость устройства обратной связи оправдывается гарантией точных результатов. Одна ошибка в важном приложении может стоить столько же, сколько все устройство обратной связи“. Энкодер или датчик углового положения представляют собой честное „страхование“, которое дает уверенность в том, что шаговые двигатели находятся в нужной позиции.

    По мнению Baldor, замыкание контура ведет к увеличению точности деталей и повышению качества, так как позволяет сравнивать измеренную позицию с требуемой позицией автомата или системы перемещения. „Если обнаруживается расхождение, принимаются определенные меры, чтобы компенсировать пропущенные шаги двигателя“, – говорит Мазуркевич. Цена и польза, получаемая от устройства обратной связи и использования замкнутого контура, были бы оправданы применением. Далее он отмечает: „Дополнительная стоимость находится в зависимости от требуемых характеристик механизма, его производительности, точности позиционирования и требуемого качества деталей“.

    Стоимость материалов в управляемом процессе также влияет на определение цены. Вейлвендер из компании Parker поясняет: „Шаговые двигатели часто используются с очень дорогими материалами – от электронных узлов до образцов ДНК. Возможность неудачи оправдывает дополнительную стоимость обратной связи“. В Parker считают, что для совершенствования управления шаговыми двигателями при снижении затрат выгоды от внедрения технологий „без датчиков“ можно сравнить с технологиями применения обратной связи на основе датчиков. Вейлвендер также отмечает, что „развивается новое поколение цифрового управления шаговыми двигателями, где будет меньше использоваться обратная связь на основе внешних датчиков, что послужит дополнительной экономии в машиностроении“.

    Рыночный взгляд

    Incremotion Associates, консалтинговая фирма, специализирующаяся в вопросах управления движением, считает, что управление с проверкой шага используется в 8-10% комбинированных шаговых двигателей. Дэн Джоунс (Dan Jones), президент компании Incremotion, предполагает еще меньшее применение других подходов управления по замкнутому контуру в шаговых двигателях: меньше 1% для методов обратной электродвижущей силы и только около 1% рынка – для полного сервоуправления. Однако Джоунс предполагает, что полное сервоуправление будет развиваться быстрее, чем другие стратегии.

    Intelligent Motion Systems разделяет это мнение, отмечая, что доля продаж приложений для систем составляет примерно 10%. Чтобы помочь покупателям определиться с выбором систем с замкнутым контуром, Пеарент задает встречные вопросы: „Что происходит с «изделием», если двигатель находится в неверной позиции?“, „Какова стоимость бракованных деталей, которые были произведены из-за неполадок в работе?“. Если издержки приемлемы, систему с разомкнутым контуром можно оставить. Он также отмечает: „Нужно иметь в виду, что в настоящее время 90% всех систем шаговых двигателей работают с разомкнутым контуром“.

    Зависимость вращающего момента шагового двигателя от скорости

    Источник: Control Engineering на базе данных предоставленных
    Parker Hannifin Corp., 2004

    Parker Hannifin/Compumotor применяет Active Damping, вид управления «без датчиков» в замкнутом контуре, для оптимального использования вращающего момента шаговых двигателей. Традиционные шаговые системы не могут работать безопаснрго в зоне ограничения вращающего момента

    Читать еще:  Что такое тепловой баланс двигателя аналитическое выражение

    Кулкарни (National Instruments) считает, что рост использования шаговых двигателей с замкнутым контуром управления в производстве полупроводников и биохимической отрасли в 90-е годы прошлого века связан с повышением требований к управлению движением в среде чистых комнат. В те годы бесще точные сервомеханизмы были еще слишком дорогими. „Поэтому инженеры обратились к разработке конфигураций шаговых двигателей в замкнутом контуре в надежде получить результаты, разрабатывая оба направления“, – отмечает он. С тех пор стоимость бесщеточных сервомеханизмов и двигателей значительно снизилась. Кулкарни считает: „На сегодняшний день приложения шаговых двигателей в замкнутом контуре можно охарактеризовать как стабильные или находящиеся на спаде“.

    Для компании Baldor это новая сфера деятельности. Компания планирует, что примерно 20% шаговых двигателей стандартов NEMA (Национальной ассоциации электротехнической промышленности) формата 17, 23 и 34 будет использоваться с энкодерами для дальнейшего применения в замкнутом контуре.

    Компания Parker Hannifin оценивает, что 10-15% „приложений точных шаговых двигателей“ используют энкодеры. Если же, по мнению Вейлвендера, учесть все промышленные шаговые двигатели, то процент будет значительно ниже. Он также отмечает, что приложения, использующие аппаратуру для замыкания контура, находятся на спаде, а технологии „без датчиков“ – на подъеме.

    В Parker полагают, что технологии „без датчиков“ ждет большое будущее. По мере развития этих методов будут совершенствоваться как двигатели с большим числом полюсов (шаговые), так и двигатели с малым числом полюсов (серводвигатели), причем и те и другие будут использоваться как с обратной связью, так и без нее. „Двигатели «без датчиков» найдут применение в скоростных приложениях, где сегодня используются серводвигатели, а двигатели с датчиками будут применяться для позиционирования“, – делает заключение Вейлвендер.

    Свежий взгляд на шаговые двигатели и сервоприводы

    Шаговый двигатель или сервопривод: отличия, сравнения. Что лучше?

    Тезисы:

    • Правильное управление током двигателя (с пом. управления ориентацией поля) в шаговых приводах с обратной связью могут устранить проблемы среднечастотного резонанса, увеличить момент и снизить шум от двигателя

    • Качественные шаговые гибридные сервоприводы не уступают сервоприводам на базе вентильных электродвигателей на низких скоростях вращения.

    Шаговые двигатели


    Шаговые двигатели
    — прекрасно известный способ превратить электрическую энергию в точные -механические перемещения. Каждый импульс, посылаемый на драйвер двигателя, двигает ротор в точном соответствии с заданными на драйвере настройками. Например, 100 посланных импульсов на полношаговый привод с двигателем с шагом 1.8° будут преобразованы в поворот ровно на 180°. Одной из сильных сторон шаговых двигателей является то, что они способны работать без обратной связи, без коррекции положения с помощью энкодеров или иных датчиков, т.к. вал по самой архитектуре шагового двигателя совершает перемещения строго в соответствии с поданными импульсами. Однако, это прекрасно работает лишь в том случае, если шаговые двигатели никогда не перегружаются и не впадают в резонанс. В реальности же в очень редких случаях когда отсутствуют эти два фактора. Для того, чтобы быть уверенным, что шаговый мотор не будет пропускать шаги, большинство разработчиков поступают просто — закладывают большой запас при выборе мощности двигателя. Это означает, что на станок будет установлена значительно более тяжелая и дорогая модель, чем это действительно требуется. Резонанс же часто проявляется на тех же самых, рабочих частотах вращения, которые являются основными в конкретном приложении, и поэтому избежать его становится еще сложней.

    Как одно из средств избежать последствий кратковременных перегрузок шагового двигателя и пропуска шагов — это установить энкодер на двигатель мотора, точь-в-точь как ставится аналогичный датчик на вал вентильного серводвигателя. Энкодер представляет информацию о положении ротора контроллеру, который сравнивает её с заданной координатой, и использует полученное рассогласование для выполнения шагов таким образом, чтобы скомпенсировать разницу. К сожалению, данный способ не помогает устранить последствия резонанса. Однако, возможность такая все же есть, и заключается она в комбинации коррекции по положению(т.е. компенсации числа импульсов STEP) и одновременного управления ориентацией поля статора шагового двигателя, по принципу аналогичному векторному управлению трехфазными электродвигателями. Поскольку энкодер дает сведения о положении вала, существует возможность ориентировать магнитное поле статора шагового мотора таким образом, чтобы получить максимально эффективное потокозацепление. Причем такая схема не потребует преобразований Кларка, каковые обычно используются для проекции трехфазной системы токов в двухфазную, т.к. шаговые биполярные моторы изначально имеют только 2 обмотки. При таком способе управления ток меняется в обмотках синусоидально — вне зависимости от того, используется полный шаг или микрошаг. Еще одним преимуществом управления ориентацией поля является то, что такой шаговый привод будет нечувствителен к резким изменениям нагрузки — векторное управление позволяет отрегулировать момент привода «на лету» — функция, обычно доступная только при использовании сервоприводов типа PMSM.

    Теперь о сервоприводах.

    Читатели, возможно, в курсе, что уже достаточно долгое время существуют шаговые сервоприводы, которые используют обратную связь по позиции. Такие приводы просто считают количество шагов и добавляют(или вычитают) шаги для компенсации ошибки, и не способны корректировать угол поворота вала внутри одного шага, «на лету».

    В противоположность, синусоидальная коммутация в паре с управлением ориентацией поля действительно способна компенсировать ошибки позиционирования вала внутри одного шага, возникающие из-за неидеальной геометрии деталей шаговых двигателей или нагрузки. Векторное управление магнитным полем гарантирует, что поле статора всегда перпендикулярно полю ротора, и насыщенность поля точно соответствует требуемому моменту. Это увеличивает, эффективность и динамику, и снижает флуктуации крутящего момента. Такой вид управления позволяет шаговым двигателям конкурировать с вентильными сервоприводами на скоростях до 2000 об/мин. На более высоких серводвигатели все же будут эффективней. Оптимальным диапазоном является скорость вращения до 1000 об/мин — в нем шаговые двигатели развивают больший крутящий момент, чем вентильные серводвигатели того же размера.

    Приложения, в которых шаговые сервоприводы c синусоидальными токами обмоток могут заменить серводвигатели, включают в себя:

    • намоточное оборудование,
    • транспортные ленты конвейеров,
    • управление заслонками насосов

    а также многие другие — все те, в каких нагрузка может изменяться скачкообразно. Кроме того, при использовании таких приводов во многих случаях можно обойтись без редуктора, что делает их привлекательными в случаях, когда критичны габариты механизма. И наконец, следует отметить, что сервоприводы с векторным управлением потребляют ровно столько тока, сколько требуется — меньше нагрев, выше КПД привода. Все этим преимущества становятся очевидными, если рассмотреть привод механизма с ременной передачей, которые обычно работают от асинхронного электродвигателя. Хорошим решением будет заменить асинхронный мотор на подходящий по мощности шаговый сервопривод — как правило, таковой будет примерно втрое меньше по габаритам и весу.

    Читать еще:  Датчика температуры охлаждающей жидкости двигателя опель вектра

    Сага о абсолютном энкодере и шаговом двигателе

    Подпишитесь на автора

    Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

    Отписаться от уведомлений вы всегда сможете в профиле автора.

    Давно я тут не писал постов про принтеры и электронику, но тут назрела тема использования абсолютного энкодера и попытке сделать вменяемое упралвение шаговым двигателем с рассчётом на точность позиционирования (не путать с повторяемостью).

    В качестве подопытного было приобретено несколько разных магнитных энкодеров наподобие тех, что используются в таких проектах как mechaduino (или его китайская инкарнация как MSK Servo42) или же в системах стабилизации камер (внезапно там используются те же магнитные энкодеры). В итоге у меня оказалось два их от разных производителей:

      AS5048A с разрешением 12bit (если пересчитать в угол по нехитрой формуле 360/2**12

    0.08789 градуса)
    TLE5012b с разрешением 15bit (опять же если пересчитать в угол то 360/2**15

    В итоге я остановился на втором варианте, так как его разрешения хватает что бы легко ловить повороты даже для двигателя в 400 шагов на оборот при 32 микрошаге (а это получится примерно так 360/(400*32)

    0.028125 градуса), хотя это уже и экстремальный вариант.

    На макетке была собрана конструкция из stm32f103c8t6 aka bluepill энкодера и драйвера шагового двигателя tmc2130 (взял то что было под руками). Всё это счастье было запрограммировано на довольно простые действия:

    • stm32 имеет прерывания на трех пинах которые подключены к Step/Dir/Enable на плате управления принтером
    • при получении сигналов на Step/Dir/Enable производится stm32 делает шаг через tmc2130
    • после завершения шага (если успевает) считывает положение двигателя через энкодер tle5012b (на валу двигателя помещён магнит)
    • stm32 печатает в UART инфу о количестве шагов, микрошаге, количесве оборотов и текущем угле поворота двигателя (энкодер таки абсолютный и умеет считать обороты)

    Дальше у меня возникла идея проверить насколько точно шаговик встаёт по шагам. Для этого в управляющей плате принтера (которая тоже stm32 но пожирнее) были выставлены виртуальные 80 steps/mm для оси X (в принципе это значение стандартное для 20 зубой шпули для GT2) а драйвер двигателя был выставлен в 16 микрошаг (двигатель у меня 1.8 градуса, 200 шагов на оборот, и как следствия с 16 микрошагом каждый шаг соответсвует 360/(200*16) = 0.1125 градуса, запомним эту цифру). Я решил посмотреть как у нас зависит точность выставления угла поворота от скорости принтера (а как следствие и точность).

    Как происходило тестирование:

    • Был выбран набор скоростей: 10, 25, 50, 75, 100, 125, 150, 200, 250 мм/с
    • Для каждой скорости передвижение с X0 до X160 и обратно и ожидание в крайних положения по 2 секунды (это 4 оборота движка в одну строну и в другую) повторялось по 25 раз
    • Данные с энкодера писались в лог (скриптик с сериал консоли всё писал в файлики)

    В итоге получилось довольно занятная картинка:

    1.875 оборота в секунду) ошибка повторяемости позиционирования шаговика становится сравнимой с одним микрошагом

  • На скоростях 100, 125, 150 и 200 мм/с у нас ошибка повторяемости позиционирования шаговика снова становится сравнимой с погрешностью датчика угла поворота (особенность драйвера tmc2130, для него это другой режим работы и он пытается делать точное позиционирование)
  • А вот на скорости в 250мм/с система идёт в разнос и повторяемость падает до

    0.7 градусов (что примерно 7 шагов при дроблении 1/16, или если пересчитать в мм то это будет

    0.1 мм в среднем)

    Но это если речь идёт о повторяемости а не о точности. А это разные понятия. Так что теперь поговрим про точность. Будем считать, как это далают прошивки большниства принтеров, что перемещение на один микрошаг у нас всегда одианково (в данном случае это 0.1125 градуса или 0.0125 мм если у нас 80 шагов на мм). Посмотрим насколько это так.

    То что мы видим при скорости 10мм/с (да довольно медленно)

    На картинках нарисовано чтение с датчика и счётчик шагов (данные датчика это синяя линия) а так же идеальные значения углов для данного номера шага (хе хе, довольно просто посчитать) а так же вертикальными черточками различия реально измеренного от идеального. Какие выводы можно сделать по этой картинке:

    • Шаги у нас не равномерны (что в целом понятно, исходя из физики двигателя)
    • Какие то шаги у нас почти точно попадают в идеальные значения углов поворота (но не все. совсем не все. )
    • Хотя точность позиционирования у нас не очень высокая, но повторяемость хорошая (синяя линия на картинке это статистика по 25 повторам

    Теперь посмотрим что будет если шаговик пойдёт немного быстрее 25 мм/с

    Картинка в целом не поменялась, но ошибка позиционирования возросла (разница между реальным и идеальным положением)

    Теперь 50 мм/с

    Видно что позиционирование стало ещё хуже.

    Теперь 75 мм/с

    Всё поплыло ещё дальше.

    Ошибка осталась на прежнем уровне (tmc2130 перешел в другой режим работы)

    Картинка похожа на первую. Опять же зеленая линия это среднее. Оражневая медиана. Какие выводы можно сделать?

    • Что приятно средняя ошибка позиционирования примерно 0. Что означает что шаговик с одинаковой вероятность как проскакивает положение, так и недоходит до него (по этому среднее и есть 0).
    • А вот медиана уже становится большой. На уровне 0.5-0.8 градуса.
    • Разброс ошибок довольно большой, он растёт с примерно 0.2 градусов при 10мм/с до 4 градусов при 250мм/с, что соответсвует разбросу хода от 0.02 до 0.5 мм (хе хе.. кто там хвастался что печатает на скорости 200+мм/с. )
    • Ещё замечу, что всё это измерялось на свободном шаговике без нагрузки. С нагрузкой будет все печальнее (и я это проверю в следующей части)

    Что из всего этого следует?

    Если хочется повышать качество печати, то надо слегка поменять подход к позиционирования шаговика в прошивках (позицоинирование у него не линейное, и это надо учитывать). По идее надо сделать умный closed-loop шаговик, которые будет в состоянии корректировать нелинейности при перемещении.

    Продолжение следует.

    Подпишитесь на автора

    Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

    Отписаться от уведомлений вы всегда сможете в профиле автора.

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector