Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вольт амперная характеристика двигателя постоянного тока

§5.6. Двигатели постоянного тока. Основные характеристики

Двигатели независимого и параллельного возбуждения.
Схема включения двигателя независимого возбуждения показана на рис. 5.19.


Рис. 5.19.

В цепь якоря может быть включено добавочное сопротивление Rд, например пусковой реостат. Для регулирования тока возбуждения в цепь обмотки возбуждения может быть включен регулировочный реостат Rр. У двигателя параллельного возбуждения обмотки якоря и возбуждения подключены к одному источнику питания, и напряжение на них одинаковое. Следовательно, двигатель параллельного возбуждения можно рассматривать как двигатель независимого возбуждения при Uя= Uв.

Механические характеристики.
Механические характеристики двигателей принято подразделять на естественные и искусственные. Естественная характеристика соответствует номинальному напряжению питания и отсутствию добавочных сопротивлений в цепях обмоток двигателя. Если хотя бы одно из перечисленных условий не выполняется, характеристика называется искусственной.
Уравнения электромеханической &#969=f(I я) и механической &#969=f(M эм.) характеристик могут быть найдены из уравнения равновесия ЭДС и напряжений для якорной цепи двигателя, записанного на основании второго закона Кирхгофа:

где R я – активное сопротивление якоря.
Преобразуя (5.35) с учетом (5.6), получим уравнение электромеханической характеристики

В соответствии с (5.10) ток якоря I я=M эм./kФ и выражение (5.36) преобразуется в уравнение механической характеристики:

Это уравнение можно представить в виде ω= ω о.ид.— Δ ω, где

ω о.ид — угловая скорость идеального холостого хода ( при Iя=0 и, соответственно, Мэм.=0 ); Δ ω= Мэм. [(Rя+Rд)/(kФ) 2 ]– уменьшение угловой скорости, обусловленное нагрузкой на валу двигателя и пропорциональное сопротивлению якорной цепи.
Семейство механических характеристик при номинальном напряжении на якоре и потоке возбуждения и различных добавочных сопротивлениях в цепи якоря изображено на рис. 5.20,а.


Рис.5.20

Механические характеристики двигателей принято оценивать по трем показателям: устойчивости, жесткости и линейности.
Естественная механическая характеристика, соответствующая (5.37) при Rд=0, изображена прямой линией 1. Механическая характеристика линейная; отклонение от линейного закона может быть вызвано реакцией якоря, приводящей к изменению потока Ф. Эта характеристика жесткая, так как при изменении момента нагрузки и соответственно скорости поток возбуждения не изменяется. Жесткость характеристики уменьшается при введении добавочного сопротивления в цепь якоря (прямые линии 2 и 3 – искусственные реостатные характеристики). Характеристики устойчивые, так как dω/dMэм. Мст. Если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. Ввиду того, что ротор обладает моментом инерции, разгоняется он не мгновенно – нарастание скорости происходит по закону, близкому к экспоненте.
Пуск двигателя постоянного тока осложняется тем, что при ω=0 ЭДС Eя=0 и пусковой ток якоря Iяп= Uя/ Rя может в 10 – 20 раз превышать номинальный ток, что опасно как для двигателя (усиление искрения, динамические перегрузки), так и для источника питания. Поэтому важнейшими показателями пускового режима являются кратность пускового тока Kiп= Iп/ Iном и кратность пускового момента Кмп= Мп/ Мном. При пуске необходимо обеспечить требуемую кратность пускового момента при возможно меньшей кратности пускового тока.
Прямой пуск применяют обычно при кратности пускового тока K iп?6. При большем значении Kiп применяют способы пуска, обеспечивающие снижение тока Iяп либо за счет подачи пониженного напряжения на обмотку якоря, либо за счет введения добавочного сопротивления в цепь якоря. Первый способ применяется в основном при работе двигателей в системах автоматического регулирования с якорным способом управления. Второй способ, называемый реостатным, распространен наиболее широко в нерегулируемом приводе. Сопротивление пускового реостата Rп= Rд (см. рис. 5.19) выбирают таким, чтобы ограничить Iяп до (1,4 – 1,8) Iя.ном у двигателей средней мощности и до (2,0 – 2,5) Iя.ном у двигателей малой мощности. По мере разгона якоря ток якоря уменьшается и пусковой реостат постепенно выводится.

Реверсирование.
Реверсирование двигателя осуществляется либо изменением полярности напряжения на обмотке якоря, либо на обмотке возбуждения. В обоих случаях изменяется знак электромагнитного момента двигателя Мэм и соответственно направление вращения ротора.

Торможение.
У двигателей независимого и параллельного возбуждения возможны три тормозных режима: рекуперативное торможение, торможение противовключением и динамическое. При анализе тормозных режимов необходимо строить механические характеристики машины во всех четырех квадрантах плоскости Мэм, ω. Для построения механических характеристик можно пользоваться одним и тем же уравнением (5.37) с учетом знака Мэм в различных режимах работы машины.
Рекуперативное торможение, или генераторное торможение с отдачей энергии в сеть, может быть осуществлено при ω>ω о.ид. В этом случае ЭДС якоря Eя > Uя (см. (5.6) и (5.38)), ток якоря меняет направление, машина переходит в генераторный режим и электромагнитный момент становится тормозным. Механической характеристикой в режиме рекуперативного торможения является продолжение механической характеристики двигателя во II квадранте (ω>0, Mэм 2 . Механические характеристики тормозного режима расположены во II квадранте плоскости Мэм,ω (рис. 5.22, б, Rд2>Rд3).
В момент переключения двигатель переходит из точки А естественной характеристики двигательного режима 1 в точку В характеристики тормозного режима 2, момент Мэм меняет знак и начинается динамическое торможение. Угловая скорость уменьшается, но при этом довольно резко уменьшается и тормозной момент (переход из точки В в С). С целью увеличения тормозного момента производится уменьшение добавочного сопротивления Rд (переход из точки С в точку D). Торможение происходит до нулевой скорости.

Читать еще:  В какую сторону крутится двигатель ауди

Двигатели последовательного и смешанного возбуждения.
У двигателя последовательного возбуждения (рис. 5.23,а) ток якоря протекает по обмотке возбуждения (Iв= Iя) и это определенным образом сказывается на основных характеристиках двигателя. При отсутствии насыщения магнитопровода можно принять, что

где Kф – коэффициент пропорциональности.
С учетом (5.40) уравнения (5.10) и (5.37) принимают вид

где Rв – сопротивление обмотки возбуждения.
Механическая характеристика (рис. 5.23, б пунктирная линия) мягкая, имеет гиперболическую форму и обеспечивает устойчивую работу двигателя. Мягкость характеристики объясняется тем, что с увеличением момента нагрузки и соответственно уменьшением скорости растут ток и поток возбуждения. При больших нагрузках начинает сказываться насыщение магнитопровода и характеристика отличается от расчетной (сплошная линия). Двигатель последовательного возбуждения нельзя пускать без нагрузки на валу, так как при Мэм → 0, угловая скорость ω → ∞.
Квадратичная зависимость момента от тока позволяет при одинаковой кратности пускового тока получать у двигателя последовательного возбуждения больший пусковой момент, чем у двигателя независимого или параллельного возбуждения.
Пуск, реверсирование, торможение и регулирование угловой скорости двигателей последовательного возбуждения осуществляется теми же способами, что и у двигателей независимого и параллельного возбуждения с учетом специфики включения обмоток.


Рис.5.23

Двигатели смешанного возбуждения по своим характеристикам занимают промежуточное положение между двигателями независимого и последовательного возбуждения. Конкретный вид характеристик зависит от того, согласно или встречно(по потоку) включены между собой обмотки возбуждения.

Вольт амперная характеристика двигателя постоянного тока

4.4. Генераторы постоянного тока

В зависимости от способа питания обмотки возбуждения различают генераторы:

— с независимым возбуждением;

— с параллельным возбуждением;

— с последовательным возбуждением (сериесный);

— со смешанным возбуждением (компаундный); он имеет две обмотки возбуждения; одна включена параллельно обмотке якоря, а другая — последовательно с нею и нагрузкой.

Генераторы малой мощности иногда выполняются с постоянными магнитами. Свойства таких генераторов близки к свойствам генераторов с независимым возбуждением.

В генераторе с независимым возбуждением (рис. 4.8а) ток возбуждения не зависит от тока якоря I а , который равен току нагрузки I н . Обычно ток возбуждения невелик и составляет 1. 3 % от номинального тока якоря.

Основными характеристиками генератора являются характеристики: холостого хода, внешняя, регулировочная и нагрузочная.

Рис. 4.8. Принципиальная схема генератора с независимым возбуждением (а) и его характеристика холостого хода (б)

Характеристика холостого хода U 0 =f(I в ) при I н =0 и n=const (рис. 4.8б). Расхождение входящей и нисходящей ветвей характеристики объясняется наличием гистерезиса в магнитопроводе машины. E ост составляет 2. 4 % от U ном.

Рис. 4.9. Внешняя (а) и регулировочная (б) характеристики генератора с независимым возбуждением

Внешней характеристикой называется зависимость U=f(I н ) при n=const и I н =const (рис. 4.9а). Под нагрузкой напряжение генератора

∑r — сумма сопротивлений всех обмоток, включенных последовательно в цепь якоря (якоря, дополнительных полюсов и компенсационной обмотки).

С увеличением нагрузки напряжение U уменьшается по двум причинам:

— из-за падения напряжения во внутреннем сопротивлении ∑r машины;

— из-за уменьшения ЭДС E в результате размагничивающего действия реакции якоря.

Величина составляет 3. 8 %.

В генераторе с параллельным возбуждением (рис. 4.10а) обмотка возбуждения присоединена через регулировочный реостат параллельно обмотке якоря. Для нормальной работы приемников электроэнергии необходимо поддерживать постоянство напряжения на их зажимах, несмотря на изменение общей нагрузки генератора. Это осуществляется посредством регулирования тока возбуждения.

Регулировочной характеристикой генератора (рис. 4.9б) называется зависимость тока возбуждения I в от тока якоря I а при постоянном напряжении U и скорости n. Такая характеристика показывает, как надо изменять ток возбуждения для того, чтобы при изменениях нагрузки поддерживать постоянство напряжения на зажимах генератора. Эта кривая сначала почти прямолинейна, но затем загибается вверх от оси абсцисс, вследствие влияния насыщения магнитопровода машины. Следовательно, в машине используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от самого генератора.

Рис. 4.10. Принципиальная схема генератора с параллельным возбуждением (а); характер изменения ЭДС и тока возбуждения генератора в процессе возбуждения (б)

Самовозбуждение генератора возможно только при наличии гистерезиса в магнитной цепи.

При вращении якоря в его обмотке потоком остаточного магнетизма индуктируется ЭДС Е ост , и по обмотке возбуждения начинает протекать ток. Если обмотка возбуждения включена так, что ее НС F в направлена согласно с НС остаточного магнетизма, то магнитный поток возрастает, увеличивая ЭДС Е, поток Ф и ток возбуждения I в . Машина самовозбуждается и начинает устойчиво работать с I в =const, E=const, зависящими от величины сопротивления R в цепи возбуждения.

Читать еще:  Электрический топливный насос высокого давления бензинового двигателя

Для режима холостого хода генератора:

L — суммарная индуктивность обмоток возбуждения и якоря.

Зависимость e=f(i в ) представляет собой характеристику холостого хода генератора ОА, а прямая ОВ — ВАХ сопротивления R в (tgγ= R в ) (рис. 4.10б).

Пока имеется положительная разность (e-i в R в ) , член >0, т.е. происходит нарастание тока i в . Установившийся режим будет иметь место при =0, т.е. в точке С. При изменении величины сопротивления R в прямая ОВ изменяет свой угол γ, что приводит к изменению установившегося тока возбуждения I в0 , и соответствующего ему напряжения U 0 =E 0 . Параметры цепи подбираются так, чтобы в точке С обеспечивалась устойчивость режима самовозбуждения. При случайном изменении i в возникает соответствующая положительная или отрицательная разность (e-i в R в ) , стремящаяся изменить ток i в так, чтобы он стал снова равен I в0 .

Степень устойчивости рассматриваемого режима будет определяться производной:

β — σγξл пересечения характеристики ОА с прямой ОВ.

При увеличении R в до критического значения R в.кр. , соответствующего γ кр , угол β≈0 и режим самовозбуждения становится неустойчивым, при этом ЭДС генератора уменьшается до Е ост . Таким образом, для нормальной работы генератора с параллельным возбуждением необходимо, чтобы R в в.кр.

Внешняя характеристика генератора с самовозбуждением располагается ниже внешней характеристики генератора с независимым возбуждением (рис. 4.11). Объясняется это тем, что в рассматриваемом генераторе напряжение уменьшается не только с ростом нагрузки и размагничивающего действия реакции якоря, но и вследствие уменьшения тока возбуждения , который зависит от напряжения U, т. е. от тока I н .

Рис. 4.11. Внешние характеристики генераторов с независимым (верхняя кривая) и параллельным (нижняя кривая) возбуждением

Ток короткого замыкания создается только ЭДС от остаточного магнетизма и составляет (0,4. 0,8) I ном .

Работа на участке ab внешней характеристики неустойчива.

Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и для генератора с независимым возбуждением.

В генераторе с последовательным возбуждением (рис. 4.12а) ток возбуждения I в =I а =I н .

Рис. 4.12. Схема генератора с последовательным возбуждением (а) и его внешняя характеристика (б)

Внешняя характеристика (кривая 1) и характеристика холостого хода (кривая 2) изображены на рис. 4.12б. Ввиду того, что в генераторе с последовательным возбуждением напряжение сильно изменяется при изменении нагрузки, такие генераторы практически не применяются. Их используют лишь при электрическом торможении двигателей с последовательным возбуждением, которые при этом переводятся в генераторный режим.

В генераторе со смешанным возбуждением имеются две обмотки возбуждения: основная (параллельная) и вспомогательная (последовательная). Наличие двух обмоток при их согласном включении позволяет получать приблизительно постоянное напряжение генератора при изменении нагрузки. Подбирая число витков последовательной обмотки так, чтобы при номинальной нагрузке создаваемое ею напряжение ΔU посл компенсировало суммарное падение напряжения ΔU при работе машины с одной только параллельной обмоткой, можно добиться, чтобы напряжение U при изменении тока нагрузки от нуля до I ном оставалось практически неизменным.

Генераторы постоянного тока имеют большей частью параллельное возбуждение. Обычно для улучшения внешней характеристики они снабжаются небольшой последовательной обмоткой (1-3 витка на полюс). При необходимости такие генераторы могут включаться и по схеме с независимым возбуждением.

Генераторы с независимым возбуждением используются только при большой мощности и низком напряжении. В этих машинах независимо от величины напряжения на якоре обмотка возбуждения рассчитывается на стандартное напряжение постоянного тока 110 или 220 В с целью упрощения регулирующей аппаратуры.

Моторы постоянного тока

В данной статье рассматриваются моторы постоянного тока (DC-моторы): их устройство и характеристики.

Понятие мотора

Электромотор — устройство для преобразования электрической энергии в механическую. То есть, устройство на которое надо подать электрический ток, а в замен получить вращение вала мотора.

Типичный мотор постоянного тока изображён ниже.

Устройство DC-мотора

Разберёмся как устроен мотор постоянного тока на примере простейшей модели.

У нас есть магнитное поле, генерируемое полюсами магнита и металлическая рамка. На клеммы «+» и «-» подаётся питающее напряжение (Up) мотора и по рамке начинает проходить постоянный электрический ток (Ip). На любой проводник, по которому проходит электрический ток, действует, так называемая, сила Ампера (Fa), направление которой зависит от направления тока вдоль проводника. Так как ток проходит от плюса к минусу, получается, что на одной стороне рамки ток направлен слева-направо, а на другой справа-налево. Поэтому сила Ампера на противоположных сторонах рамки направлена в разные стороны. Рамка начинает вращаться. Если подать питающее напряжение наоборот — направление тока изменится и рамка начнет вращение в противоположную сторону.

Для большей наглядности, можно посмотреть видео.

Характеристики моторов постоянного тока

Рассмотрим основные характеристики мотора.

Электрические параметры

Рабочее напряжение — диапазон допустимых питающих напряжений. Чем питающее напряжение будет больше, тем больше будет мощность мотора и скорость вращения. Однако, бесконечно повышать напряжение нельзя, так как с каждым новым вольтом, повышается риск того, что мотор перегорит.

Читать еще:  Шелест в двигателе при высоких оборотах

Для наглядности, проведем эксперимент: будем постепенно повышать питающее напряжение мотора, при этом будем контролировать потребляемый ток мультиметром.

Первое, что бросается в глаза — при повышении напряжения от 3 до 9 В, ток изменяется от 40 до 60 мА. Получается, что при увеличении напряжения в 3 раза, ток потребления увеличился всего 2 раза.

Теперь вспомним закон Ома:

Отсюда видно, что, при постоянном сопротивлении провода, ток в цепи должен увеличиваться во столько же раз, во сколько увеличивается напряжение. То есть, обмотка мотора (проволочная рамка) должна иметь переменное сопротивление.

Разберемся с этим парадоксом. Нашу проволочную рамку постоянно пронизывает магнитное поле. Если рамка начинает вращаться, то под действием магнитных сил, в ней возникает напряжение, направленное на противодействие внешних сил, то есть, против внешнего напряжения, которое мы подаем на мотор. Потому, в данном случае, закон Ома надо рассматривать вот так:

,

где E — обратная электродвижущая сила (наведённое магнитным полем напряжение).

Чем быстрее вращается мотор, тем больше значение обратной электродвижущей силы, тем меньше будет потребляемый мотором ток. Поэтому, на холостом ходу мотор всегда потребляет меньший ток, чем под нагрузкой.

Номинальное напряжение — наиболее подходящее напряжение, для питания мотора, при котором мотор способен быстро вращаться, при этом не перегреваясь.

Ток без нагрузки — ток, потребляемый мотором на холостом ходу. Поскольку, на холостом ходу мотор вращается с максимальной скоростью, то потребляемый ток в таком режиме работы будет минимальным для конкретной модели мотора.

Ток при блокировке — ток, потребляемый мотором, при блокировке вала мотора. Данная величина тока потребления будет максимальной. Так как, блокировка вала означает — отсутствие вращения, поэтому будет полностью отсутствовать обратная электродвижущая сила. На практике данную величину можно измерить косвенно, не блокируя вал мотора. Для этого достаточно воспользоваться законом Ома:

U — напряжение питания. Его значение нам известно. R — сопротивление обмотки мотора. Данное значение можно измерить мультиметром, подключив его к клеммам мотора, как к обычному резистору.

Например, для нашего мотора измерим сопротивление обмотки R = 9.9 Ом. При напряжении питания 6 В, получаем:

Механические параметры

Диаметр выходного вала — диаметр подвижной оси мотора, которая совершает вращение.

Передача — полная аналогия с автомобилем. Внутри мотора установлена группа шестеренок, благодаря которым, можно, в известном соотношении, снизить скорость вращения вала мотора, но, при этом, увеличить его выходную мощность.

Скорость без нагрузки — скорость вращения вала мотора (количество оборотов в минуту) на холостом ходу.

Крутящий момент или момент силы — векторная физическая величина, характеризующая вращательное действие силы на твёрдое тело.

В нашем случае данная величина является произведением двух параметров: расстояние от оси мотора до точки прикрепления груза (см) и усилие (кг). Если вы собираете, например, дрель, то данная величина не должна вас сильно беспокоить. Однако, если вы хотите прикрепить к мотору втулку на вал, то надо помнить, что при увеличении диаметра втулки уменьшается максимальное усилие, которое может обеспечить мотор.

Вольт-амперная характеристика

Вольт-ампе́рная характери́стика (ВАХ) — зависимость тока, протекающего через двухполюсник, от напряжения на этом двухполюснике. Описывает поведение двухполюсника на постоянном токе. Также ВАХ называют функцию, описывающую эту зависимость и график этой функции.

Обычно рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности β = U I ⋅ d I d U >cdot >> ), поскольку для линейных элементов ВАХ представляет собой прямую линию (описывающуюся законом Ома) и потому тривиальна.

Примеры элементов, обладающих существенно нелинейной ВАХ: диод, тиристор, стабилитрон.

Для трёхполюсных элементов с управляющим электродом (таких, как транзистор, тиристор или электровакуумный триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при заданном токе или напряжении на третьем управляющем электроде элемента.

В реальной системе, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства рабочая точка на ВАХ может пробегать по траекториям, отклоняющимся от ВАХ, измеренной на постоянном токе или низких частотах. Обычно такое отклонение связано с присущими инерционными свойствами прибора или ёмкостью и индуктивностью присоединённой к прибору цепи или паразитными ёмкостью и индуктивностью.

Форма ВАХ полупроводниковых приборов зависит от температуры его полупроводниковой структуры, например, от температуры p-n перехода. Для полупроводниковых диодов с p-n переходом при увеличении температуры угол наклона прямой и обратной ветвей ВАХ увеличивается.

Преобразования ВАХ [ править | править код ]

При последовательном или параллельном включении двух или нескольких двухполюсников вид ВАХ результирующего двухполюсника изменяется.

При параллельном соединении двух двухполюсников, напряжения на обоих приборах равны и при этом общий ток равен сумме токов, при последовательном — токи через каждый прибор равны, а общее напряжение на такой цепи равно сумме напряжений на элементах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector