Vikupautomsk.ru

Выкуп Авто МСК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

17 часто задаваемых вопросов о преобразователе частоты и электродвигателе

17 часто задаваемых вопросов о преобразователе частоты и электродвигателе

В данной статье мы подобрали для вас ответы на наиболее часто задаваемые вопросы по работе электродвигателей и частотных преобразователей.

1. Что такое электромеханический привод?

Ответ: Электромеханический привод – это система, состоящая из электродвигателя, механического передаточного устройства, электрического силового преобразователя и электронного устройства управления, осуществляющая управляемое преобразование электрической энергии в энергию движения механического объекта.

2. Что такое преобразователь частоты?

Ответ: Преобразователь частоты – это устройство для управляемого питания электродвигателя.

3. В чем заключается назначение преобразователя частоты?

Ответ: Назначение преобразователя частоты – это управление моментом/скоростью вращения электродвигателя за счет изменения частоты и напряжения питания.

4. Что такое ШИМ?

Ответ: ШИМ (Широтно импульсная модуляция) – это метод получения регулируемого выходного напряжения путем изменения длительности коммутации.

5. Как согласуется выходное напряжение ПЧ с входным?

Ответ: Выходное напряжение может меняться от 0 до уровня входного напряжения ПЧ (возможна перегрузка в несколько процентов). Соответственно при питании ПЧ от сети 220В не возможно развить номинальный момент на двигателе подключенным по схеме питания 380В.

6. Как согласуется выходная частота ПЧ с номинальной входной?

Ответ: Выходная частота формируется посредством ШИМ и может меняться в диапазоне от 0 до 400 -590 Гц (в зависимости от модели ПЧ). В зависимости от выходной частоты ПЧ меняется скорость вращения вала двигателя.

7. Возможно ли управлять ПЧ однофазными двигателями?

Ответ: Нет.

8. Возможно ли управлять ПЧ с однофазным питанием , трехфазными двигателями?

Ответ: Да, до 2,2 кВт.

9. Основные плюсы использования преобразователей частоты?

Ответ: Их 2. Во-первых, экономия электроэнергии при работе электродвигателя. Во-вторых, реализация сложных технологических процессов за счет изменения частоты вращения приводов.

10. Какой принцип работы асинхронного двигателя с короткозамкнутым ротором?

Ответ: ПЧ создает вращающееся магнитное поле в статоре, а оно создает электрическое поле в короткозамкнутом роторе (принцип магнитной индукции). Происходит взаимодействие между полями ротора и статора. Поле ротора стремится вращаться также как поле статора, тем самым ротор приходит во вращение.

11. От чего зависит номинальная скорость вращения ротора асинхронного двигателя с короткозамкнутым ротором?

Ответ: Она зависит от частоты питающего напряжения и количества пар полюсов и скольжения. Преобразователь частоты позволяет регулировать частоту питающего напряжения и тем самым скорость вращения вала ЭД.

12. Какое значение имеет скорость вращения вала электродвигателя при его работе от сети?

Ответ: Скорость равна номинальной частоте двигателя.

13. Какова скорость вращения вала электродвигателя при его работе от ПЧ?

Ответ: Скорость регулируется от ПЧ .

14. Как связан момент с током электродвигателя?

Ответ: Для двигателя с постоянными магнитами момент пропорционален току статора. Для асинхронных двигателей зависимость между током и моментом нелинейная, но в рабочей зоне рост тока приводит к росту момента.

15: Какие существуют способы подключения обмоток двигателя?

Ответ: Треугольник, Звезда (изменяется номинальное напряжение и ток двигателя).

16: При подключении в звезду или треугольник будет больше номинальное линейное напряжение двигателя?

Ответ: Линейное напряжение будет больше для звезды (соответственно ток наоборот меньше).

17: Что такое скольжение?

Ответ: Скольжение – это разница между скоростью поля статора и частотой вращения ротора в процентах.

Влияние несущей частоты ПЧ на работу электродвигателя

Преобразователи частоты (ПЧ, частотники, инверторы) давно используются в промышленности для управления скоростью и повышения КПД асинхронных и синхронных электродвигателей. К ним давно привыкли, их возможности существенно выросли за последние 20 лет и с трудом вмещаются в руководства с тысячей страниц, но есть базовые функции, о которых следует помнить. Эта статья об одной из них — несущей частоте (carrier frequency) широтно-импульсной модуляции (ШИМ, PWM) ПЧ и ее влиянии на работу и КПД электродвигателя.

Несущая частота в ПЧ и ее влияние на ШИМ.

Повышение несущей частоты — меньше шума

При повышении несущей частоты ШИМ которой задается частота на двигатель снижается количество высших гармоник и уменьшается амплитуда бросков тока при питании двигателя. Уменьшение высших гармоник тока снижает паразитное намагничивание статора, которое является источником слышимого шума, насыщения железа и потерь в обмотках, вызывающих снижения КПД двигателя являющегося причиной его нагрева.

Снижение шума двигателя за счет повышения частоты

Например, при несущей частоте ШИМ более 8 кГц происходит существенное снижение шума от электродвигателя, что позволяет применять их при автоматизации офисных и жилых зданий, медицинских и научных учреждений.

Негативные последствия и рекомендации по устранению

Помехи действуют на окружающие устройства

Рост радиочастотных и электромагнитных помех может влиять на другое оборудование. Чтобы уменьшить помехи постепенно понижайте несущую частоту до нужного уровня.

Так же стоит понижайте несущую частоту, если скорость и момент нестабильны на низкой скорости работы.

Срабатывание встроенных защит по перегрузке

Если это произошло, а других причин не обнаружено, рекомендуем понизить несущую частоту.

Читать еще:  Шевроле лачетти датчик температуры двигателя замена

Обращайте внимание на качество изоляции кабелей питания. При низком качестве изоляции оборудование может выйти из строя из-за возникшего коронного разряда.

Повреждения кабеля при коронарном разряде

Перенапряжения из-за длины кабеля

При увеличении длины кабеля питания растет количество запасенной энергии, что при высокой частоте переключений вызывает появление перенапряжений и усиления эффектов, связанных с емкостью кабеля между фазами.

Выбор длины кабеля между ПЧ и двигателем

Рекомендации по выбору частоты для инверторов YASКAWA GA700 и GA500:

Научная электронная библиотека

Кузнецов Н. М., Бебихов Ю. В., Самсонов А. В., Егоров А. Н., Семенов А. С.,

1.1. Показатели качества электроэнергии и влияние отклонений напряжения и частоты на работу электрооборудования

Электрическая энергия как товар используется во всех сферах жизнедеятельности человека, обладает совокупностью специфических свойств и непосредственно участвует при создании других видов продукции, влияя на их качество.

Понятие качество электроэнергии (КЭ) отличается от понятия качества других видов продукции. Каждый электроприемник (ЭП) предназначен для работы при определенных параметрах электрической энергии: номинальных частоте, напряжении, токе и т.п., поэтому для нормальной его работы должно быть обеспечено требуемое КЭ. Таким образом, качество электрической энергии определяется совокупностью ее характеристик, при которых ЭП могут нормально работать и выполнять заложенные в них функции. Так в табл. 1.1 приведены свойства электрической энергии, показатели качества и наиболее вероятные виновники ухудшения.

Прежде всего, необходимо определить, с чем именно связана эта проблема. Возможно, что она уже давно существует или возникла после установки нового оборудования или после внесения изменений в саму систему. Поэтому измерения имеют огромное значение в оценке качества электроэнергии. Они являются основным способом выявления возникающих проблем или изменений самой системы. При проведении измерений, с другой стороны, необходимо регистрировать изменения качества электроэнергии, таким образом, проблемы связаны с возможными причинами.

К проблемам качества электроэнергии относится множество различных явлений. Каждое из этих явлений может иметь самые разные причины и разные решения, которые могут способствовать улучшению качества электроэнергии и характеристик оборудования. Тем не менее, полезно рассмотреть основные этапы изучения многих вопросов.

При оценке электромагнитной обстановки и способов решения проблем связанных с электромагнитной совместимостью можно воспользоваться методом виртуального моделирования, что позволит довольно быстро определить рациональные варианты решения проблем.

Свойства электрической энергии, показатели и наиболее вероятные виновники ухудшения КЭ

Свойства электрической энергии

Наиболее вероятные виновники
ухудшения

Установившееся отклонение напряжения dUу

Размах изменения напряжения Доза фликера Рt

Потребитель с переменной нагрузкой

Коэффициент искажения синусоидальности кривой напряжения Кu

Коэффициент n-й гармонической составляющей напряжения Кu(n)

Потребитель с нелинейной нагрузкой

Несимметрия трехфазной системы напряжений

Коэффициент несимметрии напряжений по обратной последовательности К2u

Коэффициент несимметрии напряжений по нулевой последовательности К0u

Потребитель с несимметричной нагрузкой

Отклонение частоты ?f

Длительность провала напряжения ?fп

Импульсное напряжение Uимп

Временное пе-
ренапряжение

Коэффициент временного перенапряжения КперU

Отклонение напряжения – отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения.

Отклонение напряжения в той или иной точке сети происходит под воздействием медленного изменения нагрузки в соответствии с её графиком.

Вращающий момент асинхронного двигателя пропорционален квадрату напряжения на его выводах. При снижении напряжения уменьшается вращающий момент и частота вращения ротора двигателя, так как увеличивается его скольжение. Для двигателей, работающих с полной нагрузкой, понижение напряжения приводит к уменьшению частоты вращения. Если производительность механизмов зависит от частоты вращения двигателя, то на выводах таких двигателей рекомендуется поддерживать напряжение не ниже номинального. При значительном снижении напряжения на выводах двигателей, работающих с полной нагрузкой, момент сопротивления механизма может превысить вращающий момент, что приведет к «опрокидыванию» двигателя, т.е. к его остановке. Снижение напряжения ухудшает условия пуска двигателя, так как при этом уменьшается его пусковой момент. В случае снижения напряжения на зажимах двигателя реактивная мощность намагничивания уменьшается (на 2–3 % при снижении напряжения на 1 %), при той же потребляемой мощности увеличивается ток двигателя (можно считать, что при U = –10 %, ток двигателя возрастет на 10 % от номинального значения), что вызывает перегрев изоляции. Если двигатель длительно работает при пониженном напряжении, то из-за ускоренного износа изоляции срок службы двигателя уменьшается. Снижение напряжения приводит также к заметному росту реактивной мощности, теряемой в реактивных сопротивлениях рассеяния линий, трансформаторов и асинхронных двигателей (АД).

Повышение напряжения на выводах двигателя приводит к увеличению потребляемой им реактивной мощности. При этом удельное потребление реактивной мощности растет с уменьшением коэффициента загрузки двигателя. В среднем на каждый процент повышения напряжения потребляемая реактивная мощность увеличивается на 3 % и более, что, в свою очередь, приводит к увеличению потерь активной мощности в элементах электрической сети.

Влияние изменения напряжения на синхронные двигатели (СД) во многом аналогично описанному выше для АД. Основные отличия состоят в том, что частота вращения не зависит от напряжения. Ток возбуждения для машинного возбудителя не зависит от напряжения сети, а при возбуждении от выпрямительной установки – пропорционален напряжению.

Читать еще:  Starline а93 запуск двигателя с брелка

С изменением напряжения сети изменяется реактивная мощность СД, что имеет важное значение, если СД используется для компенсации реактивной мощности в системе электроснабжения (СЭ). Характер изменения реактивной мощности, зависящей от режима тепловой нагрузки СД, при отклонении напряжения сети определяется рядом конструктивных параметров и показателей режима работы СД.

Машины постоянного тока. Изменение амплитудных значений напряжения оказывает заметное влияние на работу электрических машин постоянного тока. При этом существенное значение имеют система возбуждения машины и степень насыщения магнитных цепей. Частота вращения для двигателей постоянного тока с независимым возбуждением меняется прямо пропорционально изменению напряжения сети. Напряжение между пластинами коллектора, а следовательно, и его износ также зависит от напряжения сети.

Лампы накаливания характеризуются номинальными параметрами: потребляемой мощностью, световым потоком световой отдачей и средним номинальным сроком службы. Эти показатели в значительной мере зависят от напряжения на выводах ламп накаливания. При снижении напряжения наиболее заметно падает световой поток. При повышении напряжения сверх номинального увеличивается световой поток, мощность лампы и световая отдача, но резко снижается срок службы ламп и в результате они быстро перегорают. При этом имеет место и перерасход электроэнергии.

Люминесцентные лампы менее чувствительны к отклонениям напряжения. При повышении напряжения потребляемая мощность и световой поток увеличиваются, а при снижении – уменьшаются, но не в такой степени как у ламп накаливания. При пониженном напряжении условия зажигания люминесцентных ламп ухудшаются, поэтому срок их службы, определяемый распылением оксидного покрытия электродов, сокращается как при отрицательных, так и при положительных отклонениях напряжения.

При отклонениях напряжения на ±10 % срок службы люминесцентных ламп в среднем снижается на 20–25 %. Существенным недостатком люминесцентных ламп является потребление ими реактивной мощности, которая растет с увеличением подводимого к ним напряжения.

Отклонения напряжения отрицательно влияют на качество работы и срок службы бытовой электронной техники (радиоприемники, телевизоры, телефонно-телеграфная связь, компьютерная техника).

Вентильные преобразователи обычно имеют систему автоматического регулирования постоянного тока путем фазового управления. При повышении напряжения в сети угол регулирования автоматически увеличивается, а при понижении напряжения уменьшается. Повышение напряжения на 1 % приводит к увеличению потребления реактивной мощности преобразователем примерно на 1–1,4 %, что приводит к ухудшению коэффициента мощности. В то же время другие показатели вентильных преобразователей с повышением напряжения улучшаются, и поэтому выгодно повышать напряжение на их выводах в пределах допустимых значений.

Отклонения напряжения отрицательно влияют на работу электросварочных машин: например, для машин точечной сварки при отклонениях на ±15 % получается 100 % брак продукции.

Чрезмерно высокие отклонения напряжения могут представлять опасность с точки зрения электрического пробоя главной изоляции аппаратов напряжением выше 1 кВ. При этом, чем выше класс номинального напряжения аппарата, тем больше опасность потенциального пробоя изоляции. Чрезмерное повышение напряжения в сети приводит к росту токов нагрузок и мощности короткого замыкания (КЗ), что вызывает ускоренный износ коммутационных аппаратов и может сказаться на их коммутационной способности. Для аппаратов с электрическими схемами включения реальную опасность представляет перегрев и преждевременный выход из строя элементов схемы управления, находящихся во включенном состоянии достаточно длительное время. Понижение напряжения ниже номинального может сказаться только на качестве выполняемых коммутационных операций.

Таким образом, колебания напряжения приводят к значительному ущербу, поэтому, ГОСТ 13109-97 устанавливает нормально и предельно допустимые значения установившегося отклонения напряжения на зажимах электроприёмников в пределах соответственно ?Uyнор = ± 5 % и ?Uyпред = ±10 % номинального напряжения сети.

Обеспечить эти требования можно двумя способами: снижением потерь напряжения и регулированием напряжения.

Снижение потерь напряжения достигается:

– оптимальным выбором сечения проводников линий электропередач по условиям потерь напряжения;

– применением продольной емкостной компенсации реактивного сопротивления линии;

– компенсацией реактивной мощности для снижения ее передачи по электросетям, с помощью конденсаторных установок и синхронных электродвигателей, работающих в режиме перевозбуждения.

– в центре питания регулирование напряжения осуществляется с помощью трансформаторов, оснащённых устройством автоматического регулирования коэффициента трансформации в зависимости от величины нагрузки;

– напряжение может регулироваться на промежуточных трансформаторных подстанциях с помощью трансформаторов, оснащённых устройством переключения отпаек на обмотках с различными коэффициентами трансформации.

Под отклонением частоты тока понимают изменение опорной частоты электрической системы от его определенной номинальной величины.

Частота электрической системы прямо зависит от частоты вращения генераторов, питающих данную систему. И из-за колебаний динамического баланса между нагрузками и выработкой энергии происходит слабые отклонения частоты. Величина и продолжительность сдвига частоты зависит от характеристик нагрузки и от быстродействия системы контроля генераторов к изменениям нагрузки.

Изменения частоты, которые превышают лимиты, принятые для нормального режима работы энергосистемы, могут быть вызваны ошибками в системе передачи энергии: разъединение больших нагрузок или выключение мощного источника выработки энергии.

В современных взаимосвязанных энергосистемах значительные изменения частоты случаются редко. Существенные изменения частоты более свойственны нагрузкам, которые получают энергию от одного изолированного генератора. В таких случаях внутри маленького круга потребителей решение управляющего резко сократить нагрузки может не совпасть с возможностями оборудования, чувствительного к изменениям частоты.

Читать еще:  Что сделать что бы запороть двигатель

Колебания частоты характеризуются разностью между наибольшим и наименьшим значениями основной частоты за определенный промежуток времени. Размах колебаний частоты не должен превышать ее указанных допустимых отклонений. Причина глубоких длительных снижений частоты – дефицитность баланса мощности или энергоресурсов в энергосистеме.

Жесткие требования стандарта к отклонениям частоты питающего напряжения обусловлены значительным влиянием частоты на режимы работы электрооборудования и ход технологических процессов производства.

Анализ работы предприятий с непрерывным циклом производства показал, что большинство основных технологических линий оборудовано механизмами с постоянным и вентиляторным моментами сопротивлений, а их приводами служат асинхронные двигатели. Частота вращения роторов двигателей пропорциональна изменению частоты сети, а производительность технологических линий зависит от частоты вращения двигателя.

Наиболее чувствительны к понижению частоты двигатели собственных нужд электростанций. Снижение частоты приводит к уменьшению их производительности, что сопровождается снижением располагаемой мощности генераторов и дальнейшим дефицитом активной мощности и снижением частоты (имеет место лавина частоты).

Такие ЭП, как лампы накаливания, печи сопротивления, дуговые электрические печи на изменение частоты практически не реагируют.

Кроме этого, пониженная частота в электрической сети влияет на срок службы оборудования, содержащего элементы со сталью (электродвигатели, трансформаторы, реакторы со стальным магнитопроводом), за счет увеличения тока намагничивания в таких аппаратах и дополнительного нагрева стальных сердечников.

Регулирование частоты вращения асинхронного электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Рисунок 1. Асинхронный двигатель Асинхронный двигатель (рис. 1) имеет неподвижную часть, которая называется статор, и вращающуюся часть, именуемую ротором. Магнитное поле создается в обмотке, размещенной в статоре. Такая конструкция электродвигателя позволяет регулировать частоту его вращения различными способами.

Основные технические характеристики, учитываемые при изменении частоты вращения

При регулировании частоты вращения асинхронных электродвигателей следует учитывать несколько основных технических показателей, которые в значительной мере влияют на процесс работы двигателей.

  1. Диапазон регулирования Д, то есть предел, до которого возможно изменять частоту вращения. Эта характеристика вычисляется по соотношению минимальной и максимальной частоты вращения.
  2. Плавность регулирования — определяется по минимальному скачку частоты вращения электродвигателя, когда осуществляется переход одной механической характеристики на другую.
  3. Направление изменения частоты вращения двигателя (так называемая зона регулирования). Номинальные условия работы определяют естественную механическую характеристику двигателя. Когда осуществляется процесс регулирования частоты вращения, эти характеристики (напряжение и частота питающей сети) начнут изменяться. В результате получаются искусственные характеристики, которые обычно ниже естественных.

Есть несколько способов регулирования частоты вращения электродвигателя:

Регулирование частоты вращения изменением частоты питающей сети

Регулирование частоты вращения путем изменения частоты в питающей сети считается одним из самых экономичных способов регулирования, который позволяет добиться отличных механических характеристик электропривода. Когда происходит изменение частоты питающей сети, частота вращения магнитного поля также меняется.

Преобразование стандартной частоты сети, которая составляет 50 Гц, происходит за счет источника питания. Одновременно с изменением частоты происходит и изменение напряжения, которое необходимо для обеспечения высокой жесткости механических характеристик.

Регулирование частоты вращения позволяет добиться различных режимов работы электродвигателя:

  • с постоянным вращающим моментом;
  • с моментом, который пропорционален квадрату частоты;
  • с постоянной мощностью на валу.

В качестве источника питания для регулирования могут использоваться электромашинные вращающиеся преобразователи, а также статические преобразователи частоты, которые работают на полупроводниковых приборах, серийно выпускающихся промышленностью.

Несомненным преимуществом частотного регулирования является наличие возможности плавно регулировать частоту вращения в обе стороны от естественной характеристики. При регулировании достигается высокая жесткость характеристик и отличная перегрузочная способность.

Регулирование частоты вращения изменением числа полюсов

Регулирование частоты вращения путем изменения числа полюсов происходит за счет изменения частоты вращения магнитного поля статора. Частота питающей сети остается неизменной, в то время как происходит изменение частоты вращения магнитного поля и частоты вращения ротора. Они меняются обратно пропорционально числу полюсов. Например, число полюсов равно 2, 4, 6, 8, тогда обороты двигателя при изменении их количества будут составлять 3000, 1500, 1000, 750 оборотов в минуту.

Двигатели, которые обеспечивают переключение числа пар полюсов, имеют обычно короткозамкнутый ротор с обмоткой. Благодаря этому ротору обеспечивается возможность работы двигателя без дополнительных пересоединений в цепи.

Изменение частоты вращения включением в цепь ротора с реостатом

Еще одним способом изменения частоты вращения двигателя является включение в цепь ротора с реостатом. Такой метод имеет существенное ограничение, так как может быть применен только для двигателей с фазным ротором. Он обеспечивает плавное изменение частоты вращения в очень широких пределах. Минусом же являются большие потери энергии в регулировочном реостате.

Изменение направления вращения

Изменение направления вращения двигателя может быть осуществлено за счет изменения направления вращения магнитного поля, которое создается обмотками статора. Изменение направления вращения можно достичь, изменив порядок чередования тока в фазах обмотки статора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector