Vikupautomsk.ru

Выкуп Авто МСК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основное назначение поршней в работе двигателя

MOTORZONA

Поршни современных двигателей работают в очень тяжелых условиях: высокие газовые и инерционные нагрузки, носящие близкий к ударному характер, высокие температурные нагрузки, большие переменные скорости движения при наличии несовершенной смазки, и как следствие всего этого, большие силы трения и значительный износ поршня и цилиндра. Современные лидеры автомобильного рынка постоянно совершенствуют надежность и долговечность поршней – добавляя новые конструкционные элементы и экспериментируя с материалами. В связи с этим конструкция поршней современных автомобилей имеете очень сложную форму для того что бы, эта важнейшая деталь выполняла свои функции максимально долго.

Основным назначением поршня является:

  1. Образование вместе со стенками цилиндра и поверхностью камеры сгорания пространства переменного объема, в котором совершаются рабочие процессы двигателя, и обеспечение герметичности этого пространства с помощью поршневых колец.
  2. Передача воспринимаемого поршнем давления газов шатуну.
  3. Обеспечение возможно меньшего количества воспринимаемого днищем поршня тепла от газов.
  4. Передача боковых усилий от шатуна к стенкам цилиндра.
  5. Обеспечение максимально лучшего отвода тепла, воспринятого от газов, и тепла от трения к стенкам цилиндра , а так же воздуху и масляному туману в пространстве под днищем.
  6. Открытие и закрытие окон в двухтактных двигателях с щелевым газораспределением и во всех двигателях с щелевым газораспределением и всех двигателях с золотниковым гильзовым газораспределением.

В настоящее время в подавляющем большинстве случаев поршни автомобильных двигателей изготавливают из высокотехнологичных алюминиевых сплавов, в редких случаях их чугуна и еще реже из сплавов на магниевой основе и из стали.

К современным поршням предъявляются следующие требования:

  1. Высокая прочность конструкции поршня
  2. Минимальный вес поршня для уменьшения потерь по мощности
  3. Поддержание оптимальной температуры эксплуатации
  4. Уменьшение шумности при работе двигателя
  5. Устойчивость к заклиниванию при нарушении температурного режима
  6. Износостойкость
  7. долговременное поддержание функциональных параметров двигателя.
  8. Предельное уменьшение выброса вредных веществ.

В современной практике получили широкое распространение следующие конструкционные элементы:

  • Упрочняющая вставка для поршневого кольца (как правило самого высоко-нагруженного : верхнего–компрессионного) предотвращающая ускоренный износ поршня в этом месте и как следствие потерю требуемой герметичности камеры сгорания.
  • Нанесение продольных и поперечных разрезов на юбке поршня. Разрезы обеспечивают минимальный зазор между поршнем и стенкой цилиндра в непрогретом двигателе и предотвращают заклинивание поршня при его нагревании.
  • Заливка попрек бобышек поршня пластин из углеродистой стаи или сплавов никеля. Эти пластинки связывают рабочие части юбки поршня и верхнюю часть поршня. Вследствие этого расширение юбки поршня значительно уменьшается, что в конечном итоге ведет к уменьшению износа вследствие трения.
  • Наличие полостей для охлаждения маслом на внутренней части поршня. Это позволяет значительно увеличивать срок службы поршня, для высоко нагруженных двигателей.
  • Применение высоко технологичных покрытий обеспечивающих равномерный износ, а так же различные виды термообработки, повышающих долговечность поршня.
  • Сложная форма камеры сгорания поршня , позволяющая обеспечивать оптимальное наполнение камеры сгорания рабочей смесью.

Это далеко не полный перечень направлений в котором движется инженерная мысль современных производителей поршней.
Наша фирма гордится тем что уже более 10 лет является самым крупным в России дилером таких торговых марок как Mahle (Мале), Kolbenschmidt (Колбеншмит), Nural (Нурал), AE (Ае), Teikin (Тейкин), FP-Diesel (ФП-Дизель), эти производители поставляют свою продукцию на все главные сборочные автомобильные конвейеры. Поршни качества аналогичного качеству оригинальных запчастей, давно поставляются этими фирмами и на рынок запасных частей, в чем наши покупатели убеждаются уже много лет.

Поршневые кольца: принцип работы, ремонт и устройство

При изучении принципов работы двигателя внутреннего сгорания отмечалось, что скользящее соединение между поршнем и цилиндром герметично, то есть газы, находящиеся под давлением в надпоршневом пространстве, не проникают между поршнем и стенками цилиндра в картер двигателя. Обеспечить приемлемую герметичность основное предназначение поршневых колец.

При этом необходимо отметить, что незначительная часть газов из камеры сгорания всё равно проникают во внутренне пространство картера даже нового, вполне исправного, двигателя. Уплотнение при помощи поршневых колец в технике называется уплотнением лабиринтного типа, в уплотнениях подобного типа всегда происходит некоторая утечка газов. Но эта утечка на исправном двигателе обычно лежит в диапазоне 0,5 – 1,0%.

Находящиеся в картере двигателя газы называются картерными газами. По мере износа цилиндропоршневой группы двигателя количество картерных газов увеличивается.
Кроме уплотнения поршневые кольца выполняют ещё две задачи. Регулируют количество масла на стенках цилиндра, необходимого для смазывания, как самих колец, так и поршня, и отводят тепло от поршня к стенкам цилиндра.

Предназначение поршневых колец:

Обеспечение герметичности между поршнем и стенками цилиндра.
Регулирование количества масла, необходимого для смазывания соединения поршня и цилиндра, и предотвращения попадания масла в камеру сгорания двигателя.
Отвод тепла от поршня к стенкам цилиндра.

Эти три задачи поршневые кольца выполняю в очень тяжёлых условиях под воздействием высоких тепловых и механических нагрузок. Тепловое напряжение поршневых колец возникает под воздействием горячих рабочих газов и под воздействие трения колец о стенки цилиндра, происходящего в условиях масляного голодания в верхней части поршня.
Успешное решение этих задач решается как за счёт конструкции колец, так и правильного подбора материала изготовления колец.

Поршневые кольца делятся на два типа:

Поршневые кольца — схема

1. Первое (верхнее) компрессионное кольцо
1.1. Молибденовая противоизносная вставка
2. Второе компрессионное кольцо
3. Маслосъёмное кольцо:
3.1. Верхняя маслосъёмная пластина
3.2. Тангенциальный расширитель
3.3. Нижняя маслосъёмная пластина

Поршень с поршневыми кольцами

Фотография разреза поршня современного бензинового двигателя с установленным на него типичным комплектом поршневых колец в соответствии со схемой, данной на верхнем рисунке.
Компрессионные кольца обеспечивают необходимую герметичность, а маслосъёмные кольца регулируют количество масла на стенках цилиндра. Именно регулируют, а не полностью удаляют, поскольку полное или слишком большое удаление масла приведёт к масляному голоданию соединения поршня со стенками цилиндра в верхней части поршня и последующему заклиниванию поршня в цилиндре.

Ранее двигатели были тихоходными, и количество поршневых колец на одном поршне доходило до 5 – 7. Но почти все современные бензиновые двигатели и быстроходные автомобильные дизельные двигатели имеют на одном поршне всего три поршневых кольца – два компрессионных кольца и одно маслосъёмное.
Хотя поршни двигателей форсированных спортивных автомобилей, постоянно работающие на высоких оборотах, могут иметь всего два кольца. А поршни дизельных автомобильных двигателей, для облегчения запуска, могут иметь четыре кольца, три из которых компрессионные.

Кольцо, установленное в канавку поршня, находящегося в цилиндре двигателя, должно принять абсолютно круглую форму (это выполняется, если сама гильза цилиндра не имеет деформаций) и быть прижатым к поверхности цилиндра по всей наружной окружности поршневого кольца. Для обеспечения этого, упругое поршневое кольцо изготавливается не в виде правильной окружности, а в виде дуги переменного радиуса, большего, чем диаметр цилиндра и имеющее в свободном состоянии достаточно больший зазор (1) между концами кольца. При установке в цилиндр кольцо сжимается и зазор (2) в замке кольца становится 0,15 ÷ 0,5 мм. Точное и максимально допустимое значение этого зазора указывается в технической документации двигателя. Обеспечение регламентированной величины зазора очень важно, увеличенный зазор способствует прорыву газов в картер двигателя и снижению мощности. Но ещё опасней уменьшенный зазор в замке поршневого кольца. Во время работы, в результате нагрева кольцо расширяется и при уменьшенном зазоре может произойти заклинивание поршневого кольца в цилиндре, что приведёт к образованию задиров на зеркале цилиндра, поломке межкольцевых перегородок поршня или поломке самого кольца. Поэтому допустимо небольшое увеличение зазора, но недопустимо уменьшение зазора в замке поршневого кольца.

Ведущие производители поршневых колец производят кольца с постепенно уменьшающимся через 0,1 мм зазором, таких подбираемых размеров может быть до 15.

Отсутствие концевого зазора при одновременном уменьшении высоты кольца

Некоторые производители поршневых колец выпускают «беззазорные» поршневые кольца. Разумеется, невозможно изменить природное свойство металлов к расширению при повышении температуры, кольцо, установленное в цилиндр двигателя без зазора, обязательно заклинит. Но многое можно решить за счёт удачной конструкции. В этом случае поршневое кольцо состоит из двух плоских колец, установленных друг на друга и повёрнутых относительно друг друга на 180º. При этом верхнее кольцо имеет форму буквы «L», а нижнее кольцо вставлено в выемку верхнего кольца, за счёт чего высота такого кольца получается не более высоты стандартного кольца.

Читать еще:  На что указывают поломки поршня автомобиля

Когда-то замки поршневых колец старых тихоходных двигателей, для уменьшения прорыва газов через замок кольца имели сложную форму, но в современных высокооборотных двигателях прорыв газов через замок кольца незначителен. Поэтому современные кольца имеют только прямоугольную форму замка.

Правильная установка поршневых колец

Переменный радиус дуги поршневого кольца берётся не произвольно, а рассчитывается для обеспечения необходимой эпюры силы прижатия кольца к стенкам цилиндра. Во время работы поршневое кольцо изнашивается неравномерно. В результате экспериментов определено, что наиболее интенсивно кольцо изнашивается в районе замка. Поэтому первоначальное увеличение силы прижатия кольца в зоне замка увеличивает срок службы кольца.
Но точно рассчитанная эпюра усилий кольца может измениться в результате непрофессиональной установки кольца на поршень. Современные, очень тонкие компрессионные поршневые кольца не допускается устанавливать на поршень руками. Для этого необходимо использовать специальное приспособление, обеспечивающее равномерное разжатие кольца по всей окружности и ограничение максимального разжатия.
Установка кольца руками, с увеличенным и неравномерным расжатием, значительно сокращает срок службы кольца.

Прижатие компрессионных колец к стенкам гильзы цилиндра

На этом рисунке видно, что газы из камеры сгорания через зазор между жаровым поясом поршня и стенкой цилиндра и через зазор между стенкой перегородки и поршневым кольцом попадают во внутреннюю полость поршневого кольца. При этом давление во внутренней полости верхнего компрессионного кольца практически равно давлению в камере сгорания.
За счёт давления газов на внутреннюю поверхность кольца происходит дополнительное прижатие поршневого кольца к стенкам цилиндра. Некоторая часть газов также попадает во внутреннюю полость второго компрессионного кольца. Поскольку первое компрессионное кольцо дросселирует давление газов, давление во внутренней полости второго компрессионного кольца мотет быть равно 30 – 60%, от давления во внутренней полости первого компрессионного кольца.
С учётом того, что все процессы в двигателе происходят достаточно быстро, давление из внутренних полостей поршневых колец не падает до следующего такта рабочего хода, это явление называется аккумулированием давления. Аккумулирование давления обеспечивает приемлемую работу поршневых колец, частично потерявших свою упругость в результате старения или перегрева. Потерявшие упругость поршневые кольца будут удовлетворительно работать на режиме высоких нагрузок двигателя, но при работе двигателя в режиме низких нагрузок поршневые кольца не обеспечат необходимое уплотнение. Поэтому, исправными можно считать поршневые кольца серийного легкового автомобиля, обеспечивающие прижатие к стенкам цилиндра за счёт собственной упругости.
Некоторые производители поршневых колец заявляют, что до 90% усилия прижатия поршневых колец возникает за счёт давления рабочих газов двигателя. Возможно, кольца с подобными технически характеристиками подойдут только для специальных спортивных двигателей, постоянно работающих в диапазоне высоких оборотов и высоких нагрузок, Но вряд ли такое кольцо будет успешно работать в двигателе серийного автомобиля. Специально подготовленные поршневые кольца, как и многие другие детали двигателя, могут улучшить работу двигателя на строго определённых режимах оборотов и нагрузки. Но при этом значительно ухудшить работу двигателя на остальных режимах.
Очень важным эксплуатационным размером является боковой зазор между кольцом и канавкой поршня, поскольку именно от него зависит давление в поршневой канавке. В среднем этот зазор равен 0,04 ÷ 0,08 мм. От величины этого зазора также зависят ударные нагрузки на перегородки поршневых колец и, соответственно, шумность работы двигателя, возрастающие при увеличении зазора или вероятность заклинивания (потери подвижности) поршневых колец при уменьшении зазора.

Многие автомеханики считают, что поршни не подлежат дальнейшей эксплуатации по причине износа направляющей части (юбки) поршня, но обычно износ направляющей части поршня незначителен. Разумеется, если поршень не работал в режиме масляного голодания, и на поверхности поршня и стенок цилиндров не образовались задиры.
На самом деле поршень часто выбраковывается по причине недопустимого износа канавки верхнего компрессионного кольца.

При производстве и высота поршневых колец, и высота канавки поршня имеют некоторый разброс, поэтому, для обеспечения необходимого зазора, иногда бывает возможность подбора поршневого кольца необходимой высоты.

Форма второго компрессионного кольца отличается от формы первого компрессионного кольца. Иногда из-за своеобразной формы наружной поверхности второе компрессионное кольцо называется скребковым
Это кольцо работает не только как компрессионное, но и участвует в регулировании количества масла на стенках цилиндров, то есть частично выполняет задачу маслосъёмного кольца. Нижняя часть рабочей поверхности второго кольца изготавливается в виде скребка, который при перемещении поршня вниз снимает со стенок цилиндра лишнее масло. Нижнее компрессионное кольцо работает в значительно более лёгких условиях. И температура в зоне кольца и давление газов на кольцо (соответственно сила прижатия кольца к стенке цилиндра) значительно ниже по сравнению с подобными показателями, оказывающими воздействие на верхнее кольцо.

Оба компрессионные кольца допускается устанавливать только в одном положении. На верхней поверхности компрессионного поршневого кольца ставится метка «Т», «ТОР» или другие. Кольцо всегда устанавливается этой меткой вверх. Неправильно установленное поршневое кольцо, неправильно работает.

Маслосъёмные кольца устанавливаются ниже компрессионных поршневых колец. На поршни двигателей современных легковых автомобилей устанавливается всего по одному маслосъёмному кольцу. Хотя старые двигатели, особенно предназначенные для стационарного применения, использовали по несколько маслосъёмных колец.

Маслосъёмные кольца предназначены для регулирования количества масла, находящегося на стенках цилиндра. Тут не очень подходит русская поговорка: «Кашу маслом не испортишь». Масла на стеках цилиндра должно быть не как можно больше, а ровно сколько необходимо. Недостаточное количество масла приведёт к масляному голоданию и, вследствие этого, к повышенному износу поршневых колец, поршня и поверхности цилиндра. В некоторых тяжёлых условиях работы двигателя при наличии масляного голодания могут произойти задиры в соединение поршня с цилиндром, и даже полное заклинивание поршня в цилиндре.
Так же нежелательно излишнее количество масла на стенках цилиндра. Лишнее масло, через компрессионные кольца попадает в камеру сгорания двигателя. Что приводит к повышенному расходу масла, образованию нагара на стенках камеры сгорания, клапанах и свече зажигания. Нагар от сгоревшего масла в камере сгорания и на клапанах значительно ухудшает некоторые технические характеристики двигателя. Во время работы двигателя система смазки разбрызгивает в нижней внутренней полости цилиндра большое количество смазки, необходимого для смазывания поршневого пальца и охлаждения поршня
При перемещении поршня вниз, маслосъёмное кольцо своими кромками собирает излишнее масло со стенок цилиндра и через дренажные отверстия в канавке поршня направляет его во внутреннюю полость поршня. Далее масло стекает в масляный поддон, возвращаясь в систему смазки двигателя.

«Вечные двигатели» и их создатели. Владимир Климов

23 июля 1892 года родился Владимир Яковлевич Климов − крупнейший советский конструктор авиадвигателей. Он стоял у истоков двух эпох отечественного авиационного моторостроения: поршневой и турбореактивной. Созданный в климовском ОКБ двигатель М-105 стал поистине мотором Победы в Великой Отечественной войне. Владимир Яковлевич заложил основы советской конструкторской школы, и сейчас его имя носит крупнейший российский разработчик авиадвигателей – «ОДК Климов».

Выбор вектора жизни

Владимир Яковлевич Климов вышел из семьи предприимчивого владимирского крестьянина, который разбогател, организовав в Москве работу строительной артели. Отец будущего конструктора Яков Алексеевич Климов на свои деньги купил участок земли и построил доходный дом, который стоит в Москве до сих пор. Все дети большой семьи получили хорошее образование. В 1903 году Владимир поступает в Комиссаровское училище, одно из лучших мест в Москве того времени, где можно было обучаться техническим наукам и применять их на практике. До училища Владимир ходил пешком, а на сэкономленные деньги покупал книги. Другими его увлечениями было разведение голубей и походы на авиационные представления на Ходынском поле. Наблюдая за птицами и самолетами, сопоставляя с прочитанным в учебниках, Климов постигал азы самолетостроения.


Молодой Климов

С 1910 года Владимир Климов − студент Императорского высшего технического училища, будущей «Бауманки». Уже во время учебы определился круг его интересов: на четвертом курсе Климов перешел в лабораторию теплотехники Н.Р. Бриллинга, где серьезно увлекся авиационными моторами. Во время учебы в МВТУ Климов в ступил в возглавляемый Н.Е. Жуковским воздухоплавательный кружок. В 1916 году по военному заказу при участии Климова на основе трофейных немецких двигателей был создан стосильный авиамотор. С 1918 года Климов работает в научной автомоторной лаборатории, ставшей затем Научным автомоторным институтом СССР (НАМИ). Параллельно Владимир Яковлевич занимается со студентами. Близкий друг и учитель Климова Н.Р. Брилинг способствует назначению молодого конструктора председателем комиссии по закупке и приемке иностранных двигателей.

Читать еще:  Алюминиевые поршни: особенности и преимущества

Заграничный опыт

В 1924-1926 годах Климов изучает производство в Германии и привозит оттуда двенадцатицилиндровый авиамотор BMW VI, лицензионный выпуск которого под названием М-17 было решено наладить в СССР. В 1930 году мотор М-17 вошел в серию и был выпущен в количестве более 27 тысяч экземпляров. В 1925-1930 годы Климов участвует в разработке первых советских звездообразных авиадвигателей М-12, М-23 и первого советского двигателя жидкостного охлаждения М-13.

Мотор М-22

По прибытии в январе 1926 года из командировки В.Я. Климов продолжил работать в НАМИ, где сначала занимал должность начальника отдела легких двигателей, а затем − помощника директора института. В НАМИ Климов продолжил работы по проектированию, испытанию и исследованию двигателей различных схем и назначения. Затем была длительная работа по закупке французской лицензии на производство девятицилиндровых звездообразных двигателей Jupiter VII, в советском варианте – М-22. Благодаря опыту и внимательности Владимира Яковлевича советская сторона получила максимально выгодные условия и качественный продукт. В роли контролера Климов участвует в запуске производства М-22 в Запорожье. С 1931 по 1933 годы Владимир Яковлевич возглавляет отдел бензиновых двигателей Института авиационного моторостроения (будущего ЦИАМа).

Выпуск моторов по лицензии с поддержкой иностранных фирм помог сократить отставание СССР в области авиастроения от других держав. Однако разрыв оставался существенным: к началу 30-х годов в СССР не было создано даже опытного образца высотного мотора. В 1934 году при посредстве Климова был заключен контракт на поставку французского авиамотора нового поколения Hispano-Suiza. Во время длительных командировок, тестирования и доводки двигателей во Франции Климов глубоко изучил строение зарубежных моторов и особенности производства.

М-100: машина с французскими корнями

Для выпуска советского аналога Hispano-Suiza – мотора М-100 – был выбран и значительно модернизирован рыбинский завод №26. В 1935 году при заводе создается конструкторский отдел, главным конструктором которого становится Владимир Яковлевич. В 1936 году за создание двигателя М-100 завод №26 и сам Климов были награждены орденом Ленина. Мотор стал родоначальником новой серии, при создании которой на основе французских моторов Климов приступил к реализации собственных конструкторских идей. Модернизированная версия мотора М-100А ставилась на бомбардировщики СБ. Двигатель М-103А в то время был признан лучшим в мире авиамотором по соотношению веса и силы и работал на серийных самолетах СБ, Як-2 и ТБ-7.


Двигатель М-100 на испытательном стенде

Государственная машина медленно, но верно разворачивалась в сторону собственного технологичного производства, авиастроение стало одним из приоритетных направлений развития, а авиаконструкторы – элитной профессией. Руководство страны интересовали новые моторы, которые могли вывести советскую военную авиацию на один уровень с мировыми конкурентами. В предвоенном 1940 году завод №26 должен был выпустить 2050 моторов М-103, 4150 моторов М-105 и новые опытные двигатели. Выпуск моторов контролировал лично Сталин. Накануне Великой Отечественной войны рыбинские заводчане выдавали в сутки 45 двигателей.

М-105: мотор Победы

Работа над поршневым четырехтактным 12-цилиндровым мотором М-105 началась в 1937 году, а к 1940 году двигатель довели до ума. Мотор поднял в воздух скоростной бомбардировщик СБ, а его пушечная вариация М-105П пригодилась для истребительной авиации. Новый двигатель Климова оказался пригодным для массового производства, простым и доступным для модификаций. Чтобы увеличить объемы, М-105 начинают выпускать в Воронеже, Уфе, Горьком, Ленинграде. Работа велась в авральном темпе, но и цена была высока. К началу войны ОКБ Климова и завод №26 обеспечили современными моторами истребительную, штурмовую и бомбардировочную авиацию СССР.

С началом войны было решено эвакуировать рыбинское предприятие на территорию завода-дублера в Уфу. Немцы завод №26 не бомбили, хотели взять ценное производство невредимым. Вывозить завод приходилось ночью, днем имитируя работу. Все оборудование поместилось на 3500 товарных вагонах, без малого 10 тысяч работников с семьями отправились в эвакуацию. В Уфе Владимир Яковлевич возглавил конструкторское направление большого объединенного предприятия – Уфимского моторостроительного завода.


Предполетный осмотр двигателя М-105 на самолете Пе-2

В нечеловеческих условиях налаживалось производство, на запуск завода ушло всего 6 недель. Здесь доводятся до серийного состояния опытные образцы мотора М-105: машины с индексом «Р» (редукторные) массово устанавливались на бомбардировщики Пе-2 и тяжелые истребители Пе-3, Ер-2 и ДВ-240, СБ-2, а двигатели с индексом «П» (пушечные) шли на основные типы и модификации истребителей ОКБ Яковлева. Больше половины фронтовой советской авиации тогда летало на «сто пятых». Истребитель Як-3 и бомбардировщик Пе-2 с моторами Климова стали лучшими советскими самолетами в своем классе. Во время войны Климов подготовил целую плеяду будущих главных конструкторов авиационных двигателей: С.П. Изотова, Н.Д. Кузнецова, С.А. Гаврилова, А.С. Мевиуса.

В марте 1944 года в название климовских двигателей были введены инициалы конструктора – ВК. Последним мотором, исчерпавшим потенциал 105-й серии, стал ВК-105ПФ2, поднимавший в небо истребители Як-3 и Як-9. Следующая модель Климова, двигатель ВК-107, прошла длительную череду испытаний и доработок и устанавливалась на серийные самолеты Як-9У, Пе-2 и ряд опытных машин. ВК-107 стал последним серийным поршневым двигателем, вышедшим «из-под пера» команды Климова. Реактивные моторы отодвинули поршневую технику на второй план. Всего за время войны на уфимском предприятии было выпущено около 97 тысяч авиамоторов, за что завод был награжден орденом Красного Знамени. За создание мотора Победы Владимир Яковлевич был отмечен орденом Суворова, вторым орденом Ленина, Золотой Звездой Героя Социалистического Труда и другими наградами.

От поршневых моторов к реактивным

После войны Климов изучает полученные по репарации немецкие турбореактивные двигатели (ТРД). Для разработки отечественного ТРД в Ленинграде в 1946 году создается ОКБ №117 под руководством Владимира Яковлевича и завод под тем же номером. При участии Климова была проведена гигантская работа по формированию коллектива и налаживанию быта и производства в разрушенном войной городе.

В конце 1946 года Климов и Микоян посетили Парижский авиасалон, где их внимание привлекли английские турбореактивные двигатели Nene и Derwent. Они добились разрешения и выехали в Великобританию для покупки лицензии на производство этих двигателей у фирмы Rolls-Royce. Двигатели уже к концу 1947 года были запущены в серийное производство на нескольких заводах СССР под индексами РД-45 и РД-500. Они устанавливались на многих советских истребителях и бомбардировщиках

За несколько последующих лет климовский коллектив смог на основе английских двигателей создать свой ТРД, превосходящий зарубежные образцы. В 1948 году был разработан первый советский серийный ТРД ВК-1, устанавливавшийся в том числе на легендарный истребитель МиГ-15, один из самых массовых реактивных боевых самолетов в мире. Всего было выпущено около 50 000 этих двигателей, самолеты с ВК-1 состояли на вооружении около 40 стран мира.

В 1951 году был выпущен первый отечественный двигатель с дожиганием топлива в форсажной камере ВК-1Ф. В 1951-1952 годах в ОКБ Климова были разработаны двигатели ВК-5, ВК-5Ф, ВК-7. Одной из последних работ Владимира Яковлевича стал двигатель ГТД-350 для вертолета Ми-2. В 1960 году Климов уходит на пенсию, а в 1962 году его не стало.

Работа есть работа. Дело есть дело. Ничего не добьется человек, если он не требователен к себе и сотрудникам. У человека работающего всегда есть и должны быть вопросы. Если они не возникают, значит дело ведется неэффективно, без мысли и здоровых сомнений

Родившийся и получивший образование в царской России, Климов производил впечатление настоящего интеллигента: никогда не позволял ругани или панибратства в адрес подчиненных, всегда держался уважительного тона, не размениваясь на эмоции. Коллеги отзывались о нем как о деловитом, эрудированном, последовательном и обязательном руководителе.

Читать еще:  Основные составляющие поршня и их роль

Главный конструктор завода № 26 В.Я. Климов на занятиях в Рыбинском авиационном институте со студентами, изучающими авиамотор М-17, 1940 г.

Еще в начале своего пути Климов сделал верную ставку на изучение разработок западных коллег. Это позволило развивающейся отечественной авиапромышленности за короткий срок освоить серийное производство современных авиамоторов. Созданный Владимиром Яковлевичем и его командой двигатель М-105 сыграл важную роль в ходе Второй мировой войны: он был простым, универсальным и надежным. При Климове рыбинский завод №26 и возглавляемое им ОКБ стали ведущими авиамоторными предприятиями СССР. А созданное Владимиром Яковлевичем ленинградское ОКБ №117 смогло выпустить в серию первый советский турбореактивный двигатель ВК-1.

Основные технические характеристики двигателя

12.1. Технические параметры

О любом двигателе можно получить представление, зная набор определенных технических параметров.

Комментарии пользователей (1)

12.2. Диаметр цилиндра

Диаметр цилиндра. Имеется в виду внутренний диаметр цилиндра. Обычно измеряется в нескольких точках и рассчитывается как среднее арифметическое из полученных данных.

Комментарии пользователей (0)

12.3. Ход поршня

Ход поршня — это расстояние, которое поршень проходит от ВМТ до НМТ. Равняется также удвоенному радиусу кривошипа.

Примечание
Обычно при описании технических характеристик двигателя диаметр цилиндра и ход поршня записываются вместе, через знак «х», например 95 х 85 мм. Если ход поршня превышает диаметр цилиндра, двигатель называют длинноходным, если наоборот – короткоходным.

Рисунок 4.4 Ход поршня.

Комментарии пользователей (0)

12.4. Радиус кривошипа

Радиус кривошипа – это расстояние, на которое шатунная шейка (та, к которой крепится шатун) отведена от оси коренной шейки коленчатого вала, как показано на рисунке 4.4.

Комментарии пользователей (0)

12.5. Рабочий объем двигателя

Рабочий объем двигателя – объем пространства, заключенный между ВМТ и НМТ поршня, умноженный на количество цилиндров. Измеряется в сантиметрах кубических (см 3 ) или литрах (л). А объем, который находится над поршнем, когда тот установлен в ВМТ, называется объемом камеры сгорания. Сумма объема камеры сгорания и рабочего объема называется полным объемом. Обычно в характеристиках полный объем не приводится, однако используется для получения такого немаловажного параметра, как степень сжатия.

Комментарии пользователей (0)

12.6. Степень сжатия

Степень сжатия – отношение полного объема цилиндра к объему камеры сгорания. Данный параметр характеризует то, во сколько раз сжимается топливовоздушная смесь в цилиндре. Записывается обычно в виде соотношения, например, 14:1 – в данном случае имеется в виду, что камера сгорания по объему в 14 раз меньше полного объема. Степень сжатия влияет на эффективность и мощность двигателя: чем выше, тем эффективнее, но есть и ограничения, ввиду особенностей используемого топлива (смотрите ниже в разделе «Система питания современных двигателей»).

Примечание
Если двигатель бензиновый, то бесконечно увеличивать степень сжатия нельзя, так как вместе с этим увеличивается вероятность детонации топливовоздушной смеси и, как следствие, происходит выход из строя всего двигателя. Подробнее о детонации будет рассказано ниже.

Комментарии пользователей (0)

12.7. Рядность

Рядность – обозначение взаимного расположения цилиндров. Двигатель может быть рядным, V-образным, W-образным.

Рисунок 4.5 Различные варианты взаимного расположения цилиндров.

Комментарии пользователей (0)

12.8. Порядок работы

Порядок работы. Если в двигателе больше двух цилиндров, то для более равномерной и сбалансированной работы агрегата необходимо, чтобы рабочий ход в каждом из цилиндров реализовывался не одновременно, а в определенной последовательности, при этом очередность определяется, в основном, количеством цилиндров.

Примечание
Для ДВС с одинаковым количеством цилиндров может быть несколько вариантов порядка работы.

Так, например, самый распространенный порядок работы четырехцилиндрового двигателя: 1 – 3 – 4 – 2. Такая запись говорит о том, что сначала рабочий ход будет совершать поршень первого цилиндра, затем третьего, четвертого и второго, соответственно.

Для примера опишем работу четырехцилиндрового рядного двигателя.

Рисунок 4.6 Схематическое изображение четырехтактного четырехцилиндрового рядного двигателя.

В четырехтактном четырехцилиндровом рядном двигателе (показан на рисунке 4.6) кривошипы коленчатого вала расположены в одной плоскости: два крайних кривошипа 1-й и 4-й под углом 180° к двум средним — 2-му и 3-му. При вращении вала поршни первого и четвертого, а также второго и третьего цилиндров попарно движутся в одном направлении. Когда поршни первого и четвертого цилиндров приходят в НМТ, поршни второго и третьего цилиндров находятся в ВМТ, и наоборот. В каждом из цилиндров рабочий цикл завершается за два оборота коленчатого вала, а чередование тактов подобрано таким образом, что одновременно во всех цилиндрах происходят разные такты. Этим обеспечивается равномерность вращения вала.

Предположим, что при первом полуобороте вала (от 0 до 180°) в первом цилиндре поршень идет от ВМТ до НМТ и в нем происходит рабочий ход. Тогда в четвертом цилиндре поршень также движется к НМТ, но происходит впуск горючей смеси. Во втором и третьем цилиндрах поршни движутся к ВМТ, при этом в третьем цилиндре идет сжатие рабочей смеси, а во втором — выпуск отработавших газов.

Примечание
Моменты открытия и закрытия клапанов регулируются распределительным валом (подробнее рассмотрено ниже).

В течение дальнейших трех полуоборотов коленчатого вала в каждом из цилиндров такты будут следовать в обычной для четырехтактного процесса очередности.

К тому времени, когда вал закончит четвертый полуоборот, во всех цилиндрах произойдут все такты рабочего цикла. При дальнейшем вращении вала такты будут повторяться в той же последовательности.

При работе четырехтактного четырехцилиндрового двигателя на каждый полуоборот коленчатого вала приходится один рабочий ход, причем рабочие ходы чередуются не в порядке расположения цилиндров, а в другой последовательности. Сначала рабочий ход происходит в первом цилиндре, затем в третьем, далее в четвертом и, наконец, во втором, т. е. рабочие ходы чередуются в порядке 1 — 3 — 4 — 2. Этот порядок чередования рабочих ходов по цилиндрам называется порядком работы двигателя.

Рисунок 4.7 Полуобороты коленчатого вала.

При одной и той же форме расположения кривошипов вала, но при другом порядке открытия и закрытия клапанов, что зависит от конструкции механизма газораспределения, четырехцилиндровый двигатель может иметь другую последовательность чередования тактов и другой порядок работы. Если при первом полуобороте вала в третьем цилиндре будет происходить такт выпуска, а во втором — такт сжатия, то чередование тактов в двигателе изменится, и получится порядок работы 1 — 2 — 4 — 3.

Полуобороты
коленчатого вала
Углы поворота коленчатого
вала, град
Цилиндры
1-й2-й3-й4-й
1-й0 – 180Рабочий ходВыпускСжатиеВпуск
2-й180 – 360ВыпускВпускРабочий ходСжатие
3-й360 – 540ВпускСжатиеВыпускРабочий ход
4-й540 – 720СжатиеРабочий ходВпускВыпуск

Комментарии пользователей (0)

12.9. Компрессия в цилиндре

Компрессия в цилиндре – максимальное давление, создаваемое в цилиндре при сжатии воздуха поршнем. Зачастую измеряется в барах или кг/см 2 . Часто степень сжатия путают с компрессией. Однако надо всегда помнить, что степень сжатия — параметр исключительно геометрический, в отличие от компрессии.

Комментарии пользователей (0)

12.10. Мощность двигателя

Мощность двигателя – работа двигателя, совершаемая в единицу времени, измеряется в лошадиных силах (л. с.) или киловаттах (кВт). Проще говоря, мощность — это параметр, который описывает, как быстро может вращаться коленчатый вал двигателя. Чтобы лучше понять, представьте, что вы велосипедист, а мощность — это характеристика, описывающая, как быстро вы можете крутить педали.

Комментарии пользователей (0)

12.11. Крутящий момент

Крутящий момент – произведение силы на плечо. В случае двигателя внутреннего сгорания — это тяга, создаваемая на коленчатом валу, иначе говоря — сила, с которой поршень давит через шатун на шатунную шейку коленчатого вала, умноженная на радиус кривошипа (смотрите выше). Чтобы было понятней, вернемся к велосипедисту. Величина тяги на оси педалей зависит как от длины педали (плеча), так и от силы, с которой велосипедист давит на эту педаль. Измеряется крутящий момент в Ньютон на метр (Н·м).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector