Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Улучшение экологических показателей автомобильных двигателей

Улучшение экологических показателей автомобильных двигателей

Загрязнение атмосферного воздуха в результате работы автомобиля обусловлено тремя основными источниками: системой выпуска отработанных газов, системой смазки и вентиляции картера, системой питания. На долю выхлопных газов приходится наибольшая часть (70-80 %) вредных веществ, выделяемых автомобильным двигателем. Камера сгорания двигателя — это своеобразный химический реактор, синтезирующий вредные вещества, которые затем поступают в атмосферу. Даже нейтральный азот из атмосферы, попадая в камеру сгорания двигателя, превращается в ядовитые оксиды азота. В отработанных газах содержится более 200 различных химических соединений, из них около 150 — производные углеводородов, прямо обязанные своим появлением неполному или неравномерному сгоранию топлива в двигателе.

Перерабатывая токсичные вещества в выхлопе, конструкторы параллельно улучшали рабочий процесс. Для борьбы с окислами азота снижали температуру горения рециркуляцией выхлопных газов (часть возвращают во впускной коллектор), но пришлось снизить ее так, что двигатель стал с трудом прогреваться.

Конечно, оптимальный состав горючей смеси на всех режимах работы ДВС поддерживать достаточно сложно, особенно при классическом принципе его организации.

Результат оптимального процесса организации смесеобразования (топливоподачи) выглядит следующим образом: состав топливо-воздушной смеси в районе зоны возгорания должен быть близок к стехиометрическому и не изменяться с изменением режима работы ДВС. В остальном объеме цилиндра должна находиться гомогенная горючая смесь, качественный состав которой зависит от режима работы ДВС и может изменяться в довольно широких пределах (режим холостого хода и минимальных нагрузок). Распределение остаточных газов желательно в пристеночной зоне и в щелевых зазорах камеры сгорания, при попадании в которую горючая смесь не сгорает при любой своей концентрации.

Получение подобного результата работы системы топливоподачи невозможно ни при карбюраторном питании (внешнее смесеобразование), ни при инжекторном питании, включая непосредственный впрыск (внутреннее смесеобразование). Вся сложность заключается именно в несовершенстве обоих классических процессов топливоподачи, которая усугубляется различными режимами работы ДВС.

Но трудности преодолимы, если использовать другой способ работы двигателя. Если в двигателях с обычным способом работы объем воздуха или топливо-воздушной смеси, участвующий в процессе горения, регулируется количеством топлива, поступающего в камеру сгорания (для дизельных или бензиновых, с непосредственным впрыском), или регулируется снижением давления на впуске за счет изменения положения дроссельной заслонки (для бензиновых с внешним смесеобразованием, например карбюраторных), то в предлагаемом способе работы объем топливо-воздушной смеси и воздуха в камере сгорания регулируется за счет изменения количества отработанных газов, оставшихся в камере сгорания. Получился рабочий процесс, когда бензин и чистый воздух находятся в соотношении 1:14,7, то есть оптимальный для сгорания (стехиометрическим) во всех режимах работы ДВС. В то же время смесь «бедная», если учесть, что до 90% объема (для режима холостого хода) могут занимать инертные отработанные газы, попадающие в цилиндр без всякой рециркуляции.

Изменить количество отработанных газо,в оставшихся в камере сгорания ДВС, можно различными способами:
— изменением давления в системе отвода отработанных газов;
— путем сдвига фаз открытия и закрытия выпускных клапанов, изменением времени и высоты их открытия.

Осуществить предлагаемый способ можно с помощью известных устройств изменения давления (УИД): мощностного клапана, дроссельной заслонки, различных типов нагнетателей и резонаторов.

Для снижения тепловых потерь, вызванных охлаждением отработанных газов, во впускном тракте дополнительно установлен обратный клапан, не позволяющий этим газам попасть во впускной тракт. Кроме того, это решение позволяет за счет уменьшения в зоне воспламенения в составе рабочей смеси или воздуха количества отработанных газов создать в районе зоны возгорания состав топливо-воздушной смеси, близкий к стехиометрическому (в момент возгорания), а значит, улучшить условия воспламенения рабочей смеси.

В качестве такого обратного клапана может быть использован хорошо известный в технике обратный клапан лепесткового типа.

Рассмотрим работу предлагаемого ДВС на примере четырехтактного двигателя с одним УИД в системе отвода отработанных газов, обратным клапаном во впускном тракте и устройством подачи топливо-воздушной смеси, например карбюратором.

В режимах полной нагрузки ДВС работает так же, как и при обычном способе работы, когда дроссель полностью открыт.

В режимах холостого хода и частичных нагрузок ДВС работает следующим образом:

1. Такт впуска. В начале такта впуска за счет более высокого давления отработанные газы, оставшиеся в цилиндре от предыдущего цикла, действуют на обратный клапан, который препятствует выходу их из цилиндра.

В цилиндре ДВС при инерционном перемещении поршня создается разрежение, вследствие чего заряд топливно-воздушной смеси из карбюратора через систему газораспределения поступает в цилиндр.

2. Такт сжатия. После заполнения цилиндра топливо-воздушной смесью с отработанными газами происходит сжатие этой смеси поршнем. По мере уменьшения объема температура и давление смеси повышаются.

3. Такт расширения или рабочий ход. Рабочая смесь воспламеняется системой зажигания, вследствие чего температура и давление образующихся газов резко возрастает.

4. Такт выпуска. Продукты сгорания выталкиваются из цилиндра в атмосферу через систему газораспределения и систему отвода отработанных газов, при этом часть отработанных газов остается в цилиндре. Количество оставшихся в цилиндре отработанных газов прямо пропорционально надпоршневому объему и давлению в системе отвода отработанных газов. Изменяя с помощью УИД давление отработанных газов, можно изменять их количество, оставшееся в цилиндре ДВС, а значит, и количество топливо-воздушной смеси, поступающей в цилиндр.

Предлагаемый способ работы ДВС позволяет снизить расход топлива и клоичество вредных веществ в отработанных газах, за счет использования в режимах частичных нагрузок и холостого хода рабочей смеси, близкой к стехиометрической.

Достоинства предлагаемого способа работы ДВС, по сравнению с обычными, следующие:
1. Снижение вредных выбросов и экономия топлива.
2. Снижение насосных и тепловых потерь .
3. Изменение коэффициента сжатия в зависимости от режима работы ДВС.
4. Повышение давления, а значит, и температуры отработанных газов в выходном тракте позволит улучшить работу катализаторов и устройств дожига сажи.
5. Улучшение условий воспламенения рабочей смеси в режимах частичных нагрузок и холостого хода за счет создания в районе зоны возгорания состава топливо-воздушной смеси, близкого к оптимальному для сгорания (стехиометрическому).

Всесезонное моторное масло для дизельного двигателя

Содержание

  • Принцип работы дизельного двигателя
  • Откуда появляются проблемы при работе дизельного двигателя
  • Дизельное моторное масло
  • Состав
  • Индексация по SAE и API
  • Стандарт ACEA
  • Выбор дизельного моторного масла в зависимости от сезона
  • Требования к универсальной смазочной жидкости
  • Критерии выбора всесезонного масла
  • ТОП всесезонных масел

Может показаться, что дизельный двигатель мало чем отличается от родственного ему бензинового варианта, если рассматривать их технические особенности.И тот и другой силовой агрегат состоит из цилиндров, поршней, шатунов и других элементов, известных большинству автолюбителей. Однако отличия есть, и мы о них расскажем ниже.

Читать еще:  Датчик оборотов на двигателе 409

Принцип работы дизельного двигателя

Если в бензиновых моторах смесь топлива и воздуха воспламеняется при воздействии искрового заряда, то в дизельном другой принцип. Воспламенение здесь происходит из-за повышения давления, от сжатия топливо-воздушной смеси. При этом принцип работы заключается в следующем: чистый воздух попадает в цилиндр и прогревается до невероятно высокой температуры (показатели могут достигать 700–900 градусов по Цельсию). Далее под высоким давлением осуществляется впрыск дизельного топлива в камеру сгорания. В этот момент воздух уже очень сильно нагрет, поэтому воспламенение происходит мгновенно, существенно повышая давление в цилиндре. Все это позволяет применять относительно недорогое топливо и сократить расходы на заправку автомобиля.

Откуда появляются проблемы при работе дизельного двигателя

Данный агрегат практически всегда является неприхотливым, однако можно выделить сразу несколько распространенных групп неисправностей, связанных с особенностями конструкции, безответственного обслуживания или ремонтных работ низкого качества.

Недостатки конструкции

Как правило, они проявляются исключительно при тяжелых условиях эксплуатации, а также в случае, когда пробег приближается к своему максимальному ресурсу, заявленному заводом. Также дизельный двигатель плохо переносит зимний сезон.

Некачественное топливо

Проблемы с запуском, тарахтение, неустойчивые обороты — все это может быть результатом использования низкокачественного топлива. Дело в том, что для подобных агрегатов используется не привычный многим бензин, а так называемая солярка. Зимой, особенно при больших морозах, она может застывать. Многое зависит от ее цетанового числа: чем больше цифра, тем легче происходит запуск двигателя и тем правильнее происходят процессы внутри агрегата. В случае если солярка не дотягивает до рекомендуемых параметров, она может не полностью сгорать. Остатки смеси могут попадать в моторное масло, что часто приводит к преждевременному износу технических узлов и снижает эффективность смазочного вещества.

Дизельное моторное масло

Безусловно, обслуживание мотора, которое не может считаться качественным, может приводить к неприятным последствиям. Но куда большей проблемой является использование неподходящего моторного масла для дизельного силового агрегата. Также следует учитывать, что масло вырабатывает свой ресурс, поэтому его нужно вовремя сливать, чтобы залить новое. Если обратить внимание на рекомендации производителей относительно регламента эксплуатации, то мы увидим, что вопрос с заменой моторного масла в дизельном двигателе должен решаться каждые 7500–10 000 км пробега. При частой интенсивной езде с большими нагрузками на рабочие элементы следует сокращать эксплуатационные интервалы до самого минимума. Такие требования обуславливаются тем, что дизельное топливо в большинстве случаев содержит немалое количество серы. По этой причине масло может окисляться слишком быстро, что может привести к неприятным последствиям.

Состав

Обычно состав моторного масла для дизельных силовых агрегатов мало чем отличается от аналогичных продуктов для бензиновых двигателей. Что же в него входит? Это базовое масло, а также многочисленные модификаторы вязкости и разнообразные многокомпонентные присадки. Такое решение позволит не только снизить температуру застывания масла, но и увеличить ее текучесть, защитить поверхности всех рабочих элементов движка, а также предотвратить образование отложений. База производится различными способами. Из наиболее популярных решений можно выделить такие методы, как олигомеризация, рефининг, перегонка и этерификация.

Индексация по SAE и API

Интересно, что, как и многие другие масла, жидкость для дизельных агрегатов может классифицироваться по нескольким системам. Общепринятыми во всем автомобильном мире считаются определения от Американского общества автомобильных инженеров (SAE) и Американского института нефти (API).

Позволяет определить вязкостные свойства конкретного продукта, который планируется использовать для обслуживания дизельного силового агрегата. Если моторное масло предназначается для эксплуатации в зимнее время года, рядом с цифрой будет W, что означает Winter.

С классификацией по API все немного сложнее, ведь маркировка включает в себя несколько пар букв, написанных через дробь. Такой подход позволяет объединить не только данные о том, для каких двигателей предназначено масло, но и о том, какому классу качества или эксплуатационных свойств соответствует данное дизельное моторное масло. Давайте рассмотрим доступные классы.

Обеспечивают защиту от высокотемпературных отложений в цилиндропоршневой группе и низкотемпературных отложений в картере, обладают высокими противокоррозионными характеристиками.

Отвечают требованиям американских и европейских производителей дизельных двигателей. Удовлетворяют повышенным требованиям по уменьшению износа клапанов и уменьшению образования нагара.

Стандарт ACEA

Ассоциация европейских автопроизводителей также решила распределить все автомобильные масла по ключевым группам:

  • Категория А не интересна нам на данный момент, ведь она относится к бензиновым силовым агрегатам.
  • В объединяет масла для классических дизельных движков.
  • Е включает в себя масло для моторов в тяжелых грузовиках, а также для мощных дизельных двигателей.
  • С предназначена как для бензиновых, так и для дизельных агрегатов. Важное уточнение заключается в том, что они должны быть совместимы с катализаторами и сажевыми фильтрами.
  • Дополнительно выделяются энергосберегающие классы. В этом случае бензиновые моторы получают жидкость с маркировкой А1 и А5, в то же время для дизеля будут применять масла с индексом В1 или В5. Остальные варианты считаются стандартными.

Выбор дизельного моторного масла в зависимости от сезона

Как мы уже упоминали выше, зимнее обслуживание является одним из самых важных с точки зрения большей сохранности двигателя. Если говорить о выборе конкретного масла с учетом сезона, следует понимать, что синтетические смазки обладают достаточно высокими эксплуатационными качествами. Тем не менее нельзя однозначно заявить, что следует выбирать исключительно такой вид продукции для зимних испытаний. Минеральные масла также могут использоваться при отрицательных температурах. Что же рекомендуют специалисты? Все ситуации индивидуальны, однако почти всегда наиболее оправданным является применение синтетического или полусинтетического масла. Все потому, что данная продукция отличается стабильностью эксплуатационных характеристик на протяжении длительного времени, обладает большой устойчивостью по отношению к негативным факторам, а также имеет улучшенные свойства, которые позволяют во многом упростить запуск силового агрегата даже в сильные морозы, когда столбик термометра опускается значительно ниже уровня нуля.

Требования к универсальной смазочной жидкости

Можно ли избежать сложного выбора? Да, ведь существует всесезонное моторное масло для дизельных двигателей. Следует понимать, что данный продукт должен соответствовать все тем же параметрам, что и другая аналогичная продукция:

  • Зависимость вязкости от температуры, которая может значительно меняться в разных климатических поясах.
  • Доля насыщенных углеводородов, которые влияют на химическую стабильность моторного масла (лучше, когда их больше).
  • Процент серосодержащих соединений, избыток которых чреват образованием отложений и другими серьезными проблемами, способными вывести агрегат из строя.

Критерии выбора всесезонного масла

При выборе всесезонного масла следует учитывать состояние двигателя. В некоторых ситуациях необходимо использовать более вязкий продукт, чтобы обеспечить оптимальную защиту силового агрегата и улучшить его работу. Условные всесезонные качества могут иметь большое значение, когда идет речь о работе дизельного мотора в разных климатических условиях. В ситуации, когда показатели вязкости не соответствуют требуемым параметрам (если верхний и нижний пороги вязкости выходят за пределы допустимых значений), эксплуатационный ресурс двигателя может значительно уменьшиться. Также выбор дизельного всесезонного моторного масла может быть оправдан при езде в условиях регулярных температурных перепадов.

Читать еще:  Датчик числа оборотов двигателя g28 шкода

Диагностирование бензиновых двигателей при работе на сжиженном газе по составу отработанных газов

Состав отработавших газов является одним из информативных источников для диагностирования двигателей. При работе двигателей в широком диапазоне режимов в условиях эксплуатации на сжиженном газе возможно определение с достаточной точностью различных видов неисправностей.

Жидкое моторное топливо используется для ДВС, в своем составе содержит углерод, водород и в малых количествах кислород, азот и серу, поэтому при идеальном сгорании топлива с воздухом (состав воздуха: азот — 78.03 %, кислород — 20.99, углекислый газ — 0.04, водород и другие инертные газы, примерно 0.94 %) в продуктах сгорания должны быть лишь азот (N2), углекислый газ (СО2), вода (Н2О).

Однако реальный состав отработанных газов (ОГ) намного сложнее.

В двигателях внутреннего сгорания (ДВС) имеется несколько источников выбросов вредных веществ, основными из которых являются три: топливные испарения, картерные и отработанные газы.

Отработанные газы — основной источник токсических веществ ДВС — это гетерогенная смесь различных газообразных веществ с разнообразными химическими и физическими свойствами, состоящая из продуктов полного и неполного сгорания топлива, избыточного воздуха, аэрозолей и различных микропримесей (как газообразных, так и в виде жидких и твердых частиц), поступающих из цилиндров двигателя в его выпускную систему.

Практика контроля работы ДВС — проверка состава выхлопных газов с помощью четырех- или пятикомпонентного газоанализатора.

Для проверки выполнения норм на токсичность определяется содержание в выхлопных газах углеводорода (СН), окиси углеводорода (СО), двуокиси углерода (СО2).

Правильно эксплуатируемый и своевременно обслуживаемый автомобиль способен удовлетворить нормам на токсичность с пробегом до 500000 километров.
Углеводороды (СН)- это компоненты несгоревшего топлива, их содержание измеряется в частях на миллион по объему (РРМ или млн ).

Нормально работающий двигатель сжигает в цилиндрах практически все топливо, допустимое содержание СН должно быть менее 50 РРМ.

Повышенное содержание СН может объясняться, например, большим потреблением масла через слабые уплотнительные кольца поршней.

Чаще всего увеличенное содержание СН вызывается неполадками в системе зажигания. При этом следует проверить: свечи; высоковольтные провода; крышку и ротор распределителя (если они имеются); синхронизацию зажигания; катушки зажигания.

Окись углерода (СО) — неустойчивое химическое соединение, легко вступающее в реакцию с кислородом, дающую двуокись углерода СО2. СО — ядовитый газ без цвета, вкуса и запаха. Вступая в легких в реакцию с воздухом, лишает мозг кислорода.

Уровень СО в выхлопных газах для современных автомобилей с впрыском топлива не должен превышать 0.5 %.
Возможные причины повышения содержания СО следующие:

— неисправность системы вентиляции картера;
— засорение воздушного фильтра;
— нарушение оборотов двигателя на холостом ходу; — повышенное давление топлива;
— любые другие неисправности, приводящие к работе двигателя на богатых смесях.

Двуокись углерода (СО2) — результат соединения углерода из топлива с кислородом. Допустимое содержание 12 — 15 %. Высокие значения свидетельствуют о хорошей работе двигателя. Низкий уровень СО2 говорит о том, что топливная смесь богатая или бедная. Повышенная концентрация СО2 в атмосфере способствует развитию парникового эффекта.

.
Кислород (О2) — в воздухе его 21 %, и в цилиндрах двигателя большая часть вступает в реакцию с топливом. Уровень кислорода в выхлопных газах должен быть низким, не более 0.5 %. Более высокие значения, особенно на холостом ходу, означают утечку во впускном тракте.

Состав отработавших газов ДВС зависит не только от типа используемого вида топлива, но и от типа организации и совершенства рабочего процесса двигателя. Поэтому, характеризуя состав ОГ различных типов двигателей, указывают обычно достаточно широкие пределы содержания компонентов (табл. 1).

Примечание: в ОГ двигателей содержатся также: свинец, кремний, медь, кальций, цинк, фосфор, марганец, хром, натрий, барий, железо, никель и ряд других веществ, входящие в состав присадок смазочного масла, либо являющиеся продуктами износа деталей двигателя, попадающие КС вместе с маслом.

Горение топлив происходит при различных значениях соотношения топлива и воздуха, а также при различных давлениях в КС.

Изменение давления в КС приводит к изменению пределов воспламенения топливовоздушных смесей, что в свою очередь обуславливает изменение состава продуктов сгорания и тем самым — состава ОГ. В таблице 2 представлены данные по изменению указанных пределов для случая горения смеси природного газа с воздухом.

Следует обратить внимание на то, что нижний предел воспламенения, т.е. воспламенение бедных топливом смесей, изменяется очень незначительно.

В тоже время верхний предел воспламенения, т.е. воспламенение богатых топливовоздушных смесей, увеличивается существенно.
Для условий использования газообразных смесей в двигателях внутреннего сгорания повышение давления в цилиндре двигателя позволяет успешно сжигать обогащенные топливовоздушные смеси. Если при атмосферном давлении верхний предел содержания газа в смеси14.2 %, то для условий двигателя при повышении давления сжатия до 3.0…4.0 МПа верхний предел содержания газа может быть увеличен до 40…45 %.

Для повышения эффективности диагностирования экономических качеств автомобиля, а также снижения трудоемкости диагностирования в НИИАТе исследована принципиальная возможность и разработана методика количественной оценки расхода топлива по косвенным параметрам.

В качестве косвенных параметров топливной экономичности принят анализ состава отработавших газов.

Данный метод основан на измерении величин отдельных компонентов продуктов сгорания, концентрации которых в значительной степени зависят от технического состояния двигателя и его систем, влияющих на полноту сгорания топлива. Наиболее полное представление дает анализ ОГ на содержание окиси углерода (СО), углекислого газа (СО2) и углеводородов (СmHn).

Проверка содержания окиси углерода на холостом ходу позволяет контролировать качество приготовления топливной смеси системой холостого хода карбюратора. Проверка системы на холостом ходу, но при повышенной частоте вращения, позволяет в некоторой степени контролировать работу главной дозирующей системы и других вспомогательных устройств карбюратора.

Содержание окиси углерода при этом является информативным и технологичным параметром, но характеризует нарушения в регулировке и техническом состоянии двигателя лишь при работе на обогащенных топливо — воздушных смесях.

Объясняется это тем, что при работе на обедненных смесях содержание окиси углерода в отработавших газах незначительно.
Из-за недостаточной информативности содержания окиси углерода при обедненных смесях, в качестве диагностического параметра целесообразно выбрать концентрацию углеводородов в ОГ, поскольку любое незначительное нарушение процесса сгорания в цилиндрах приводит к резкому повышению их выбросов.

Читать еще:  Автоматический запуск двигателя по таймеру аллигатор

Определить только по концентрации СО, является ли регулировка двигателя оптимальной, невозможно.

Замер же концентраций окиси углерода и углеводородов позволяет не только регулировать двигатели в соответствии с требованиями ГОСТов, но и получать оптимальную регулировку по устойчивости работы и экономичности.

По концентрации углеводородов можно судить о нарушении рабочего процесса не только вследствие неправильного отрегулированного состава топливной смеси, но и других причин, в частности, из — за неисправности системы зажигания.

При проверке систем питания и зажигания на режимах холостого хода можно определить большинство возможных неполадок.

Однако некоторые из них, особенно те, которые относятся к работе главной дозирующей системы и экономайзера (эконостата) карбюратора, более четко проявляются при работе под нагрузкой.

Поэтому, если на АТП есть стенд для определения тягово-экономических качеств автомобиля, после проверки на холостом ходу целесообразно выполнить проверку систем питания и зажигания под нагрузкой. В качестве проверочных могут быть приняты те же режимы, на которых проверяются тяговые качества автомобилей.

Исследуя влияние неисправностей систем питания и зажигания на токсичность отработавших газов, КАДИ совместно с Госавтоинспектором получены данные по изменению концентрации окиси углеродов (СО) и углеводородов (СН) при наличии неисправностей и нарушений регулировок систем питания и зажигания.

Определены ориентировочные пределы концентраций СО и СН, соответствующие нормальному техническому состоянию систем питания и зажигания, а также установлены возможные причины, вызывающие отклонение содержания токсичных веществ от этих пределов.

Возможные неисправности, которые можно определить, зная конкретные отклонения, концентрации СО и СН на холостом ходу:

  • 1. засорение воздушных жиклеров системы холостого хода;
  • 2. повышенный уровень топлива в поплавковой камере;
  • 3. неплотное прикрытие иглой выходного отверстия системы холостого хода;
  • 4. неправильная регулировка привода воздушной заслонки;
  • 5. малое открытие винтов качества системы холостого хода;
  • 6. малые зазоры между электродами свечей зажигания;
  • 7. ранний угол опережения зажигания;
  • 8. неисправность зажигания;
  • 9. поздний угол опережения зажигания;
  • 10. неисправный вакуумный автомат опережения зажигания;
  • 11. заедание клапана экономайзера в открытом состоянии;
  • 12. применения главных топливных жиклеров с большей пропускной способностью;
  • 13. засорение воздушных жиклеров главной дозирующей системы.

А неисправности систем питания и зажигания, которые могут вызвать отклонение концентраций СО и СН от указанных пределов под нагрузкой:

  • 1. применения главных топливных жиклеров с большей пропускной способностью;
  • 2. засорение жиклера или канала экономайзера;
  • 3. заедание клапана экономайзера в открытом состоянии;
  • 4. раннее включение экономайзера.

Использование концентрации СО и СН в отработавших газах бензинового двигателя в качестве диагностических параметров позволяет выявить практически все возможные неисправности систем питания и зажигания.

«МЕТОДИКА ПРОВЕДЕНИЯ ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ДЛЯ АВТОТРАНСПОРТНЫХ ПРЕДПРИЯТИЙ (РАСЧЕТНЫМ МЕТОДОМ)» (утв. Минтрансом РФ 28.10.98)

3.12. Обкатка и испытание двигателей после ремонта

Участок по обкатке и испытанию двигателей оборудуется специальными стендами, на которые устанавливается двигатель для проведения этих работ. При работе двигателя выделяются токсичные вещества: оксид углерода — СО, оксиды азота — NOx, углеводороды — СН, соединения серы — SO2, сажа — С (только для дизелей), соединения свинца — Рb (при применении этилированного бензина).

Обкатка двигателей проводится как без нагрузки (холостой ход), так и под нагрузкой. На режиме холостого хода выброс загрязняющих веществ определяется в зависимости от рабочего объема испытываемого двигателя. При обкатке под нагрузкой выброс загрязняющих веществ зависит от средней мощности, развиваемой двигателем при обкатке.

Валовый выброс i-го загрязняющего вещества М_i ; определяется по формуле:

где М_iхх — валовый выброс i-го загрязняющего вещества при обкатке на холостом ходу, т/год;

М_iн — валовый выброс i-го загрязняющего вещества при обкатке под нагрузкой, т/год.

Валовый выброс i-го загрязняющего вещества при обкатке на холостом ходу определяется по формуле:

где P_ixxn — выброс i-го загрязняющего вещества при обкатке двигателя n-й модели на холостом ходу, г/с;

t_xxn — время обкатки двигателя n-й модели на холостом ходу, мин.;

n_n — количество обкатанных двигателей n-й модели в год.

где q_iххБ, q_ixхД — удельный выброс i-го загрязняющего вещества бензиновым и дизельным двигателем n-й модели на единицу рабочего объема, г/л с;

V_hn — рабочий объем двигателя n-й модели, л.

Валовый выброс i-го загрязняющего вещества при обкатке двигателя под нагрузкой определяется по формуле:

где P_iнn — выброс i-го загрязняющего вещества при обкатке двигателя n-й модели под нагрузкой, г/с;

t_нn — время обкатки двигателя n-й модели под нагрузкой, мин.

где q_inБ, q_inД — удельный выброс i-го загрязняющего вещества бензиновым или дизельным двигателем на единицу мощности, г/л.с. с;

N_cpn — средняя мощность, развиваемая при обкатке под нагрузкой двигателем n-й модели, л.с.

Значения q_iххБ, q_ixхД, q_inБ, q_inД приведены в табл. 3.12.1, V_hn, t_нn, N_cpn — в табл. 3.12.2.

Расчет выбросов загрязняющих веществ ведется отдельно для бензиновых и дизельных двигателей. Одноименные загрязняющие вещества суммируются.

Максимально разовый выброс загрязняющих веществ G_i, определяется только на нагрузочном режиме, т.к. при этом происходит наибольшее выделение загрязняющих веществ. Расчет производится по формуле:

где q_inБ, q_inД — удельный выброс i-го загрязняющего вещества бензиновым или дизельным двигателем на единицу мощности, г/л.с. -с;

N_срБ, N_срД — средняя мощность, развиваемая при обкатке наиболее мощного бензинового и дизельного двигателя, л.с.

а_Б, А_Д — количество одновременно работающих испытательных стендов для обкатки бензиновых и дизельных двигателей.

Если на предприятии имеется только один стенд, на котором обкатывают бензиновые и дизельные двигатели, то в качестве максимально разовых выбросов G_i принимаются значения для двигателей, имеющих наибольшие выбросы по i-му компоненту.

Если на предприятии проводится только холодная обкатка, то расчет выбросов загрязняющих веществ не проводится.

Таблица 3.12.1

Удельные выделения загрязняющих веществ при обкатке двигателей после ремонта на стендах (составлена по данным НАМИ)

Тип двигателяВид обкаткиОбозначениеЕдиницы измеренияУдельный выброс загрязняющих веществ
СОNOxCHSO2сажа (С)Рb
АИ-93А-91, А-76, АИ-80
Бензиновыена холостом ходуq_iххБг/л с7,3 x 10(-2)3,0 x 10(-2)8,0 x 10(-3)5,6 x 10(-3)2,2 x 10(-3)
под нагрузкойq_inБг/л.с. с3,0 x 10(-2)2,0 x 10(-3)5,0 x 10(-3)4,0 x 10(-3)2,8 x 10(-3)1,5 x 10(-3)
Дизельныена холостом ходуq_ixхДг/л с4,5 x 10(-3)1,5 x 10(-3)7,0 x 10(-4)1,5 x 10(-4)1,0 x 10(-4)
под нагрузкойq_inДг/л.с. с1,6 x 10(-3)3,5 x 10(-3)5,0 x 10(-4)1,7 x 10(-4)2,3 x 10(-4)

Справочная таблица рабочих объемов двигателей, условной средней мощности обкатки и время обкатки

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector